JPH04105756A - Method for controlling drift of molten steel in continuous casting mold - Google Patents

Method for controlling drift of molten steel in continuous casting mold

Info

Publication number
JPH04105756A
JPH04105756A JP21909690A JP21909690A JPH04105756A JP H04105756 A JPH04105756 A JP H04105756A JP 21909690 A JP21909690 A JP 21909690A JP 21909690 A JP21909690 A JP 21909690A JP H04105756 A JPH04105756 A JP H04105756A
Authority
JP
Japan
Prior art keywords
molten steel
mold
drift
continuous casting
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21909690A
Other languages
Japanese (ja)
Other versions
JP2962788B2 (en
Inventor
Akira Yamane
明 山根
Masahiro Kawagoe
川越 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2219096A priority Critical patent/JP2962788B2/en
Publication of JPH04105756A publication Critical patent/JPH04105756A/en
Application granted granted Critical
Publication of JP2962788B2 publication Critical patent/JP2962788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To offer a method for restraining the drift of a molten steel by detecting the drift of the molten steel and individually controlling the flow rates of gaseous argon at the upper position of a submerged nozzle to both short sides. CONSTITUTION:Temp. distribution is detected to the transverse direction of a major side in a continuous casting mold, and by comparing a right-half pattern with a left-half pattern to the center part of the mold in the relevant temp. distribution or heat stream flux distribution, it is detected whether the drift of the molten steel is generated or not, and in accordance with this generation direction and degree, by individually controlling the gaseous argon blowing rate at the upper nozzle position of a tundish and/or sliding nozzle position to both minor sides, the drift of molten steel in the mold is controlled. By this invention, the drift of molten steel poured into the mold can be easily prevented. Consequently, the flaw in the cast slab of flux involution, etc., caused by the drift of molten steel in the mold, can be drastically reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続鋳造鋳型内における溶鋼の偏流制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for controlling the drift of molten steel in a continuous casting mold.

〈従来の技術〉 一般に、連続鋳造における溶鋼中の非金属介在物は、溶
鋼の注入流によって鋳片内部にまで持ち込まれる。その
大部分は湯面上に浮上するが、残る一部は鋳片内にその
まま捕捉され、丸鋳片品質の劣化を招く。この捕捉され
る非金属介在物の量は。
<Prior Art> Generally, non-metallic inclusions in molten steel in continuous casting are carried into the inside of a slab by the injection flow of molten steel. Most of it floats to the surface, but the remaining part is trapped inside the slab, causing deterioration in the quality of the slab. The amount of non-metallic inclusions captured is:

鋳込み時の鋳片内溶鋼流によって大きく変化することが
知られており、浸漬ノズルから吐出される溶鋼流速が速
く、かつ溶鋼流が鋳型内深くにまで達すれば達する程、
増加する傾向にある。
It is known that the flow rate of molten steel in the slab during casting changes greatly, and the faster the flow rate of molten steel discharged from the immersion nozzle and the deeper the molten steel flow reaches inside the mold, the more
There is a tendency to increase.

したがって、連続鋳造においては、浸漬ノズルから吐出
される溶鋼流が鋳型内深くまで達しないように、浸漬ノ
ズルは側方に吐出孔を有する形状とされ、しかも、鋳型
内温鋼表面に浮遊する表面被覆用フラックスを巻き込ま
ぬように、吐出孔は若干下向きとされて使用されている
Therefore, in continuous casting, the immersion nozzle is shaped with a discharge hole on the side so that the molten steel flow discharged from the immersion nozzle does not reach deep into the mold, and the surface of the molten steel that floats on the surface of the heated steel inside the mold. The discharge hole is oriented slightly downward to avoid entraining the coating flux.

第12図はその説明図である。スラブ連鋳機においては
、鋳型1の中央に浸漬ノズル2が配置され、その吐出孔
3a、3bは鋳型1の両短辺側に向けられ、吐出孔3a
、3bから吐出される溶鋼流は、鋳型1内を矢示4.5
のように流動する。すなわち、吐出孔3からの溶鋼流は
、鋳型1内に滞留される溶鋼6の中を流れる間にその速
度を減少し、鋳型1の各短辺側面への衝突によって反転
流となり、この反転流は、一方は場面側に向かう上昇流
4A、5A、他方は下方に向かう下降流4B、5Bとな
り、この間に大きく減速される結果、上昇流4A、5A
は場面上のフラックス7を渦中に巻き込むことなく、ま
た下降流4B、5Bは鋳片内深くにまで達しないように
して、鋳片品質を高める鋳造が実施されている。
FIG. 12 is an explanatory diagram thereof. In the continuous slab casting machine, a submerged nozzle 2 is arranged in the center of a mold 1, and its discharge holes 3a and 3b are directed toward both short sides of the mold 1, and the discharge holes 3a and 3b are directed toward both short sides of the mold 1.
The molten steel flow discharged from , 3b moves inside the mold 1 as indicated by the arrow 4.5.
Flowing like. That is, the molten steel flow from the discharge hole 3 reduces its speed while flowing through the molten steel 6 retained in the mold 1, and becomes a reverse flow by colliding with each short side of the mold 1, and this reverse flow , one is an upward flow 4A, 5A heading towards the scene side, and the other is a downward flow 4B, 5B heading downward, and as a result of being greatly decelerated during this time, the upward flow 4A, 5A
Casting is carried out to improve the quality of the slab by preventing the flux 7 on the surface from being drawn into the vortex, and by preventing the downward flows 4B and 5B from reaching deep into the slab.

しかし、第12回の関係は、両畦出孔3a、3bからの
溶鋼流が均等である場合に生しるものであり、浸漬ノズ
ル2に取付けられているスライディングノズル(図示せ
ず)の絞り開度や鋳込速度などにより、浸漬ノズル2を
下降する溶鋼流動にゆらぎが生じた場合、あるいは、浸
漬ノズル2の内壁にアルミナ等の非金属介在物が付着し
た場合、左右の吐出孔3a、3bの均等関係は崩れ、い
ずれか一方からの溶鋼流動が強くなり、いわゆる偏流が
生しることとなる。
However, the twelfth relationship occurs when the molten steel flows from both ridge holes 3a and 3b are uniform, and the molten steel flow from both the ridge nozzles 3a and 3b is equal. If fluctuations occur in the flow of molten steel descending through the immersion nozzle 2 due to the opening degree or casting speed, or if non-metallic inclusions such as alumina adhere to the inner wall of the immersion nozzle 2, the left and right discharge holes 3a, The equality relationship 3b collapses, and the flow of molten steel from either side becomes stronger, resulting in so-called drifting.

そのような偏流が発生すると、鋳型内温fil流のうち
、強い流動を生した側は、上昇流あるいは下降流が強く
なる結果、フラックス巻き込みあるいは鋳片内部深くま
で下降流が達することに起因した内部欠陥を生し、品質
劣化の原因となる。
When such a drift occurs, the side of the mold internal temperature film flow that has a strong flow will have a strong upward or downward flow, resulting in flux entrainment or a downward flow reaching deep inside the slab. This may cause internal defects and cause quality deterioration.

従来、上記した溶鋼の偏流を検出する手段としては、例
えば特開昭62−252650号公報に開示されている
ように、左右の鋳型短辺の壁面に複数の熱電対を上下方
向に所定の間隔で埋設し、その温度情報から左右の湯面
レベル差を検出し、そのレベル差を電磁撹拌装置(EM
S)により解消する方法や、特開昭62−252649
号公報に開示されているように、浸漬ノズル内に吹き込
むガス量を左右独立に制御することによって、左右レベ
ル差を解消する方法などが提案されている。
Conventionally, as a means for detecting the above-mentioned drifting of molten steel, as disclosed in Japanese Patent Application Laid-Open No. 62-252650, a plurality of thermocouples are placed on the walls of the short sides of the left and right molds at predetermined intervals in the vertical direction. The temperature information is used to detect the difference in the level of the left and right water levels, and the difference in level is measured using an electromagnetic stirring device (EM).
S) and Japanese Patent Application Laid-Open No. 62-252649.
As disclosed in the above publication, a method has been proposed in which the left and right level differences are eliminated by independently controlling the amount of gas blown into the immersion nozzle.

〈発明が解決しようとするgJI!s>しかしながら、
特開昭62−252650号公報の電磁攪拌装置(EM
S)を利用する方法では、偏流の程度とそれを解消する
ための攪拌力の関係が明記されておらず、もし、一定の
攪拌力が使用されているのであれば、溶鋼流動の時間的
変化(グイナミクス)を考慮したものにはなっておらず
、制御精度に問題がある。また、上述の公報において利
用されている偏流検知方法に関してであるが、本願発明
者らも同様の鋳型銅板測温実験を行い、特型内左右の溶
鋼レベル差を最もよく表現できる、銅板測温データに基
づく指標を探った結果、本出願人が先に出願した特願昭
62−93054号に示された方法よりも、鋳型長辺幅
方向温度分布に基づく方が、溶鋼レベル差の推定精度が
高いことがわかった。
<gJI that invention tries to solve! s>However,
The electromagnetic stirring device (EM
In the method using S), the relationship between the degree of drift and the stirring force used to eliminate it is not specified, and if a constant stirring force is used, the temporal change in molten steel flow would be (Guynamics) is not taken into account, and there are problems with control accuracy. Regarding the drift detection method used in the above-mentioned publication, the present inventors also conducted a similar mold copper plate temperature measurement experiment, and found that the copper plate temperature measurement method that can best express the difference in the level of molten steel on the left and right sides of the special mold. As a result of searching for indicators based on data, it was found that the method based on the temperature distribution in the long side width direction of the mold is more accurate in estimating the difference in molten steel level than the method shown in Japanese Patent Application No. 62-93054, which the present applicant previously filed. was found to be high.

本発明は、上記のような従来技術が有する課題を解決す
べくしてなされたものであって、連続鋳造鋳型内におい
て高精度で溶鋼の偏流を検知し、偏流の程度に応じて、
浸漬ノズル上部位置のアルゴンガス流量を両短片側で個
別流量制御することにより、溶鋼偏流を抑える方法を提
供することを目的とするものである。
The present invention was made in order to solve the problems of the prior art as described above, and it detects drifting of molten steel with high accuracy in a continuous casting mold, and detects drifting of molten steel in accordance with the degree of drifting.
The purpose of this invention is to provide a method for suppressing drifting of molten steel by individually controlling the flow rate of argon gas at the upper part of the immersion nozzle on both short sides.

〈課題を解決するための手段〉 上記目的を達成するための本発明は、連続鋳造鋳型内の
長辺幅方向の温度分布を検出して、該温度分布または熱
流束分布の鋳型の中央部に対する右半分のパターンと左
半分のパターンを比較することにより、溶鋼偏流の発生
の有無を検知し、その発生方向および程度に応して、浸
漬ノズルの吐出孔上部位置のアルゴンガス吹込み流量を
両短辺側で個別流量制御することにより、鋳型的溶鋼偏
流を制御することを特徴とする連続鋳造鋳型内における
溶鋼の偏流!!JI11方法である。
<Means for Solving the Problems> To achieve the above object, the present invention detects the temperature distribution in the long side width direction within the continuous casting mold, and determines the temperature distribution or heat flux distribution with respect to the central part of the mold. By comparing the pattern on the right half and the pattern on the left half, it is possible to detect whether or not a molten steel drift occurs, and depending on the direction and degree of occurrence, the argon gas injection flow rate at the upper position of the discharge hole of the immersion nozzle can be adjusted to both directions. Straight flow of molten steel in a continuous casting mold characterized by controlling mold-like drift of molten steel by individually controlling the flow rate on the short side! ! This is the JI11 method.

また、本発明は、連続鋳造鋳型内の長辺幅方向の温度分
布を検出して、該温度分布または熱流束分布の鋳型の中
央部に対する右半分のパターンと左半分のパターンを比
較することにより、溶鋼偏流の発生の有無を検知し、そ
の発生方向および程度に応じて、タンプイソツユ上ノズ
ル位置および/またはスライディングノズル位置のアル
ゴンガス吹込み量を両短辺側で個別制御することにより
、鋳型的溶鋼偏流を制御することを特徴とする連続鋳造
鋳型内における溶鋼の偏流制御方法である。
Further, the present invention detects the temperature distribution in the long side width direction within the continuous casting mold, and compares the pattern of the right half and the left half of the temperature distribution or heat flux distribution with respect to the center of the mold. , by detecting the occurrence of drifting of molten steel and individually controlling the amount of argon gas blown into the upper nozzle position and/or sliding nozzle position on both short sides according to the direction and degree of occurrence. This is a method for controlling the drift of molten steel in a continuous casting mold, which is characterized by controlling the drift of molten steel.

〈作 用〉 本発明によれば、連続鋳造鋳型内の長辺壁面の幅方向の
温度分布または熱流束分布を検出し、該温度分布または
熱流束分布の鋳型の中央部に対する右半分のパターンと
左半分のパターンとを比較することにより、溶鋼偏流の
発生の有無および偏流の程度が推定でき、その程度に応
じ浸漬ノズル上部位置のアルゴンガス流量を両短辺で個
別に流量制御することにより、あるいはタンデイツシュ
上ノズル位置および/またはスライディングノズル位置
のアルゴンガス吹込み量を両短辺側で個別制御すること
により溶鋼偏流を制御することができる。
<Operation> According to the present invention, the temperature distribution or heat flux distribution in the width direction of the long side wall surface in the continuous casting mold is detected, and the pattern of the right half of the temperature distribution or heat flux distribution with respect to the center of the mold is determined. By comparing the pattern on the left half, it is possible to estimate the presence or absence of drifting of molten steel and the extent of drifting, and by individually controlling the argon gas flow rate at the upper position of the immersion nozzle on both short sides according to the extent, Alternatively, the drift of molten steel can be controlled by individually controlling the amount of argon gas blown into the nozzle position on the tundish and/or the sliding nozzle position on both short sides.

〈実施例〉 以下、本発明の実施例について、図面を参照しながら詳
しく説明する。
<Examples> Examples of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係わる実施例を示す模式的に示す斜
視図である。図に示すように、鋳型lの短辺1aと長辺
1bのうち長辺幅方向に、複数の熱電対10a〜10e
が埋め込まれ、これら熱電対lOa〜10eで検出され
た溶鋼温度信号はそれぞれ例えばA/D変換ボードなど
の入力装置11に入力され、さらにマイクロコンピュー
タなどの演算装置12で演算処理され、その演算結果に
よる鋳型幅方向の温度分布は例えばCRTなどの表示装
置13に出力される。
FIG. 1 is a schematic perspective view showing an embodiment of the present invention. As shown in the figure, a plurality of thermocouples 10a to 10e are arranged in the width direction of the short side 1a and the long side 1b of the mold l.
are embedded, and the molten steel temperature signals detected by these thermocouples lOa to 10e are each input to an input device 11 such as an A/D conversion board, and further processed by a calculation device 12 such as a microcomputer, and the calculation result is The temperature distribution in the width direction of the mold is output to a display device 13 such as a CRT.

第3図は、偏流が発生していない場合(a)と発生し場
合[有])の鋳型幅方向の温度分布を示したものである
。(a)で示す偏流がない場合、鋳型長辺幅方向温度分
布はほぼ左右対称になっているのに対し、0))で示す
偏流が発生した場合、鋳型長辺幅方向の温度分布は左右
非対称となる(右側に偏流が発生した場合、右側よりの
温度が高くなる)現象を示している。
FIG. 3 shows the temperature distribution in the width direction of the mold in the case (a) when no drifting occurs and the case (with) when drifting occurs. When there is no drift shown in (a), the temperature distribution in the long side width direction of the mold is almost symmetrical, whereas when the drift shown in 0)) occurs, the temperature distribution in the long side width direction of the mold is left and right. This shows an asymmetrical phenomenon (if a drift occurs on the right side, the temperature on the right side becomes higher).

第4図は、偏流の程度を推定する方法を説明するための
模式図である。すなわち、温度測定により得られた温度
分布に対し、最も低い温度測定値に整数の“1”を与え
、その測定値から高い値になるに従い順次大きくなる整
数値を付与し、鋳型中央から右半分の順位の和と左半分
の順位の和を比較し、その差でもって偏流の発生方向と
偏流の程度を推定するのである。
FIG. 4 is a schematic diagram for explaining a method of estimating the degree of drift. In other words, for the temperature distribution obtained by temperature measurement, the lowest temperature measurement value is given an integer "1", and integer values that increase from that measurement value to higher values are given, and the right half from the center of the mold is given an integer value of 1. The sum of the ranks in the left half is compared with the sum of the ranks in the left half, and the difference is used to estimate the direction and degree of drift.

第5図は、この方法で導出した順位和の差(O印)と、
偏流により発生した鋳型的左右の溶鋼レベル差(×印)
の関係図である。ちなみに、特開昭62−93054号
公報で提示された方法に基づいて導出した溶鋼レベル差
も同時に比較例として示す。
Figure 5 shows the difference between the rank sums derived using this method (marked with O), and
Difference in molten steel level on the left and right sides of the mold caused by drifting (x mark)
It is a relationship diagram. Incidentally, the molten steel level difference derived based on the method presented in JP-A No. 62-93054 is also shown as a comparative example.

同図より、順位和の差と実際の溶鋼レベル差がよく一致
しており、本発明法に基づく偏流の方向および程度の推
定がうまくいっていることを示している。
The figure shows that the difference in rank sum and the actual molten steel level difference match well, indicating that estimation of the direction and degree of drift based on the method of the present invention is successful.

偏流の制御は、上述の方法で推定した偏流の方向および
程度に応じて、浸漬ノズル2の上部位置のアルゴンガス
流量を両短辺側で個別流量制御する方法を採用する。す
なわち第2図に示すように鋳型1の中央部に配置された
浸漬ノズル2の内面に垂直方向で左右に2分割した気体
吹込用のポーラス耐火物7を設けると共に、その背後に
ガス滞留空間14を設け、不活性ガス供給管15からガ
ス滞留空間14を介してポーラス耐火物7に供給される
不活性ガス供給量を独立に制御する。
To control the drift, a method is adopted in which the argon gas flow rate at the upper position of the submerged nozzle 2 is individually controlled on both short sides depending on the direction and degree of the drift estimated by the method described above. That is, as shown in FIG. 2, a porous refractory 7 for blowing gas is provided on the inner surface of the immersion nozzle 2 placed in the center of the mold 1, which is vertically divided into left and right halves, and a gas retention space 14 is provided behind it. are provided to independently control the amount of inert gas supplied from the inert gas supply pipe 15 to the porous refractory 7 via the gas retention space 14.

つまり、浸漬ノズル2の左右の吐出孔3a、3bの経時
変化により、浸漬ノズル2の左右の吐出流4と5の強さ
が不均一になった場合、吐出流5の弱い方へ多くの気体
を吹込み、逆に吐出流4の強い方へ少ない気体を吹込め
ば、気体の浮力によりガスリフト効果が鋳型l内の左右
で相違し、多量の不活性ガスを吹込んだ側の上昇流5が
少量の不活性ガスを吹込んだ側の上昇流4より相対的に
強くなっている。
In other words, if the strengths of the left and right discharge flows 4 and 5 of the submerged nozzle 2 become uneven due to changes over time in the left and right discharge holes 3a and 3b of the submerged nozzle 2, more gas will flow to the weaker discharge flow 5. If a small amount of gas is blown into the stronger side of the discharge flow 4, the gas lift effect will be different on the left and right sides of the mold 1 due to the buoyancy of the gas, resulting in an upward flow 5 on the side where a large amount of inert gas has been blown. is relatively stronger than the upward flow 4 on the side into which a small amount of inert gas is blown.

かくして吐出孔4.5の強さの不均一になる上昇流の強
さの不均一つまり偏流を前述のように鋳型1の長辺幅方
向の温度分布で検知し、この検知した値に基づいてガス
流量制御装置8を介して不活性ガス供給管11に設けた
流Ivi4節弁9を調節し、ガス滞留空間10からポー
ラス耐火物7を通して上昇流の弱い方へ多量の不活性ガ
スを吹込めば、吐出流4.5の強度の不均一による上昇
流4A、5Aの不均一が解消され、鋳型l内の偏流がな
くなる。
As described above, the uneven strength of the upward flow resulting in the uneven strength of the discharge hole 4.5, that is, the uneven flow, is detected by the temperature distribution in the long side width direction of the mold 1, and based on this detected value. Adjust the flow Ivi four-node valve 9 provided in the inert gas supply pipe 11 via the gas flow rate control device 8, and blow a large amount of inert gas from the gas retention space 10 through the porous refractory 7 to the side where the upward flow is weak. For example, the non-uniformity of the upward flows 4A and 5A due to the non-uniformity of the intensity of the discharge flow 4.5 is eliminated, and the uneven flow within the mold 1 is eliminated.

第1表に長辺幅方向温度分布から導出した、右半面順位
和と左反面順位和の差(ΔS)と各ΔSに対して、ΔS
を適正範囲内に制御するために、変化させるべきアルゴ
ンガス流量変化量(ΔQ)の関係を示す、 第1表 この第1表に基づき、浸漬ノズル2からのアルゴンガス
流量を両短片側で個別流量制御することで、?8鋼偏流
が抑制できる。
Table 1 shows the difference (ΔS) between the right half side rank sum and the left half side rank sum derived from the temperature distribution in the long side width direction, and for each ΔS, ΔS
Table 1 shows the relationship between the amount of change in argon gas flow rate (ΔQ) that should be changed in order to control the argon gas flow rate within an appropriate range. By controlling the flow rate? 8 Steel drift can be suppressed.

本発明を実施した場合を第7回を用いて説明する。鋳造
開始して70分間位は、右半面順位和から左半面順位和
を差し引いた差△Sの絶対値が2以下と低位安定してお
り、鋳型的溶鋼流動は左右均等であることがうかがえる
(ΔSの適正範囲は±4以内)。その後、ΔSが正方向
に大きく推移しく右側に偏流したことを示唆)、その時
に浸漬ノズル右側へのアルゴンガス2RIQ(右)を、
通常操業時のアルゴンガス滓量3 Nl / mから1
.5Nl/1に減少させ(この場合ΔQ= 1.5NZ
/飾)、逆に反偏流側である左側へのアルゴンガスtA
ffiQ(左)峻3Nl/廟から4 、5 NZ /鮨
に増加させたとこ入 △Sが適正範囲内に戻った。この
操作により、鋳型的溶鋼流動が均等に戻った秤考えられ
る。
A case in which the present invention is implemented will be explained using the seventh session. For about 70 minutes after the start of casting, the absolute value of the difference △S, which is the difference between the sum of ranks on the right half and the sum of ranks on the left half, remains low and stable at 2 or less, indicating that the mold-like flow of molten steel is equal on the left and right sides ( The appropriate range of ΔS is within ±4). After that, ΔS significantly changed in the positive direction, suggesting that the flow was drifting to the right), and at that time, argon gas 2RIQ (right) was sent to the right side of the immersion nozzle.
Argon gas slag amount during normal operation: 3 Nl/m to 1
.. 5Nl/1 (in this case ΔQ= 1.5NZ
/ Decoration), conversely, argon gas tA to the left side, which is the anti-drift side.
ffiQ (left) Increased from Shun 3Nl/Myo to 4,5 NZ/Sushi. △S has returned to the appropriate range. It is thought that this operation returned the mold-like flow of molten steel to an even level.

その後、ΔSが負方向に大きく推移(右側に偏流したこ
とを示唆)したが、同様に浸漬ノズル左側の流量を減少
させ、浸漬5ノズル左側の流量を増加させることによっ
てΔSが再度適正範囲内に戻り、鋳型的溶鋼流動が均等
化された。この実験は、ΔSが大きく変移した場合に、
ΔSを適正範囲内に戻すためには、浸漬ノズル左右から
吹き込むアルゴンガス流量にどの程度の差をつければよ
いかを把握するために行ったものであり、同様の実験を
実施して結果をまとめたものが第1表である。
After that, ΔS significantly changed in the negative direction (suggesting that the flow was drifting to the right), but by similarly decreasing the flow rate on the left side of the immersion nozzle and increasing the flow rate on the left side of the immersion 5 nozzle, ΔS was brought back within the appropriate range. Returning, the mold-like flow of molten steel was equalized. In this experiment, when ΔS changes significantly,
This was done in order to understand how much difference should be made in the flow rate of argon gas blown from the left and right sides of the immersion nozzle in order to return ΔS to within the appropriate range.We conducted similar experiments and summarized the results. Table 1 shows the results.

第1表により、ΔSを適正範囲内に制御するための、浸
漬ノズルの左右アルゴンガス流量差が決定することがで
きる。
From Table 1, it is possible to determine the difference in the flow rate of argon gas between the left and right sides of the submerged nozzle in order to control ΔS within an appropriate range.

次に、本発明を鋳造開始から適用した場合の実験結果を
第8図に示す、第8図から、偏流の発生サイドおよび程
度の指標であるΔSを常時監視(但し、サンプリング周
期は約10秒)し、この値と浸漬ノズル左右のアルゴン
ガス流量個別制御を組み合わせることにより、ΔSが適
正範囲内に収まり、鋳型的溶鋼偏流が抑制されているの
がわかる。
Next, Figure 8 shows the experimental results when the present invention is applied from the start of casting. From Figure 8, ΔS, which is an index of the occurrence side and degree of drift, is constantly monitored (however, the sampling period is approximately 10 seconds). ), and it can be seen that by combining this value with individual control of the argon gas flow rates on the left and right sides of the immersion nozzle, ΔS falls within an appropriate range, and mold-like molten steel drift is suppressed.

なお第6図に、偏流制御実施前と実施後の鋳片品質の状
況を示す0本発明法の通用により、鋳片品質は大幅に改
善されていることがわかる。
FIG. 6 shows the quality of slabs before and after the implementation of drift control. It can be seen that the quality of slabs has been significantly improved by applying the method of the present invention.

鋳型の長辺幅方向の温度分布により鋳型内の偏流を制御
手段としては前述実施例の他に、偏流の方向およびその
程度に応Iユてタンディッシュ上ノズル部および/また
はスライディングノズル部位置”のアルゴンガス流量を
両短辺側で個別流量制御する方法を採用することができ
る。
In addition to the above-mentioned embodiments, means for controlling the uneven flow inside the mold by controlling the temperature distribution in the long side width direction of the mold can be used to control the position of the nozzle part on the tundish and/or the sliding nozzle part depending on the direction and degree of the uneven flow. It is possible to adopt a method of individually controlling the argon gas flow rate on both short sides.

第9図においてクンデインシュ1Gに設けられたタンデ
イツシュ上ノズル17の内部には左右一対の半円状分割
スリン)18a、18b(第10図参照)が設けてあり
、半円状分割スリン)18a、18bの内側には通気性
のポーラスれんが19が設けである。
In FIG. 9, a pair of left and right semicircular divided sulins) 18a, 18b (see FIG. 10) are provided inside the tundish upper nozzle 17 provided in the kundeinshu 1G. There are permeable porous bricks 19 inside.

またスライディングノズル20の固定プレート20aの
内部にも第10図に示すものに準して左右一対の半円状
分割スリット21a、21bが設けてあり、半円状分割
スリット21a、21bの内側にも通気性ポーラスれん
が19が設けである。
Also, inside the fixed plate 20a of the sliding nozzle 20, a pair of left and right semicircular dividing slits 21a, 21b are provided according to the one shown in FIG. Air permeable porous bricks 19 are provided.

半円状分割スリン)18a、18bならびに半円状分割
スリン)21a、21bにはそれぞれガス供給管15が
接続されると共に、ガス供給管I5には流量調節弁9が
配設されていて個別に制御されるようになっている。
A gas supply pipe 15 is connected to each of the semicircular divided sulins) 18a, 18b and the semicircular divided sulins) 21a, 21b, and a flow rate control valve 9 is disposed in the gas supply pipe I5 to individually It's about to be controlled.

ガス流量制?11装置8は熱電対10a〜10eによる
鋳型1の長辺幅方向温度分布によって各流!調節弁9の
開度が調節され、不活性ガス供給管15から半円状分割
スリyトi8aおよび21aに供給されるアルゴンガス
等のト活性ガスと、ガス供給管15から半円状分割スリ
、ト1.8bおよび21a&世給されるアルゴンガス等
の不活性ガスとの各つ”ス流量が独立に1i1節され、
通気性ポーラスれんが19から吹込まれる左右の不活性
ガス流量が調整される。
Gas flow rate system? 11 device 8 uses thermocouples 10a to 10e to determine the temperature distribution in the long side width direction of mold 1. The opening degree of the control valve 9 is adjusted, and active gas such as argon gas is supplied from the inert gas supply pipe 15 to the semicircular divided slits i8a and 21a, and the semicircular divided slits are supplied from the gas supply pipe 15 to the semicircular divided slits i8a and 21a. , 1.8b and 21a & the flow rate of each inert gas such as argon gas to be supplied is independently set 1i1,
The flow rates of the left and right inert gases blown into the air-permeable porous bricks 19 are adjusted.

前記の場合、タンデイ、シュ上ノズル17に設けた半円
状分割ス11ソト18a、18bの内側に通気性ポーラ
スれんが19を設けるものについて説明しまたが、第1
1図に示すように半円状分割スリン)12a、12bに
連通さセて内側に複数のガス吹込用細管22を配設して
不活性ガスを吹込むようにしてもよい。
In the above case, the case where the breathable porous bricks 19 are provided inside the semicircular divided slots 18a and 18b provided on the upper nozzle 17 will be described.
As shown in FIG. 1, a plurality of gas blowing thin tubes 22 may be arranged inside the semicircular divided sulins 12a and 12b to blow inert gas therein.

次に本発明の作用について説明すると、鋳型2の長辺幅
方向にそれぞれ埋設した複数の熱電対10a〜10eに
よって検出された長辺幅方向温度分布により監視され、
流量1!節弁9の開度を調節する。
Next, to explain the operation of the present invention, the temperature distribution in the long side width direction detected by a plurality of thermocouples 10a to 10e embedded in the long side width direction of the mold 2 is monitored,
Flow rate 1! Adjust the opening degree of the control valve 9.

かくして、不活性ガス供給管15から半円状スリット1
8aおよび21aに供給される不活性ガス量とガス供給
管15から半円状スリッ目8bおよび21bに供給され
る不活性ガス量を調整し、通気性ポーラスれんが13か
ら吹込まれる左右の不活性ガス流量を変化させる。
Thus, the semicircular slit 1 is formed from the inert gas supply pipe 15.
The amount of inert gas supplied to 8a and 21a and the amount of inert gas supplied from gas supply pipe 15 to semicircular slits 8b and 21b are adjusted, and the left and right inert gases blown from air permeable porous brick 13 are adjusted. Change gas flow rate.

例えば、浸漬ノズル2の左側の吐出孔3aがらの流速が
右側の吐出孔3bよりも大きい場合、通気性ポーラスれ
んが3の左側から吹込まれる不活性ガス量を増量し、右
側から吹込まれる不活性ガス量を減量すると鋳型1内に
注入される溶1ii16の偏流が解消される。
For example, if the flow velocity through the discharge hole 3a on the left side of the immersion nozzle 2 is higher than that through the discharge hole 3b on the right side, the amount of inert gas blown from the left side of the breathable porous brick 3 is increased, and the amount of inert gas blown from the right side is increased. By reducing the amount of active gas, the uneven flow of the melt 1ii16 injected into the mold 1 is eliminated.

前述第9図に示すタンデイツシュノズルおよび/または
固定プレートから不活性ガスを吹込むものは、第2図に
示す浸漬ノズルから不活性ガスを吹込むものに比較して
損傷が少なく寿命が長いという利点がある。
The device that blows inert gas from the tundish nozzle and/or fixed plate shown in Figure 9 has less damage and has a longer life than the one that blows inert gas from the submerged nozzle shown in Figure 2. There is an advantage.

〈発明の効果〉 以上説明したように本発明によれば浸漬ノズルの吐出孔
を介して鋳型に注入された溶鋼の偏流を容易に防止する
ことうくできる。その結果、鋳型内溶鋼の偏流に起因す
るフラックス巻込み等による鋳片の欠陥を大幅に低減で
きる。
<Effects of the Invention> As explained above, according to the present invention, drifting of molten steel injected into a mold through the discharge hole of the immersion nozzle can be easily prevented. As a result, defects in the slab due to flux entrainment caused by drifting of molten steel in the mold can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る鋳型長辺幅方向の温度測定手段を
模式的に示す斜視図、第2図は本発明に係る偏流防止手
段を示す断面図、第3図および第4図は鋳型長辺幅方向
の温度分布を示す線グラフ、第5図は実際の鋳型溶鋼レ
ベル差と順位和の差(ΔS)との関係を示ず線グラフ、
第6図は鋳片品質指標を本発明例と従来例について比較
する棒グラフ、第7図および第8図は鋳型長辺の幅方向
の右側順位和から左側順位和を差し引いた順位和差ΔS
および左右の各ガス流量の各経時変化を示す線グラフ、
第9図は本発明に係る偏流防止の他の手段を示す断面図
、第10図は第9図のA−A矢視を示すタンデイツシュ
上ノズルの断面図、第11図は本発明に係るタンデイツ
シュ上ノズルの他の例を示す断面図、第12図は従来の
鋳型へのR11A注入状況を示す断面図である。 1・・・鋳 型、      2・・・浸漬ノズル、3
・・・吐出孔、 4.5・・・溶鋼流動方向を示す矢印、6・・・溶 鋼
、      7・・・ポーラス耐火物、8・・・ガス
流量制御装置、9・・・流量調節弁、IO・・・熱電対
、     11・・・入力装置、12・・・演算装置
、    13・・・表示装置、I4・・・ガス滞留空
間、  15・・・不活性ガス供給管、16・・・タン
デイツシュ、 17・・・上ノズル、1日・・・スリッ
ト、    19・・・ポーラスれんが、20・・・ス
ライディングノズル、 21・・・スリット、    22・・・ガス吹込管。
FIG. 1 is a perspective view schematically showing a temperature measuring means in the long side width direction of a mold according to the present invention, FIG. 2 is a sectional view showing a drift prevention means according to the present invention, and FIGS. 3 and 4 are a mold A line graph showing the temperature distribution in the long side width direction, Figure 5 is a line graph showing the relationship between the actual mold molten steel level difference and the rank sum difference (ΔS),
Figure 6 is a bar graph comparing slab quality indicators for the inventive example and the conventional example, and Figures 7 and 8 are the rank sum difference ΔS obtained by subtracting the left rank sum from the right rank sum in the width direction of the long side of the mold.
and a line graph showing changes over time in each gas flow rate on the left and right sides,
FIG. 9 is a cross-sectional view showing another means for preventing drifting according to the present invention, FIG. 10 is a cross-sectional view of the upper nozzle of the tundish dish taken along the line A-A in FIG. 9, and FIG. FIG. 12 is a cross-sectional view showing another example of the upper nozzle, and FIG. 12 is a cross-sectional view showing the state of R11A injection into a conventional mold. 1... Mold, 2... Immersion nozzle, 3
...Discharge hole, 4.5...Arrow indicating the flow direction of molten steel, 6... Molten steel, 7...Porous refractory, 8...Gas flow rate control device, 9...Flow rate adjustment valve , IO... thermocouple, 11... input device, 12... computing device, 13... display device, I4... gas retention space, 15... inert gas supply pipe, 16... - Tanditetsu, 17... Upper nozzle, 1st... Slit, 19... Porous brick, 20... Sliding nozzle, 21... Slit, 22... Gas blowing pipe.

Claims (1)

【特許請求の範囲】 1、連続鋳造鋳型内の長辺幅方向の温度分布を検出して
、該温度分布または熱流束分布の鋳型の中央部に対する
右半分のパターンと左半分のパターンを比較することに
より、溶鋼偏流の発生の有無を検知し、その発生方向お
よび程度に応じて、浸漬ノズルの吐出孔上部位置のアル
ゴンガス吹込み流量を両短辺側で個別流量制御すること
により、鋳型内溶鋼偏流を制御することを特徴とする連
続鋳造鋳型内における溶鋼の偏流制御方法。 2、連続鋳造鋳型内の長辺幅方向の温度分布を検出して
、該温度分布または熱流束分布の鋳型の中央部に対する
右半分のパターンと左半分のパターンを比較することに
より、溶鋼偏流の発生の有無を検知し、その発生方向お
よび程度に応じて、タンディッシュ上ノズル位置および
/またはスライディングノズル位置のアルゴンガス吹込
み量を両短辺側で個別制御することにより、鋳型内溶鋼
偏流を制御することを特徴とする連続鋳造鋳型内におけ
る溶鋼の偏流制御方法。
[Claims] 1. Detecting the temperature distribution in the long side width direction within the continuous casting mold, and comparing the right half pattern and the left half pattern of the temperature distribution or heat flux distribution with respect to the center of the mold. By this, it is possible to detect whether or not a molten steel drift has occurred, and to control the flow rate of argon gas blowing at the upper position of the discharge hole of the submerged nozzle on both short sides individually depending on the direction and degree of occurrence. A method for controlling the drift of molten steel in a continuous casting mold, the method comprising controlling the drift of molten steel. 2. By detecting the temperature distribution in the long side width direction in the continuous casting mold and comparing the pattern of the right half and the left half of the temperature distribution or heat flux distribution with respect to the center of the mold, it is possible to detect the uneven flow of molten steel. By detecting the presence or absence of occurrence and controlling the amount of argon gas blown into the tundish upper nozzle position and/or sliding nozzle position individually on both short sides depending on the direction and degree of occurrence, it is possible to prevent molten steel drift in the mold. A method for controlling the drift of molten steel in a continuous casting mold.
JP2219096A 1990-08-22 1990-08-22 Control method of drift of molten steel in continuous casting mold Expired - Lifetime JP2962788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219096A JP2962788B2 (en) 1990-08-22 1990-08-22 Control method of drift of molten steel in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219096A JP2962788B2 (en) 1990-08-22 1990-08-22 Control method of drift of molten steel in continuous casting mold

Publications (2)

Publication Number Publication Date
JPH04105756A true JPH04105756A (en) 1992-04-07
JP2962788B2 JP2962788B2 (en) 1999-10-12

Family

ID=16730198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219096A Expired - Lifetime JP2962788B2 (en) 1990-08-22 1990-08-22 Control method of drift of molten steel in continuous casting mold

Country Status (1)

Country Link
JP (1) JP2962788B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051763A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for estimating/controlling molten steel flowing pattern in continuous casting
KR100516028B1 (en) * 1999-03-02 2005-09-26 제이에프이 스틸 가부시키가이샤 Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JP2006231375A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Method for continuously casting steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051763A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for estimating/controlling molten steel flowing pattern in continuous casting
WO2000051762A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for predication and control of molten steel flow pattern in continuous casting
EP1166921A1 (en) * 1999-03-02 2002-01-02 Nkk Corporation Method and device for estimating/controlling molten steel flowing pattern in continuous casting
US6712122B2 (en) 1999-03-02 2004-03-30 Nkk Corporation Method for estimating and controlling flow pattern of molten steel in continuous casting and apparatus therefor
EP1166921A4 (en) * 1999-03-02 2004-08-18 Jfe Steel Corp Method and device for estimating/controlling molten steel flowing pattern in continuous casting
KR100516028B1 (en) * 1999-03-02 2005-09-26 제이에프이 스틸 가부시키가이샤 Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JP2006231375A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Method for continuously casting steel

Also Published As

Publication number Publication date
JP2962788B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP5755438B2 (en) Control device and method for metal casting machine
JPH03275256A (en) Method for controlling drift flow of molten steel in continuous casting mold
JPH04105756A (en) Method for controlling drift of molten steel in continuous casting mold
JP3252769B2 (en) Flow control method of molten steel in continuous casting mold
KR20120044433A (en) Apparatus for reducting nonunifrom flow of molten steel in the mold and method therefor
JP3252768B2 (en) Flow control method of molten steel in continuous casting mold
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
JPH09168847A (en) Method for continuously casting steel
JPS63104758A (en) Control method for molten surface for continuous casting
JP2555872B2 (en) Control method of fluctuation of molten metal level in continuous casting
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting
JP2825988B2 (en) Method of preventing longitudinal cracks in continuous casting of thin cast slab
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JPH09182943A (en) Continuous casting method of steel
JPH03294053A (en) Method for controlling drift flow of molten steel in continuous casting mold
WO2020170563A1 (en) Control method for continuous casting machine, control device for continuous casting machine, and method for manufacturing slab
KR101368352B1 (en) Method for controlling temperature of casting
JPS62252650A (en) Divagating flow control method in mold for molten steel continuous casting
JP2000263198A (en) Method for continuously casting molten steel
JPS5788958A (en) Continuous casting method
JPH038545A (en) Apparatus for controlling automatic casting start in continuous casting machine
JPH03151150A (en) Method for controlling mold level in open casting
JPH05277691A (en) Method for preventing drift flow of molten steel in continuous casting mold by gas blowing immersion nozzle
JPH0671398A (en) Method for controlling molten steel surface level in mold in continuous casting machine