JPH01262050A - Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel - Google Patents

Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel

Info

Publication number
JPH01262050A
JPH01262050A JP9012388A JP9012388A JPH01262050A JP H01262050 A JPH01262050 A JP H01262050A JP 9012388 A JP9012388 A JP 9012388A JP 9012388 A JP9012388 A JP 9012388A JP H01262050 A JPH01262050 A JP H01262050A
Authority
JP
Japan
Prior art keywords
mold
thermocouples
molten steel
continuous casting
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9012388A
Other languages
Japanese (ja)
Other versions
JPH0673732B2 (en
Inventor
Yoshikazu Kurose
黒瀬 芳和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63090123A priority Critical patent/JPH0673732B2/en
Publication of JPH01262050A publication Critical patent/JPH01262050A/en
Publication of JPH0673732B2 publication Critical patent/JPH0673732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To detect leaning flow of molten steel in a mold and to suitably control continuous casting by embedding plural thermocouples into copper plate for the mold at symmetrically right and left sides of submerged nozzles arranged at center of the mold and finding deviation of detected temp. difference between the right and left sides with the fixed value. CONSTITUTION:The submerged nozzle having molten steel discharging holes facing the mold short wall side is arranged at the center of the mold, to execute casting. In the copper plates of each long wall and short wall in the above mold, at each of both sides of the submerged nozzle, at least two pieces of the thermocouples downward just below the molten steel surface and further, at least two pieces of the thermocouples toward depth direction from the copper plate surface are embedded. At the time of the above continuous casting, the temps. are detected with the thermocouples. By this detected temp., the temp. difference of the thermocouples in the symmetrical positions at both right and left sides making the submerged nozzle the boundary or difference of the heat flow flux from this is found. Deviation between the difference thereof and the fixed value, is found and the leaning flow of the molten steel discharging rate is detected based on this deviation. In the case the above temp. difference, etc., becomes the prescribed value or more, both short walls are shifted at the same time as the mold width is fixed and the leaning flow is prevented and the continuous casting can be stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼の連続鋳造時の鋳型内層li!偏流検出方法
および鋼の連続鋳造方法に係り、詳しくは、鋳型銅板内
に埋設され浸漬ノズルに対してす・1象位置に設けた複
数個の熱電対により検出ざれる温度差あるいは熱流束差
をもとに鋳型内層、       #4@流を検出する
方法および前記方法によって検出された溶鋼偏流を鋳型
銅板の短辺移動により連続鋳造時に発生する湯面変動を
制御し、鋳片品質を安定化させる鋼の連続鋳造方法に係
る。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to the inner layer of the mold during continuous casting of steel! Regarding the drift detection method and the continuous steel casting method, in detail, the temperature difference or heat flux difference detected by a plurality of thermocouples embedded in the mold copper plate and installed at one quadrant position with respect to the immersion nozzle is used. Based on the method of detecting #4@flow in the mold inner layer, and by moving the molten steel drift detected by the above method on the short side of the mold copper plate, the fluctuation of the melt level that occurs during continuous casting is controlled, and the quality of the slab is stabilized. Concerning continuous steel casting method.

従  来  の  技  術 鋼の連続鋳造方法は、従来の圧延鋼材の製造工程である
溶解、造塊、均熱、分解、加熱および圧延の各工程から
均熱および分解の各工程が省略でき、しがも、製品の歩
止りを高めることができるので、従来の圧延鋼材の製造
法に代って広く採用されている。
The conventional continuous casting method for technical steel can omit the soaking and decomposition steps from the melting, ingot forming, soaking, decomposition, heating, and rolling steps that are conventional manufacturing processes for rolled steel products. However, since it can increase the yield of products, it has been widely adopted as an alternative to the conventional method of manufacturing rolled steel products.

鋼の連続鋳造において、溶鋼中には非金属介在物が含ま
れており、この非金属介在物は溶鋼流の注入流によって
鋳片の内部まで持込まれ、その大部分は湯面上に浮上す
るが、残る一部は鋳片内にそのまま捕捉される。
In continuous steel casting, molten steel contains non-metallic inclusions, and these non-metallic inclusions are carried into the slab by the injection flow of molten steel, and most of them float above the molten metal surface. However, the remaining part is trapped inside the slab.

この捕捉される非金属介在物の量は鋳込み時の鋳片内の
溶鋼流によって人きく変化することが知られており、浸
漬ノズルから吐出される溶鋼流が広い範囲にわたって大
きく、かつ深くなればなる程増加する傾向がある。
It is known that the amount of nonmetallic inclusions that are trapped varies depending on the flow of molten steel in the slab during casting, and if the flow of molten steel discharged from the immersion nozzle becomes large and deep over a wide range, There is a tendency to increase.

そこで、スラブ連鋳機においては浸漬ノズルを鋳型銅板
の中央に配置され、その吐出孔は鋳型銅板の短辺側に向
けられ、吐出孔から吐出される溶lll流は貯留溶鋼中
を流れる間にその速度を減少し、鋳型銅板の短辺側壁面
への衝突によって反転流となり、この反転流は一方は湯
面側に向う上昇流、他方は下方へ向う下降流となり、こ
の間に大きく減速される結果、上昇流は湯面上のフラッ
クスを巻込むことなく、また、下降流は鋳片中に深く到
達しないようにして、鋳片品質を高める鋳造が行なわれ
ている。
Therefore, in a continuous slab caster, a submerged nozzle is placed in the center of the mold copper plate, and its discharge hole is directed toward the short side of the mold copper plate. Its velocity is reduced, and the collision with the short side wall of the mold copper plate creates a reversed flow, and one side of this reversed flow becomes an upward flow toward the hot water surface, and the other becomes a downward flow, which is greatly decelerated during this time. As a result, the upward flow does not involve the flux on the surface of the molten metal, and the downward flow does not reach deep into the slab, resulting in casting that improves the quality of the slab.

しかしなから、浸漬ノズルのスライディングノズルの絞
り開度、鋳込速度等により浸漬ノズルを下降する溶鋼流
動にゆらぎを生じた場合あるいは浸漬ノズル内壁にアル
ミナ等の非金属介在物の付着を生じた場合には、何れか
一方の吐出孔からの溶1i!流動が強くなり、所謂偏流
が生じることになる。この@流を生じると、鋳型内層I
jl流の内、強い流動を生じた側は上昇流あるいは下降
流が強くなる結果、フラックス巻込みあるいは鋳片内部
深くまで下降流が達することによる内部品質の悪化を生
じる。
However, if fluctuations occur in the flow of molten steel descending the immersion nozzle due to the throttle opening of the sliding nozzle of the immersion nozzle, casting speed, etc., or if nonmetallic inclusions such as alumina adhere to the inner wall of the immersion nozzle. In this case, the melt 1i! from either one of the discharge holes! The flow becomes stronger and so-called drifting occurs. When this @ flow occurs, the mold inner layer I
In the jl flow, the upward flow or downward flow becomes stronger on the side where strong flow occurs, resulting in flux entrainment or deterioration of internal quality due to the downward flow reaching deep inside the slab.

また、鋳造前偏流を発生した原因が浸漬ノズル吐出孔の
詰まりであるときは、その対策がなく、その程度がほと
んど閉塞状態にある場合は浸漬ノズルの交換を実施する
があるいは鋳造を停止するしがなく、歩止り低下および
生産性の低下となる等の問題があった。
In addition, if the cause of the pre-casting drift is the clogged discharge hole of the immersion nozzle, there is no countermeasure, and if the degree of blockage is almost the same, replace the immersion nozzle or stop casting. There were problems such as a decrease in yield and productivity.

従来、前記鋳型的溶鋼偏流の発生を測定する方法として
、(1)特開昭59−104512号公報に示される゛
°連続鋳造時の鋳込流測定方法″、(2)特開昭55−
149017号公報に示される°“鋳型的溶鋼表面の挙
動を測定する方法′”、(3)特開昭62−19725
5号公報に示される゛°連続鋳造時の鋳型的溶鋼偏流の
検出方法″が提案されているのみである。
Conventionally, methods for measuring the occurrence of mold-related molten steel drift include (1) ``Method for measuring pouring flow during continuous casting'' disclosed in JP-A-59-104512, and (2) JP-A-59-10451.
149017 “Method for Measuring Behavior of Surface of Molten Steel”, (3) JP-A-62-19725
No. 5 only proposes a method for detecting drifting of molten steel during continuous casting.

(1)は鋳型内の溶融金属中に受圧体を挿入して、この
受圧体により溶融金属流体の圧力を検出し、鋳込流の状
態を把握する方法であり、(2)では、湯面検出セン→
ノー−を湯面と湯面検出センサー間の距離を一定に保っ
て追従駆動される追従駆動部に支持し、湯面振動を検出
し、フラックス等の巻込みを察知する方法であり、(3
)は浸漬ノズルからの流動に伴う短辺への衝突により誘
起される溶鋼の帰り上り量を検出することにより偏流を
検出する方法である。
(1) is a method in which a pressure-receiving body is inserted into the molten metal in the mold, and the pressure of the molten metal fluid is detected by this pressure-receiving body to grasp the state of the pouring flow. Detection sensor →
This is a method in which the no- is supported by a follow-up drive part that is driven to follow while keeping the distance between the hot water level and the hot water level detection sensor constant, detects the vibration of the hot water level, and detects the entrainment of flux, etc. (3
) is a method of detecting drifting by detecting the amount of molten steel returning due to collision with the short side of the flow from the immersed nozzle.

しがしなから、この(1)の技術では、使用する受圧体
が鋳込中を通じて溶融金属中に浸漬使用できる耐久性を
持つ必要があり、溶鋼は高温度であることから極めて実
施は困難であり、また、浸漬した受圧体には浮上してく
る介在物の付着を生じ、該介在物の剥離等による鋳片内
部の汚染をも生じる問題がある。
However, in technology (1), the pressure receiving body used needs to be durable enough to be immersed in the molten metal throughout the casting process, which is extremely difficult to implement because the molten steel is at a high temperature. Moreover, there is a problem in that floating inclusions adhere to the immersed pressure-receiving body, and the peeling of the inclusions causes contamination inside the slab.

また、(2)の技術は、単に鋳型的溶鋼表面の振動を検
出するものであるから、浸漬ノズル内壁へのアルミナ付
着防止として吹込まれる不活性ガスによる影響等の問題
の外、湯面検出センサーの駆動方式が実施上問題となり
、高温環境下での信頼性の高い手段が必要とされる問題
がある。
In addition, since the technology (2) simply detects vibrations on the surface of molten steel in the form of a mold, in addition to problems such as the influence of inert gas injected to prevent alumina from adhering to the inner wall of the immersion nozzle, it is also difficult to detect the surface of the molten steel. The driving method of the sensor poses a problem in implementation, and a highly reliable method is required in high-temperature environments.

また、(3)の技術では鋳型の鋳込幅の相異により溶鋼
の盛り上り量が異なるため、その偏流の検知精度が低い
という問題がある。
Further, in the technique (3), since the amount of molten steel builds up varies depending on the casting width of the mold, there is a problem that the detection accuracy of the drift is low.

以上要するに、上記の如く、従来例では連続鋳造時の鋳
型内の偏流を検出する方法が提案されているが、これら
は何れも実施が困難であるか、または偏流の検出精度の
低いものである。
In summary, as mentioned above, conventional methods have been proposed for detecting drifting in the mold during continuous casting, but all of these methods are difficult to implement or have low accuracy in detecting drifting. .

また、従来例の連続鋳造法で得られた鋳片の表面割れl
f−多く発生し、製品品質が劣り、また、歩走りおよび
生産性が低いものである。このため、連続鋳造時の鋳型
内の偏流を精度良く検出する方法および鋼の連続鋳造方
法にいたっては全く提案されていない。
In addition, surface cracks in slabs obtained by the conventional continuous casting method
f- Frequently occurs, product quality is poor, and walking speed and productivity are low. For this reason, no method has been proposed for accurately detecting drifting flow in a mold during continuous casting, and no method for continuous casting of steel has been proposed.

発明が解決しようとする課題 本発明はこれらの問題を解決することを目的とし、具体
的には、鋳造中溶鋼偏流が生じると浸漬ノズルを境とす
る銅板画短辺面への溶鋼吐出量が異なるため、溶鋼吐出
量が少ない側の短辺近傍はメニスカス部の熱供給が不足
し、デイツケル(不沈塊)を発生しやすく、ノロカミや
鋳片内パウダー捕捉が起こる場合があること、一方、溶
鋼吐出量が多い側はメニスカス湯面変動が大きくなり、
パウダーの流入が不均一になりやすく縦割れ、コーナー
割れ等の鋳片表面割れおよびオシレーションマークの乱
れ湯じわ等の鋳片表面肌荒れを起こしやす(なること、
また、偏流が大きくなると、溶鋼吐出量の多い側は短辺
凝固遅れあるいは凝固シェルの再溶解を起こし、ブレー
クアウトに結びつく等の問題を解決した鋼の連続鋳造時
の鋳型的溶鋼偏流検出方法および鋼の連続鋳造方法を提
供することを目的とする。
Problems to be Solved by the Invention The purpose of the present invention is to solve these problems. Specifically, when molten steel drift occurs during casting, the amount of molten steel discharged to the short side of the copper plate bordering on the immersion nozzle is reduced. Because of the difference, heat supply to the meniscus near the short side where the flow rate of molten steel is small is insufficient, and deitzkel (unsinkable lump) is likely to occur, which may cause slag and powder trapping in the slab.On the other hand, On the side where the amount of molten steel discharged is large, the meniscus level fluctuation becomes large,
The inflow of powder tends to be uneven, causing cracks on the slab surface such as vertical cracks and corner cracks, and roughness on the slab surface such as turbulence wrinkles due to oscillation marks.
In addition, we have also developed a mold-based molten steel drift detection method during continuous steel casting that solves problems such as a delay in short side solidification or remelting of the solidified shell on the side with a large molten steel discharge rate, which can lead to breakouts when the drift becomes large. The purpose is to provide a method for continuous casting of steel.

課題を解決するための 手段ならびにその作用 すなわち、本発明は、鋳型短辺側に向いた溶鋼の吐出孔
を有する浸漬ノズルを鋳型中央に配して鋳造を行なう連
続鋳造に際し、前記浸漬ノズルを境とする左右両側の鋳
型銅板の各長辺および各短辺内にそれぞれ溶鋼表面直下
から上下方向に少なくとも2本以上、更に銅板表面から
深さ方向に少なくとも2本以上の熱電対を埋設し、上記
熱電対で検出される前記浸漬ノズルを境とする左右両側
対象位置の熱電対から測定される温度差あるいはその温
度差から求められる熱流束差とある一定値に対する偏差
を求め、この偏差をもとに鋳型内溶鋼吐出流の偏流を検
出することを特徴とし、また、鋳型短辺側に向いた溶鋼
の吐出孔を有する浸漬ノズルを鋳型中央に配して鋳造を
行なう連続鋳造に際し、前記浸漬ノズルを境とする左右
両側の鋳型銅板の各長辺および各短辺内にそれぞれ溶鋼
表面直下から上下方向に少なくとも2本以上、更に銅板
表面から深さ方向に少なくとも2本以上の熱電対を埋設
し、上記熱電対で検出される前記浸漬ノズルを境とする
左右両側対象位置の温度差あるいはその温度差から求め
られる熱流束差がある一定値以上に大きくなったとき、
モールド幅の絶対値を変更することなく、両短辺を同時
に温度差あるいは熱流束差がある一定値より大きい方向
に移動させ、浸漬ノズルを境とする左右両側の温度差あ
るいは熱流束差をある一定値以下とすることを特徴とす
るものである。
Means for Solving the Problems and Their Effects Namely, the present invention provides a method for continuous casting in which a submerged nozzle having a discharge hole for discharging molten steel facing toward the short side of the mold is disposed in the center of the mold. Embed at least two or more thermocouples in the vertical direction from just below the molten steel surface, and at least two or more thermocouples in the depth direction from the copper plate surface, respectively, in each long side and each short side of the mold copper plate on both the left and right sides, and The temperature difference detected by the thermocouples at symmetrical positions on both the left and right sides of the immersion nozzle as a boundary, or the heat flux difference obtained from the temperature difference, and the deviation from a certain constant value are determined, and based on this deviation. In continuous casting, in which a immersion nozzle having a molten steel discharge hole facing the short side of the mold is disposed in the center of the mold to perform casting, the immersion nozzle At least two or more thermocouples are embedded in each long side and each short side of the molded copper plate on both the left and right sides bordering on the surface of the molten steel in the vertical direction, and at least two or more thermocouples are buried in the depth direction from the surface of the copper plate. , when the temperature difference between the left and right symmetrical positions bordering the immersion nozzle detected by the thermocouple or the heat flux difference determined from the temperature difference becomes larger than a certain value;
Without changing the absolute value of the mold width, both short sides are simultaneously moved in a direction where the temperature difference or heat flux difference is greater than a certain value, and the temperature difference or heat flux difference between the left and right sides of the immersion nozzle is reduced. It is characterized by being below a certain value.

そこで、これらの手段たる構成ならびにその作用につい
て更に具体的に説明すると、次の通りである。
Therefore, the structure of these means and their operation will be explained in more detail as follows.

まず、本発明者等は鋼の連続鋳造時の鋳型銅板内の中央
に鋳型短辺側に向いた溶鋼の吐出孔を有する浸漬ノズル
を設けた鋳型内に溶鋼を注入して溶鋼流の状態を調査し
たところ、@流が発生する場合はその溶鋼が片沸現象を
生ずること、また、浸漬ノズルを境とする鋳型銅板の左
右両側に温度差があることであった。
First, the present inventors poured molten steel into a mold that had a immersion nozzle with a molten steel discharge hole facing toward the short side of the mold in the center of the copper plate of the mold during continuous casting of steel, and measured the state of the molten steel flow. The investigation revealed that when @ flow occurs, the molten steel undergoes a one-sided boiling phenomenon, and that there is a temperature difference between the left and right sides of the mold copper plate bordering the immersion nozzle.

そこで、これらの温度差あるいは熱流束差を精度よく測
定する条件および場面変動を抑制する条件を求めたとこ
ろ、次のような条件を具えることが必要であることが判
明した。
Therefore, when we sought conditions for accurately measuring these temperature differences or heat flux differences and conditions for suppressing scene fluctuations, we found that the following conditions must be met.

(1)浸漬ノズルの左右両側の温度差あるいは熱流束差
を精度よく測定することができること、(2)浸漬ノズ
ル吐出孔の詰まりで偏流を発生する場合、浸漬ノズル交
換せずに鋳造が可能であること、 (3)湖面変動が簡単な装置あるいは操作により容易に
抑制できること、 等であった。
(1) It is possible to accurately measure the temperature difference or heat flux difference between the left and right sides of the immersion nozzle, and (2) it is possible to perform casting without replacing the immersion nozzle if drifting occurs due to clogging of the immersion nozzle discharge hole. (3) Lake level fluctuations can be easily suppressed with simple devices or operations.

更に進んで、このような条件を満足する偏流検出条件お
よび鋳片の製造条件を研究し、この研究にもとすいて本
発明は成立したものである。
Further, the present invention was established based on research conducted on drift detection conditions and slab manufacturing conditions that satisfy these conditions.

更に、図面によって本発明について詳しく説明すると、
次の通りである。
Further, the present invention will be explained in detail with reference to the drawings.
It is as follows.

なお、第1図は鋳型銅板内の熱電対埋設状況を示す斜視
図であり、第2図は第1図の銅板の展開図であり、第3
図は第2図の矢視A−A線の断面図であり、第4図は本
発明法を実施する際に用いる装置の一つの実施例の配置
図であり、第5図は@流発生時の短辺移動方向の説明図
であり、第6図は従来品および本発明品の鋳片表面割れ
発生状況を示すグラフである。
In addition, Fig. 1 is a perspective view showing the state of thermocouples buried in the molded copper plate, Fig. 2 is a developed view of the copper plate in Fig. 1, and Fig.
The figure is a cross-sectional view taken along the line A-A in FIG. FIG. 6 is a graph showing the occurrence of cracks on the surface of slabs of the conventional product and the product of the present invention.

符号1は鋳型銅板長辺面、2は鋳型銅板炉辺面、3は熱
電対、4は浸漬ノズル、5はメニスカス(湯面)、6は
吐出流、7は温度変換器、8は熱流速シ輿算器、9は熱
流速差監視装置、10は温度差監視装置、11は警報器
(ボイスアナウンス)、12はモール1ぐ幅変更装置、
13はノズル付着物、×は熱電対埋設位置、aおよびb
は鋳型銅板表面からの距離を示す。
1 is the long side surface of the mold copper plate, 2 is the furnace side surface of the mold copper plate, 3 is the thermocouple, 4 is the immersion nozzle, 5 is the meniscus (hot water surface), 6 is the discharge flow, 7 is the temperature converter, and 8 is the heat flow rate system. 9 is a heat flow rate difference monitoring device, 10 is a temperature difference monitoring device, 11 is an alarm (voice announcement), 12 is a mall width changing device,
13 is nozzle deposit, × is the thermocouple buried position, a and b
indicates the distance from the surface of the mold copper plate.

まず、第1図、第2図および第3図に示すように鋳型短
辺側に向いた溶鋼の吐出孔を有する浸漬ノズル4を鋳型
中央に配設した長辺と短辺の銅板から構成された直方体
から成る鋳型銅板内に深さ5mm〜20mmで各銅板の
上下および左右方向のX印で示された位置に複数個の熱
電対3を埋設し、鋳造中常時上記熱電対3の温度をモニ
タリングすると同時に銅板深さ方向2点(例えば第3図
の銅板表面からammおよびl] mmの位置の熱電対
の温度の温度差(△■)より熱流束Qを求めてモニタリ
ングする。なお、熱流束Oは次式によって求められる。
First, as shown in Figs. 1, 2, and 3, the mold is made up of long and short copper plates with a submerged nozzle 4 having a molten steel discharge hole facing toward the short side of the mold placed in the center of the mold. A plurality of thermocouples 3 are embedded in a molded copper plate consisting of a rectangular parallelepiped at a depth of 5 mm to 20 mm at the positions indicated by X marks in the vertical and horizontal directions of each copper plate, and the temperature of the thermocouples 3 is constantly maintained during casting. At the same time as monitoring, the heat flux Q is determined and monitored from the temperature difference (△■) between the thermocouples at two points in the depth direction of the copper plate (for example, amm and l mm from the surface of the copper plate in Figure 3). The bundle O is determined by the following formula.

0−λ△T/d 但しλは熱伝導度 そこで、各熱電対3の温度および熱流束を浸漬ノズル4
を境とする左右(測知辺方向)で比較し、浸漬ノズル4
から左側と右側との溶鋼吐出量の大小を把握する。この
時、銅板温度が高く熱流束の大きい側が溶鋼吐出量が多
いと判断する。
0-λ△T/d, where λ is the thermal conductivity. Therefore, the temperature and heat flux of each thermocouple 3 are calculated from the immersion nozzle 4.
Compare the left and right (measurement side direction) bordering on the immersion nozzle 4.
From this, determine the magnitude of the molten steel discharge amount on the left and right sides. At this time, it is determined that the side where the copper plate temperature is high and the heat flux is large has a large amount of molten steel discharged.

なお、温度および熱流速の比較は浸漬ノズル4を境に左
右対象の位置に配置した長辺面熱電対3(例えば第1図
中のCとd)での比較および浸漬ノズル4を境に、左側
と右側の短辺面の各熱電対3の合計で比較を行なう。そ
して、この熱電対3の温度差あるいは熱流速差があるし
ぎい値(Rill、鋳造速度によって異なる[1を超え
た時点で片側への偏流が発生している事がわかる。
In addition, the comparison of temperature and heat flow velocity is made by comparing long-side thermocouples 3 (for example, C and d in FIG. 1) placed at symmetrical positions with the immersion nozzle 4 as the border, and with the immersion nozzle 4 as the border. A comparison is made using the sum of the thermocouples 3 on the left and right short sides. Then, it can be seen that when the temperature difference or heat flow rate difference of this thermocouple 3 exceeds a certain threshold value (Rill, which varies depending on the casting speed) [1], a biased flow to one side occurs.

そこで、第5図に示ずように両炉辺を矢印の短辺移動方
向に左側と右側の短辺を同速度で同方向(偏流している
方向)へ移動させ、温度差あるいは熱流速差をしきい値
以下となるようにする。
Therefore, as shown in Figure 5, both the left and right sides of the hearth are moved in the direction of movement of the short sides of the arrows at the same speed and in the same direction (the direction of drifting flow) to eliminate the temperature difference or heat flow rate difference. Ensure that it is below the threshold.

これにより浸漬ノズル4を境にして測知辺側の溶鋼単位
体積当りの/8鋼吐出量をほぼ均等にし、短辺の凝固謀
りを防止するとともに、偏流14によるメニスカス湯面
変動15、不沈間の発生を防止することができる。
As a result, the discharge amount of /8 steel per unit volume of molten steel on the measurement side is made almost uniform with the immersion nozzle 4 as a boundary, preventing solidification on the short side, and preventing meniscus level fluctuation 15 due to drifting flow 14 and preventing sinking. It is possible to prevent the occurrence of

更に、本発明を第4図に示す本発明の実施例に用いられ
る装置の配置図により説明する。
Further, the present invention will be explained with reference to a layout diagram of an apparatus used in an embodiment of the present invention shown in FIG.

第4図は鋳型銅板内に前記したように熱電対3が配置さ
れ、この熱電対3からの熱起電力を温度変換器7により
温度に変換され、この温度差を熱流束演算器8によって
熱流束に変換されると共に、所定の一定値と対比され熱
流束着監視装置9により監視され、一方、前記温度変換
器7からの温度差は温度差監視装置10により監視され
、両者のいずれがが異常を示すとき警報器11により警
報が発せられ、直ちにモールド幅変更装置12に信号が
送られ、モールド幅を調整するように構成された装置及
び回路から成るものである。従って、このような装置を
用いると、鋳造中容々の熱電対の温度及び熱流束を常時
モニタリングすることができ、また、この場合、浸潰ノ
ズル4を境にし対象の位置にある熱電対の温度差および
熱流束差を常時監視することができる。上記の温度差あ
るいは熱流束差があるしきい値(一定値)以上となった
場合は、警報器11から警報を発すると共に、モールド
幅変更装置12にモールド幅変更の指令が発せられ、偏
流が生じている方向へ左右両側の短辺を同時に同速度で
移動させ、前記温度差あるいは熱流束差があるしきい値
以下となった時点でモールド幅変更を終了する。
FIG. 4 shows that a thermocouple 3 is placed inside a molded copper plate as described above, the thermoelectromotive force from the thermocouple 3 is converted into temperature by a temperature converter 7, and this temperature difference is converted into a heat flux by a heat flux calculator 8. The temperature difference from the temperature converter 7 is monitored by the temperature difference monitoring device 10, and the temperature difference from the temperature converter 7 is monitored by the temperature difference monitoring device 10. It consists of a device and a circuit configured to issue an alarm by an alarm device 11 when an abnormality is indicated, and immediately send a signal to a mold width changing device 12 to adjust the mold width. Therefore, by using such a device, it is possible to constantly monitor the temperature and heat flux of the thermocouple during casting, and in this case, the temperature and heat flux of the thermocouple at the target position bordering the submerged nozzle 4 can be monitored at all times. Temperature differences and heat flux differences can be constantly monitored. When the above temperature difference or heat flux difference exceeds a certain threshold value (certain value), the alarm 11 issues an alarm and a command to change the mold width is issued to the mold width changing device 12 to prevent drifting. The short sides on both the left and right sides are simultaneously moved at the same speed in the direction in which the mold width is changed, and when the temperature difference or heat flux difference becomes equal to or less than a certain threshold value, the mold width change is completed.

以上のような操作を必要に応じて行なうと、常に安定し
た品質の鋳片が得られる。
By performing the above-mentioned operations as necessary, slabs of consistently stable quality can be obtained.

実  施  例 第4図に示す装置を用い、スラブ連鋳機にて実験を行な
った。鋳型銅板内の熱電対は第1図に示すように長辺面
幅方向200mmピッチ、高さ方向モールド上端より2
00mmおよび300mm、深さ方向モールド表面から
5mmおよび15 mm、モールド短辺面は中央高さ方
向モールド上端より200mmおよび300mm、深さ
方向5mmおよび15mmの位置に埋設した。鋳造中、
測知辺部の熱電対の温度差を監視し、モールド内の湯面
片沸き(@流によるもの)が生じた時点で温度差が約5
0’Cであった。この時点で測知辺を湯面片沸きしてい
る方向(偏流している方向)へiomm同時に同速度で
移動さゼた。その結果、短辺の温度差は約30℃に減少
し、また、目視による湯面片沸きも沈静化した。
EXAMPLE Using the apparatus shown in FIG. 4, an experiment was conducted using a continuous slab caster. As shown in Figure 1, the thermocouples in the mold copper plate are arranged at a pitch of 200 mm in the long side width direction, and at a pitch of 2 mm from the top of the mold in the height direction.
00 mm and 300 mm, 5 mm and 15 mm from the mold surface in the depth direction, and the short side of the mold was buried at positions 200 mm and 300 mm from the upper end of the mold in the central height direction, and 5 mm and 15 mm in the depth direction. During casting,
The temperature difference between the thermocouples on the sensing side is monitored, and the temperature difference is approximately 5.
It was 0'C. At this point, the sensing side was moved simultaneously and at the same speed by iomm in the direction where the water surface was boiling on one side (the direction where the water was drifting). As a result, the temperature difference between the short sides was reduced to about 30°C, and the level of boiling caused by visual inspection also subsided.

以上のようにして鋼を連続鋳造し、得られた鋳片を目視
により表面割れ発生状況を調査したところ、第6図に示
すように従来品に対し本発明品は著しく縦割れ、かぎ割
れおよびコーナー・ 割れ等の表面割れ発生が減少して
いることがわかる。
Steel was continuously cast as described above, and the resulting slab was visually inspected for surface crack occurrence. As shown in Figure 6, the product of the present invention exhibited significantly more vertical cracking, locking, and cracking than the conventional product. It can be seen that the occurrence of surface cracks such as corner cracks has decreased.

なお、第6図は従来品の表面割れを1とした場合の本発
明品の表面割れ指数を示した。
Incidentally, FIG. 6 shows the surface crack index of the product of the present invention when the surface crack of the conventional product is set as 1.

ぐ発明の効果〉 以上説明したように、本発明は、鋳型短辺側に向いた溶
鋼の吐出孔を有する浸漬ノズルを鋳型中央に配して鋳造
を行なう連続鋳造に際し、前記浸漬ノズルを境とする左
右両側の鋳型銅板の各長辺および各短辺内にそれぞれ溶
鋼表面直下から上下方向に少なくとも2本以上、更に銅
板表面から深さ方向に少なくとも2本以上の熱雷対を埋
設し、上記熱電対で検出される前記浸漬ノズルを境とす
る左右両側対象位置の熱電対から測定される温度差ある
いはその温度差から求められる熱流束差とある一定値に
対する偏差を求め、この偏差をもとに鋳型内溶鋼吐出流
の偏流を検出することを特徴とし、また、鋳型短辺側に
向いた溶鋼の吐出孔を有する浸漬ノズルを鋳型中央に配
して鋳造を行なう連続鋳造に際し、前記浸漬ノズルを境
とする左右両側の鋳型銅板の各長辺および各短辺内にそ
れぞれ溶鋼表面直下から上下方向に少なくとも2本以上
、更に銅板表面から深さ方向に少なくとも2本以上の熱
電対を埋設し、上記熱電対で検出される前記浸漬ノズル
を境とする左右両側対象位置の温度差あるいはその温度
差から求められる熱流束差がある一定値以下に犬きくな
ったとぎ、モールド幅の絶対値を変更することなく、測
知辺を同時に温度差あるいは熱流束差がある一定価より
大きい方向に移動させ、浸漬ノズルを境とする左右両側
の温度差あるいは熱流束差をある一定値以下とすること
を特徴とするものである。
Effects of the Invention> As explained above, the present invention provides continuous casting in which a submerged nozzle having a discharge hole for discharging molten steel facing toward the short side of the mold is disposed in the center of the mold. At least two or more thermal lightning pairs are buried in each long side and each short side of the molded copper plate on both the left and right sides in the vertical direction from just below the surface of the molten steel, and at least two or more thermal lightning pairs are buried in the depth direction from the surface of the copper plate. The temperature difference detected by the thermocouples at symmetrical positions on both the left and right sides of the immersion nozzle as a boundary, or the heat flux difference obtained from the temperature difference, and the deviation from a certain constant value are determined, and based on this deviation. In continuous casting, in which a immersion nozzle having a molten steel discharge hole facing the short side of the mold is disposed in the center of the mold to perform casting, the immersion nozzle At least two or more thermocouples are embedded in each long side and each short side of the molded copper plate on both the left and right sides bordering on the surface of the molten steel in the vertical direction, and at least two or more thermocouples are buried in the depth direction from the surface of the copper plate. , when the temperature difference between the right and left target positions with the immersion nozzle as a boundary detected by the thermocouple or the heat flux difference obtained from the temperature difference becomes less than a certain value, the absolute value of the mold width is determined. Without changing, simultaneously move the sensing side in a direction where the temperature difference or heat flux difference is greater than a certain value, and reduce the temperature difference or heat flux difference on both sides of the immersion nozzle to a certain value or less. It is characterized by:

従って、従来連続鋳造中の@流の検出が精度よく検出で
きなかったものを本発明によれば偏流が発生したとき速
やかに検出することができる。また、速やかに偏流の検
出ができるため、@流に対する処置が迅速に行なわれ偏
流に起因する湯面変動を抑制することができ、得られた
鋳片の縦割れ、コーナーかぎ割れ、コーナー割れ等の鋳
片表面割れが著しく減少させることができ、高品質のも
のが効率よく得られる。
Therefore, according to the present invention, it is possible to promptly detect the occurrence of drifting flow, which has conventionally been difficult to accurately detect during continuous casting. In addition, since drifting can be detected quickly, countermeasures can be taken quickly to suppress fluctuations in the molten metal level caused by drifting, resulting in vertical cracks, corner cracks, corner cracks, etc. Surface cracking of cast slabs can be significantly reduced, and high quality products can be obtained efficiently.

更に、偏流による短辺凝固遅れあるいは凝固シェルの再
溶解によるブレークアウトも抑制でき、安定した高速鋳
造の実施が可能であった。
Furthermore, it was possible to suppress short-side solidification delay due to drifting flow or breakout due to remelting of the solidified shell, making it possible to perform stable high-speed casting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳型銅板内の熱電対埋設状況を示す斜視図、第
2図は第1図の銅板の展開図、第3図は第2図の矢視A
−A線の断面図、第4図は本発明法を実施する際に用い
る装置の一つの¥圧倒の配置図、第5図は偏流発生時の
短辺移動方向の説明図、第6図は従来品および本発明品
の鋳片表面割れ発生状況を示すグラフである。 符号1・・・・・・鋳型銅板長辺面 2・・・・・・鋳型銅板短辺面 3・・・・・・熱雷対 4・・・・・・浸漬ノズル 5・・・・・・メニスカス(湯面) 6・・・・・・吐出流 7・・・・・・温度変換器 8・・・・・・熱流速演算器 9・・・・・・熱流速差監視装置 10・・・・・・温度差監視装置 11・・・・・・警報器(ボイスアナウンス)12・・
・・・・モールド幅変更装置 13・・・・・・ノズル付着物 ×・・・・・・熱電対埋設位置
Figure 1 is a perspective view showing thermocouples embedded in the molded copper plate, Figure 2 is a developed view of the copper plate in Figure 1, and Figure 3 is in the direction of arrow A in Figure 2.
- A cross-sectional view taken along line A, Figure 4 is a layout of one of the devices used to carry out the method of the present invention, Figure 5 is an explanatory diagram of the short side movement direction when drifting occurs, and Figure 6 is It is a graph showing the occurrence of cracks on the surface of slabs of conventional products and products of the present invention. Code 1...Mold copper plate long side 2...Mold copper plate short side 3...Thermal lightning pair 4...Immersion nozzle 5...・Meniscus (hot water surface) 6...Discharge flow 7...Temperature converter 8...Heat flow rate calculator 9...Heat flow rate difference monitoring device 10. ...Temperature difference monitoring device 11 ...Alarm device (voice announcement) 12 ...
... Mold width changing device 13 ... Nozzle deposit × ... Thermocouple embedding position

Claims (1)

【特許請求の範囲】 1)鋳型短辺側に向いた溶鋼の吐出孔を有する浸漬ノズ
ルを鋳型中央に配して鋳造を行なう連続鋳造に際し、前
記浸漬ノズルを境とする左右両側の鋳型銅板の各長辺お
よび各短辺内にそれぞれ溶鋼表面直下から上下方向に少
なくとも2本以上、更に銅板表面から深さ方向に少なく
とも2本以上の熱電対を埋設し、上記熱電対で検出され
る前記浸漬ノズルを境とする左右両側対象位置の熱電対
から測定される温度差あるいはその温度差から求められ
る熱流束差とある一定値に対する偏差を求め、この偏差
をもとに鋳型内溶鋼吐出流の偏流を検出することを特徴
とする鋼の連続鋳造時の鋳型内溶鋼偏流検出方法。 2)鋳型短辺側に向いた溶鋼の吐出孔を有する浸漬ノズ
ルを鋳型中央に配して鋳造を行なう連続鋳造に際し、前
記浸漬ノズルを境とする左右両側の鋳型銅板の各長辺お
よび各短辺内にそれぞれ溶鋼表面直下から上下方向に少
なくとも2本以上、更に銅板表面から深さ方向に少なく
とも2本以上の熱電対を埋設し、上記熱電対で検出され
る前記浸漬ノズルを境とする左右両側対象位置の温度差
あるいはその温度差から求められる熱流束差がある一定
値以上に大きくなったとき、モールド幅の絶対値を変更
することなく、両短辺を同時に温度差あるいは熱流束差
がある一定値より大きい方向に移動させ、浸漬ノズルを
境とする左右両側の温度差あるいは熱流束差をある一定
値以下とすることを特徴とする鋼の連続鋳造方法。
[Scope of Claims] 1) During continuous casting, in which a submerged nozzle having a discharge hole for molten steel facing toward the short side of the mold is disposed in the center of the mold, the cast copper plate on both the left and right sides bordering on the submerged nozzle is At least two or more thermocouples are embedded in each long side and each short side in the vertical direction from just below the molten steel surface, and at least two or more thermocouples are buried in the depth direction from the copper plate surface, and the immersion is detected by the thermocouples. The temperature difference measured from thermocouples at symmetrical positions on both sides of the nozzle, or the heat flux difference calculated from the temperature difference, and the deviation from a certain constant value are calculated, and based on this deviation, the drift of the molten steel discharge flow in the mold is determined. A method for detecting drifting of molten steel in a mold during continuous casting of steel, characterized by detecting. 2) During continuous casting, in which a submerged nozzle with a molten steel discharge hole facing the short side of the mold is placed in the center of the mold, each long side and each short side of the mold copper plate on both the left and right sides bordering the immersed nozzle are At least two or more thermocouples are embedded in each side in the vertical direction from just below the molten steel surface, and at least two or more thermocouples are buried in the depth direction from the copper plate surface, and the left and right sides of the immersion nozzle detected by the thermocouples are When the temperature difference between the target positions on both sides or the heat flux difference calculated from the temperature difference becomes larger than a certain value, the temperature difference or heat flux difference can be changed simultaneously on both short sides without changing the absolute value of the mold width. A continuous casting method for steel, characterized by moving the submerged nozzle in a direction greater than a certain value, and keeping the temperature difference or heat flux difference between the left and right sides of the immersion nozzle below a certain value.
JP63090123A 1988-04-12 1988-04-12 Continuous casting method for steel Expired - Lifetime JPH0673732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63090123A JPH0673732B2 (en) 1988-04-12 1988-04-12 Continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090123A JPH0673732B2 (en) 1988-04-12 1988-04-12 Continuous casting method for steel

Publications (2)

Publication Number Publication Date
JPH01262050A true JPH01262050A (en) 1989-10-18
JPH0673732B2 JPH0673732B2 (en) 1994-09-21

Family

ID=13989733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090123A Expired - Lifetime JPH0673732B2 (en) 1988-04-12 1988-04-12 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPH0673732B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051762A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for predication and control of molten steel flow pattern in continuous casting
JP2006231375A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Method for continuously casting steel
JPWO2007049824A1 (en) * 2005-10-27 2009-04-30 新日本製鐵株式会社 Method for producing ultra-low carbon slab
JP2016175106A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Drift current detection method and drift current control method, molten metal surface variation detection method and molten metal surface variation control method in continuous casting mold, device and program
CN107000046A (en) * 2014-11-19 2017-08-01 株式会社Posco Meniscus flow control apparatus and the meniscus flow control method using the device
CN110315043A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 It avoids the wide green shell of continuous cast mold heat tune from being squeezed and causes bleed-out method
CN110315046A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 Prevent the process of continuous casting billet narrow side bulge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853361A (en) * 1981-09-24 1983-03-29 Nippon Kokan Kk <Nkk> Continuous casting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853361A (en) * 1981-09-24 1983-03-29 Nippon Kokan Kk <Nkk> Continuous casting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051762A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for predication and control of molten steel flow pattern in continuous casting
JP2006231375A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Method for continuously casting steel
JPWO2007049824A1 (en) * 2005-10-27 2009-04-30 新日本製鐵株式会社 Method for producing ultra-low carbon slab
JP4772798B2 (en) * 2005-10-27 2011-09-14 新日本製鐵株式会社 Method for producing ultra-low carbon slab
CN107000046A (en) * 2014-11-19 2017-08-01 株式会社Posco Meniscus flow control apparatus and the meniscus flow control method using the device
JP2017536240A (en) * 2014-11-19 2017-12-07 ポスコPosco Hot water surface flow control device and hot water surface flow control method using the same
US10710152B2 (en) 2014-11-19 2020-07-14 Posco Meniscus flow control device and meniscus flow control method using same
JP2016175106A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Drift current detection method and drift current control method, molten metal surface variation detection method and molten metal surface variation control method in continuous casting mold, device and program
CN110315043A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 It avoids the wide green shell of continuous cast mold heat tune from being squeezed and causes bleed-out method
CN110315046A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 Prevent the process of continuous casting billet narrow side bulge
CN110315046B (en) * 2018-03-30 2020-12-18 宝山钢铁股份有限公司 Technological method for preventing narrow edge of continuous casting billet from bulging

Also Published As

Publication number Publication date
JPH0673732B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
KR101047826B1 (en) Control systems, computer program products, apparatus and methods
US6776217B1 (en) Method for continuous casting of slab, in particular, thin slab, and a device for performing the method
KR101257472B1 (en) Measuring apparatus for slag and measuring method thereof
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
KR101981459B1 (en) Flow measuring Apparatus and Method
KR20180014367A (en) Apparatus for predicting abnormality of continuous casting
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
KR101224961B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
KR101225432B1 (en) Apparatus and method for diagnosing crack of continuous casting slab
JP2019098394A (en) Method and device for evaluating quality of steel
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP3252769B2 (en) Flow control method of molten steel in continuous casting mold
JPS5929353B2 (en) Breakout prediction method
JP3252768B2 (en) Flow control method of molten steel in continuous casting mold
KR20110109293A (en) Device for measuring temperature of tundish
JPH0790343B2 (en) Breakout prediction method in continuous casting
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JP5915463B2 (en) Breakout prediction method
JPH0459160A (en) Method for controlling molten metal surface level in mold in continuous casting
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JPS6293051A (en) Pouring method for molten steel in continuous casting
JPS63256250A (en) Method for predicting breakout in continuous casting
JP2008221287A (en) Method for controlling fluidization of molten steel in die, and method for judging surface quality of continuously cast slab
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting