JPH04103986A - Method of drying pine material with far infrared ray - Google Patents

Method of drying pine material with far infrared ray

Info

Publication number
JPH04103986A
JPH04103986A JP22181590A JP22181590A JPH04103986A JP H04103986 A JPH04103986 A JP H04103986A JP 22181590 A JP22181590 A JP 22181590A JP 22181590 A JP22181590 A JP 22181590A JP H04103986 A JPH04103986 A JP H04103986A
Authority
JP
Japan
Prior art keywords
pine
temperature
wood
pine wood
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22181590A
Other languages
Japanese (ja)
Inventor
Kumio Arii
有井 久三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22181590A priority Critical patent/JPH04103986A/en
Publication of JPH04103986A publication Critical patent/JPH04103986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a sufficient drying of a pine tree material and facilitate a prevention of ejection of resin by a method wherein a far infra-red ray is radiated against the pine tree material and an inner temperature of the pine tree material is kept within a specified range of temperature for a specified period of time in response to a plate thickness of the wood material to be radiated. CONSTITUTION:As a pine tree material 1 is fed into a processing furnace 10, the material 1. is moved by a conveyor 12 at a specified speed. This material 1 is radiated with an infrared ray from upper heater devices 50a, 51a, 52a, 53a and lower heater devices 50b, 51b, 52b and 53b, respectively. At this time, after an inner temperature of the pine material is held at 100 to 150 deg.C for a specified period of time, then the radiation of a far infra-red ray is stopped and then the pine material processed with the far infrared ray is passed through hot air (for example, a hot air furnace utilizing discharged gas from the processing furnace) of about 60 deg.C for several minutes. In this way, various organic chemical substances including rosin of the pine tree material start to soften at about 50 to 55 deg.C together with moisture and flows along a pine material cell wall or a resin path. However, if this material is kept at a temperature of about 100 to 150 deg.C for a specified period of time, they are changed into a crystalline state and hardened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、松材の乾燥処理方法に係り、詳しくは松材に
遠赤外線を照射して松材を高温処理して乾燥させると共
に、松材から再び松ヤニが噴き出すことを防止するよう
にした松材の乾燥処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for drying pine wood, and more specifically, pine wood is irradiated with far infrared rays to treat and dry pine wood at high temperature. This invention relates to a method for drying pine wood that prevents pine tar from spewing out again from the wood.

〔従来の技術〕[Conventional technology]

製材後(以下、材木という)、材木の乾燥が不十分であ
ると、その材木が自然に乾燥するに伴っていわゆる「狂
い」 「割れ」 「歪み」等の発生を生じ、製品の加工
精度や品質低下の原因となる。
If the lumber is not sufficiently dried after sawing (hereinafter referred to as lumber), as the lumber dries naturally, it will cause so-called "cracks,""cracks," and "distortions," which may affect the processing accuracy of the product. It causes quality deterioration.

材木の乾燥は主として寸法安定化の目的で行うものであ
るが、その他、重量の低下(軽量化)硬さの増進、釘・
ボルト等の結合力の安定化、腐朽菌・害虫等の被害防止
等の為にも有効である。一般には材木は古くより経験的
に太陽を利用して自然乾燥が行われてきた。又、昨今、
種々の人工乾燥が提案されている。例えば、高温蒸気を
利用して材木を乾燥させる蒸気乾燥、低温湿度を利用し
た除湿乾燥、電気炉内で乾燥させる電気式乾燥、熱風乾
燥、加えて高周波乾燥、減圧乾燥、或いはマイクロ波加
熱等、木材を丸太のままで乾燥したり、製材加工した材
木を乾燥処理する方法が提案されている。更に遠赤外線
を利用した木材(材木)の乾燥処理方法も又、提案され
ている。(特開昭60−11077号) 〔発明が解決しようとする課題〕 上記、自然乾燥においては、材木の乾燥に時間がかかる
と共に、十分な乾燥が出来ない。例えば、製材後の材木
の板厚が約1.5CII+の北米産の松材(以下、米松
という)では、外気温湿度が30℃150%程度の状態
では初期の材表層部含水率か約50%のものを15日間
から20日間程度、自然乾燥(天日乾燥)すると材木表
層部の含水率が15〜20%程度になり、又、材木内部
の平均含水率も20〜22%程度になる。
Drying of lumber is mainly carried out for the purpose of stabilizing the dimensions, but it is also used for reducing weight (lightening), increasing hardness, drying of nails, etc.
It is also effective for stabilizing the bonding force of bolts, etc., and preventing damage from rotting fungi and pests. In general, timber has been naturally dried using the sun since ancient times. Also, recently,
Various artificial drying methods have been proposed. For example, steam drying that uses high-temperature steam to dry lumber, dehumidifying drying that uses low-temperature humidity, electric drying that dries in an electric furnace, hot air drying, high-frequency drying, vacuum drying, or microwave heating, etc. Methods have been proposed for drying wood as a log or for drying processed wood. Furthermore, a method for drying wood (timber) using far infrared rays has also been proposed. (Unexamined Japanese Patent Publication No. 60-11077) [Problems to be Solved by the Invention] In the above-mentioned natural drying, it takes a long time to dry the timber, and sufficient drying is not possible. For example, in North American pine wood (hereinafter referred to as "Japanese pine") with a thickness of approximately 1.5 CII+ after sawing, when the outside temperature and humidity are approximately 30°C and 150%, the initial moisture content of the surface layer of the material is approximately 50%. When dried naturally (sun-dried) for about 15 to 20 days, the moisture content of the surface layer of the timber will be around 15-20%, and the average moisture content inside the timber will also be around 20-22%. .

又、厚さ4.50I+の米松では初期の材木表層部含水
率が約50%のものを15〜20日間程度、自然乾燥(
天日乾燥)すると材木表層部含水率が20%前後になり
、材木内部の平均含水率は約25〜30%前後になる。
In addition, for rice pine with a thickness of 4.50I+, the initial moisture content of the surface layer of the timber is about 50%, and it is dried naturally for about 15 to 20 days (
When dried in the sun), the moisture content of the surface layer of the timber will be around 20%, and the average moisture content inside the timber will be around 25-30%.

このように自然乾燥では材木の板厚が厚くなると材木内
部の乾燥は十分とはいえない。
In this way, natural drying cannot be said to sufficiently dry the interior of the timber when the thickness of the timber increases.

材木が含んでいる水分は、細胞や組織の空隙に含まれて
いる自由水〔自然水ともいう〕 (細胞に結び付いてい
ない水)と、細胞壁内部に含まれている結合水(細胞に
結びついている水)とがある。
The moisture contained in wood is divided into free water (also called natural water) contained in the voids of cells and tissues (water that is not bound to cells), and bound water (water that is not bound to cells) contained inside the cell walls. There is water).

自然乾燥では自由水はある程度除去出来ても結合水まで
除去するには大変時間か掛かる、そのため板厚が厚くな
ると、尚更材木内部の乾燥が難しくなり不十分となる。
Although free water can be removed to some extent by natural drying, it takes a long time to remove bound water as well, so the thicker the board becomes, the more difficult and insufficient it becomes to dry the inside of the wood.

人工乾燥においても、材木の外側から熱を与えて乾燥処
理する方法のものは、上記と同様に材木の内部にある結
合水を短時間で除去することは技術的に難しいし、材木
表層部分の含水率を0%帯にすることはできない。又、
高周波や、或いはマイクロ波を利用した乾燥処理方法で
は、一般に材木内部から加熱されるので材木内部の含水
率を低下させることは可能であり、材木の表層部分の含
水率を0%帯にすることは可能であるが、高周波、或い
はマイクロ波は電波漏洩(放射線)防止の為の取り扱い
、安全対策が特に必要であると同時に処理時間も長時間
で、その操作も複雑であり、装置も大掛かりなものにな
り、生産性の面から見ても効果的な乾燥処理方法とはい
えない。
Even in artificial drying methods, where heat is applied from the outside of the timber to dry it, it is technically difficult to remove the bound water inside the timber in a short period of time, as described above, and the surface layer of the timber is dried. The moisture content cannot be in the 0% range. or,
Drying methods that use high frequency or microwaves generally heat the wood from within, so it is possible to reduce the moisture content inside the wood, and it is possible to reduce the moisture content of the surface layer of the wood to 0%. However, high-frequency or microwave waves require special handling and safety measures to prevent radio wave leakage (radiation), and at the same time, the processing time is long, the operation is complicated, and the equipment is large-scale. Therefore, it cannot be said to be an effective drying method in terms of productivity.

一方、松材を考えた場合、松材は、謂わゆる松ヤニを含
んでおり、松ヤニは松材の樹液であると同時に米松には
、約68%前後のロジンと、約20%前後のテレピン油
等の有機化学成分を含んでおり、松材において乾燥が不
十分であると、この松ヤニが大気温湿度の作用で自然に
松材の表層部分に噴き出して材木表面がベタ付くように
なり、換装加工や内装用建材としては、これらが災いし
て余り使用されていないのが現状である。
On the other hand, when considering pine wood, pine wood contains so-called pine tar, and pine tar is the sap of pine wood, and at the same time, rice pine contains about 68% rosin and about 20% rosin. It contains organic chemical components such as turpentine oil, and if the pine wood is not sufficiently dried, this pine tar will naturally erupt onto the surface layer of the pine wood due to the effects of atmospheric temperature and humidity, causing the surface of the wood to become sticky. Unfortunately, these materials are not used much at present as construction materials for retrofitting or interior decoration.

ロジンの軟化点は85℃前後であり、生粉ヤニを水蒸気
(85℃以上)で蒸留すると15〜30%程度の油脂が
留出する、これをテレピン油と呼び、残査をロジン又は
コロホニーと呼ぶ。テレピン油は引火性で、空気中に放
置しておくと自然酸化して樹脂状態になる。沸点は15
0〜170℃で90%以上を留出する。
The softening point of rosin is around 85°C, and when raw tar is distilled with steam (above 85°C), about 15-30% of fats and oils are distilled out.This is called turpentine oil, and the residue is called rosin or colophony. call. Turpentine is flammable, and if left in the air it will naturally oxidize into a resinous state. The boiling point is 15
More than 90% is distilled at 0 to 170°C.

このように松材内部含水率が最大10%以下で、表層部
分から内部5〜6mm程度迄(板厚による)の含水率が
0%でないと、材木内部の残留水分が大気温湿度の上昇
に伴って、ゆっくりと松材の表面に移動することによっ
て松ヤニが噴き出してくる。この松ヤニの噴き出しは従
来の自然乾燥などでは全く防ぐことは出来ない。(但し
、人工乾燥法の内部よりの加熱処理方法では可能である
)。
In this way, if the internal moisture content of pine wood is at most 10% or less, and the moisture content from the surface layer to about 5 to 6 mm inside (depending on board thickness) is not 0%, the residual moisture inside the wood will increase the atmospheric temperature and humidity. Along with this, pine tar slowly moves to the surface of the pine wood and spews out. This spouting of pine resin cannot be prevented at all by conventional methods such as natural drying. (However, it is possible with the internal heat treatment method of artificial drying method).

又、従来提案されている遠赤外線を用いた木材乾燥方法
(特開昭60−11077)では松ヤニの噴き出し防止
に関し具体的な手段が何ら示されていない。そこで、本
発明の課題は、松材の十分な乾燥と共に松ヤニの噴き出
し防止を容易に行える松材の処理方法を提供する事であ
る。
Furthermore, in the previously proposed wood drying method using far infrared rays (Japanese Patent Laid-Open No. 60-11077), no specific means for preventing pine tar from blowing out is disclosed. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for treating pine wood that can sufficiently dry the pine wood and easily prevent spouting of pine resin.

〔課題を解決するための手段及び作用〕上記課題を解決
する為の技術的手段は、松材に遠赤外線を照射し、照射
する材木の板厚により松材の内部温度を100″C以上
150℃以下の範囲内に所定時間保持するものである。
[Means and effects for solving the problem] The technical means for solving the above problem is to irradiate far infrared rays to pine wood, and increase the internal temperature of the pine wood by 100"C or more to 150" depending on the thickness of the irradiated wood. ℃ or less for a predetermined period of time.

松ヤニは通常、温度が上がると松材内部の含有水分に溶
融して、松材の表層から噴き出してくる。
Normally, when the temperature rises, pine tar melts into the water contained inside the pine wood and erupts from the surface layer of the pine wood.

従って松材内部の残留水分が僅かか、もしくは無いこと
と、松ヤニ(樹脂)がある程度硬化していることの2つ
の条件が満たされるときに松ヤニの噴き出しが防止され
る。
Therefore, spouting of pine resin is prevented when two conditions are met: there is little or no residual moisture inside the pine wood and the pine resin has hardened to some extent.

松材に遠赤外線を照射すると電子の振動励起を起こし、
松材が含水している自由水及び結合水、更には、松ヤニ
自体に作用し、各種含有有機化学成分や水等に対し急速
な電磁波活動を励起し、材木の持つ原子・分子活動を活
発化させることにより松材内部の温度が上昇する。そし
て之の温度上昇により含有水分が蒸発すると共に松ヤニ
が溶融する。
When pine wood is irradiated with far infrared rays, it causes vibrational excitation of electrons,
It acts on the free water and bound water contained in pine wood, as well as on the pine tar itself, exciting rapid electromagnetic wave activity in various organic chemical components and water contained in the wood, and activating the atomic and molecular activities of the wood. This causes the temperature inside the pine wood to rise. As the temperature rises, the moisture content evaporates and the pine tar melts.

所定の処理時間終了後、遠赤外線の照射を止め、処理後
の松材内部温度が低下すると共に、各種有機化学成分よ
りなる松ヤニが硬化する。
After a predetermined treatment time, the irradiation with far infrared rays is stopped, and the internal temperature of the treated pine wood decreases, and the pine tar made of various organic chemical components hardens.

松ヤニを含む各種有機化学成分は含水している水分と共
に、50〜55℃前後の温度によって軟化を始め、松材
細胞壁や樹脂道を伝って流出するが、結晶状態になって
硬化するのには、100〜150℃の温度を所定時間維
持する必要性があるということが判明した。松ヤニの硬
化の点、松材の割れや歪みの防止の点から、特に好まし
い温度範囲は105℃ 以上115℃以下である。又、
松材の内部温度が150℃を越え、初期含水率が約40
%以上のものは、温度分布状態が不均等となり、「内部
割れ」や「歪み」が特に顕著となる。
Various organic chemical components, including pine tar, begin to soften at temperatures of around 50 to 55 degrees Celsius, along with the water they contain, and flow out through the pine wood cell walls and resin paths, but they harden in a crystalline state. It has been found that it is necessary to maintain a temperature of 100 to 150° C. for a predetermined period of time. From the viewpoint of hardening the pine tar and preventing cracking and distortion of the pine wood, a particularly preferable temperature range is 105°C or more and 115°C or less. or,
The internal temperature of the pine wood exceeds 150℃, and the initial moisture content is approximately 40℃.
% or more, the temperature distribution state becomes uneven, and "internal cracks" and "distortion" become particularly noticeable.

上記のように松材に照射する遠赤外線の波長は、処理の
対象となる松材の形状・寸法と初期含水率と目標含水率
によって最適な処理方法か定められ、その赤外線吸収ス
ペクトルは、10ミクロン〜30ミクロンの範囲内で定
められる。(100ミフロン=0.5キロカロリー。
As mentioned above, the wavelength of the far infrared rays irradiated to pine wood is determined by the shape and size of the pine wood to be treated, the initial moisture content, and the target moisture content, and the infrared absorption spectrum is 10 It is determined within the range of microns to 30 microns. (100 microflons = 0.5 kilocalories.

又、照射時間も松材の形状並びに初期含水率(%)によ
り、更に得ようとする乾燥度(含水率%)と松ヤニ硬化
度によって最適なものに定められる。
The irradiation time is also determined to be optimal depending on the shape of the pine wood and the initial moisture content (%), as well as the degree of dryness (moisture content %) to be obtained and the degree of hardening of the pine tar.

遠赤外線の照射により松材の中心部から表層部までの範
囲で含水率を短時間で0%にすることは可能である。(
照射時間=板厚15mmt前後のもので30分以内)。
It is possible to reduce the moisture content of pine wood to 0% in a short time by irradiating it with far infrared rays, from the center to the surface layer. (
Irradiation time = within 30 minutes for plates with a thickness of around 15 mm).

このように松材の内外部共、含水率を0%にすると、材
木の成長度が減少して強度が低下し、衝撃等の機械的作
用に弱くなり、構造材としては適さなくなる。しかし造
作材としては接着性、換装性が良く適したものになる。
As described above, if the moisture content of the inside and outside of pine wood is reduced to 0%, the growth rate of the wood will decrease, its strength will decrease, and it will become vulnerable to mechanical effects such as impact, making it unsuitable as a structural material. However, it is suitable as a construction material because of its adhesive properties and ease of replacement.

又、松材の内外部共に総べての範囲で含水率を0%にす
ることは、伸縮防止・材木の腐れ・更に高温処理による
カビ・害虫の除去の点から優れた効果が得られる。
Furthermore, reducing the moisture content to 0% in all areas, both inside and outside the pine wood, has excellent effects in terms of preventing expansion and contraction, rotting the wood, and removing mold and pests through high temperature treatment.

又、遠赤外線の波長・照射時間等の制御により松材の表
層部、例えば表面から5〜6■程度位までの含水率だけ
を0%とし、材木内部の含水率を数%残すことによりあ
る程度の強度が保持され、構造材として適したものにな
る。
In addition, by controlling the wavelength and irradiation time of far-infrared rays, the moisture content of only the surface layer of pine wood, for example, from the surface to about 5 to 6 cm, can be reduced to 0%, and by leaving a few percent of the moisture content inside the wood, it can be reduced to a certain degree. maintains its strength, making it suitable as a structural material.

この場合、松材の内部には水分(結合水)が存在するが
、松ヤニは含水率が0%の帯域(表面より数ミリ深さ迄
)で硬化していることから材木内部の水分は表層部分に
達することは無く、そのため大気温湿度が上昇しても水
分と共に各種含有有機化学成分よりなる松ヤニは材木表
面から噴き出すことは無い。松材に遠赤外線を照射して
内部温度を100〜150℃で所定時間保持した後に遠
赤外線の照射を止めて、そのまま自然放冷しても良いが
、上記100〜150℃より低い温度、例えば60℃前
後の熱気中(例えば、処理炉からの排気を利用した熱風
炉)に遠赤外線処理ずろの松材を数分間通過させること
は、松ヤニを安定的に硬化させる観点から望ましい。
In this case, there is moisture (bound water) inside the pine wood, but since pine tar is hardened in the zone where the moisture content is 0% (up to several millimeters deep from the surface), the moisture inside the wood is It does not reach the surface layer, so even if the atmospheric temperature and humidity rise, pine tar, which is made up of various organic chemical components along with moisture, will not blow out from the surface of the timber. After irradiating the pine wood with far infrared rays and maintaining the internal temperature at 100 to 150°C for a predetermined period of time, the irradiation of far infrared rays may be stopped and the pine wood may be left to cool naturally. From the viewpoint of stably curing the pine tar, it is desirable to pass the far-infrared-treated pine wood through hot air of around 60° C. (for example, in a hot blast furnace using exhaust gas from a treatment furnace) for several minutes.

上述した100℃以上150℃ 以下、好ましくは10
5℃以上115℃以下の松材の内部温度は、松ヤニの硬
化する温度及び松材の割れ、歪み等を考慮して定められ
る。また、該温度の保持時間(加熱時間)は得ようとす
る含水率U%j及び松材の割れ、歪み等を考慮して定め
られる。
Above 100°C or more and 150°C or less, preferably 10
The internal temperature of pine wood, which is 5° C. or higher and 115° C. or lower, is determined by taking into consideration the hardening temperature of pine resin, cracking and distortion of pine wood, and the like. Further, the holding time (heating time) at this temperature is determined in consideration of the moisture content U%j to be obtained and cracks, distortions, etc. of the pine wood.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は、本発明に係わる松材の乾燥処理方法に従った
乾燥処理を行う乾燥装置の基本構成を示す図である。第
1図に於いて、処理炉1o及び熱風炉20が並べて設置
されている。処理炉1oの炉内は反射性の良いステンレ
ススチールで覆われた半密閉型のものである。処理炉1
0及び熱風炉20内にコンベア12が配置され、変速駆
動モータ14により該コンベア12は所定の速度で移動
する。コンベア12はローラーコンベアである。
FIG. 1 is a diagram showing the basic configuration of a drying apparatus that performs a drying process according to the method of drying pine wood according to the present invention. In FIG. 1, a processing furnace 1o and a hot blast furnace 20 are installed side by side. The inside of the processing furnace 1o is a semi-closed type covered with highly reflective stainless steel. Processing furnace 1
A conveyor 12 is disposed within the hot-blast stove 20 and the hot air stove 20, and the conveyor 12 is moved at a predetermined speed by a variable speed drive motor 14. Conveyor 12 is a roller conveyor.

処理炉10内にはコンベア】2の搬送面上側に上部ヒー
ターユニット50a、51a、52a、53aが搬送方
向と平行に配置され、該搬送面の下側に各上部ヒーター
管面ッ)50b、51b。
Inside the processing furnace 10, upper heater units 50a, 51a, 52a, and 53a are disposed above the conveyor surface of the conveyor 2 in parallel to the conveyance direction, and upper heater tube surfaces 50b and 51b are disposed below the conveyor surface. .

52b、53bが設置されている。上部ヒータユニット
の構造は、例えば第2図に示すようになっている。第2
図は上部ヒーターユニット50aについて示しているが
、他の上部ヒーターユニット51a、52a、53aも
同様の構成である。この上部ヒーターユニット51aは
、複数の遠赤外線ヒーター50−1〜50−7がそれぞ
れ搬送方向に平行に設置・され、遠赤外線放射ヒーター
50−1〜50−7に対して、断面円弧状のアルミニウ
ム製の反射板55−1〜55−7が設けられている。そ
して外側に位置する遠赤外線ヒーター50−1〜50−
7が搬送面(S)、に近くなるよう配置され、核遠赤外
線放射ヒーター50−1〜50−7に対応した反射板5
5−1〜55−7が搬送路の内側に向くように設けられ
ている。このように上部ヒーターユニット50aの形状
かアーチ型になっているので、コンベア12上の材木l
に対し、光の蔭の部分が無いように均一に放射光か照射
される。
52b and 53b are installed. The structure of the upper heater unit is, for example, as shown in FIG. Second
Although the figure shows the upper heater unit 50a, the other upper heater units 51a, 52a, and 53a have similar configurations. This upper heater unit 51a has a plurality of far-infrared radiation heaters 50-1 to 50-7 installed in parallel to the conveying direction, and has an arc-shaped aluminum cross section for the far-infrared radiation heaters 50-1 to 50-7. Reflecting plates 55-1 to 55-7 made by Co., Ltd. are provided. And far infrared heaters 50-1 to 50- located outside
A reflector plate 5 corresponding to the nuclear far-infrared radiation heaters 50-1 to 50-7 is arranged so that 7 is close to the conveyance surface (S).
5-1 to 55-7 are provided so as to face inside the conveyance path. Since the upper heater unit 50a has an arched shape, the lumber on the conveyor 12
On the other hand, the synchrotron radiation is uniformly irradiated so that there are no shadowy areas.

このアーチ型にする為の構成は特に第2図に示すものに
限定されない。
The configuration for forming this arched shape is not particularly limited to that shown in FIG.

各遠赤外線放射ヒーターは熱源としてNi −Cr合金
線かステンレス管に内封されておりMgOが該ステンレ
ス管に充填された構造となるヒーズ線ヒーターであり、
そのヒーター管面はZr○2系セラミックがプラズマ溶
射されている。この遠赤外線放射ヒーターは、管面温度
に対応した波長、例えば5〜40ミクロン(μm)の波
長域の遠赤外#l(電磁波)を放射する。
Each far-infrared radiant heater is a heat wire heater with a structure in which the heat source is enclosed in a Ni-Cr alloy wire or a stainless steel tube, and the stainless steel tube is filled with MgO.
The surface of the heater tube is plasma sprayed with Zr○2 ceramic. This far-infrared radiation heater emits far-infrared #l (electromagnetic waves) in a wavelength range corresponding to the tube surface temperature, for example, a wavelength range of 5 to 40 microns (μm).

上記、各上部ヒーターユニット50a、51a。Above, each upper heater unit 50a, 51a.

52a、53aは上下方向の位置調整が可能であり、処
理する材木1の板厚に応じてその位置調整が行われる。
The positions of 52a and 53a can be adjusted in the vertical direction, and the positions are adjusted according to the thickness of the lumber 1 to be processed.

下部ヒーターユニット50b、51b、52b、53b
の構成は第2図に示す上部ヒーターユニットとほぼは同
じであるか、この下部ヒーターユニットはアーチ型の構
造にないていない。この下部ヒーターユニットの各遠赤
外線放射ヒーターは搬送方向と垂直な方向に配列されて
いる。
Lower heater units 50b, 51b, 52b, 53b
The structure is almost the same as the upper heater unit shown in FIG. 2, or this lower heater unit does not have an arch-shaped structure. The far-infrared radiation heaters of this lower heater unit are arranged in a direction perpendicular to the conveying direction.

処理炉IOの上部には排気管16.18及び給気管19
が設けられ、更に、各排気管16.18及び吸気管19
にはファンが設けられている。このファンは炉内温度に
応じて自動的(ON−OFF)に運転制御される。これ
により処理炉内の異常温度上昇が防止される。又、各排
気管16,18は熱風炉20に設けられた吸気管22と
連結管24により連結され、処理炉10内の排気熱か熱
風炉20に供給される。処理炉10の上面には操作盤3
0及び動力盤40が設けられている。操作盤30は電源
の0N10FF、コンベア12の駆動制御、炉内温度の
設定・制御等を行い、更に遠赤外線放射ヒーターの管面
温度の設定等、各部に設けられた温度センサー(電熱対
)からの信号に基づいて種々の制御を行う。
At the top of the processing furnace IO are exhaust pipes 16, 18 and air supply pipes 19.
are provided, and each exhaust pipe 16.18 and intake pipe 19
There is a fan. The operation of this fan is automatically controlled (ON-OFF) depending on the temperature inside the furnace. This prevents abnormal temperature rise inside the processing furnace. Further, each of the exhaust pipes 16 and 18 is connected to an intake pipe 22 provided in the hot air stove 20 by a connecting pipe 24, and the exhaust heat in the processing furnace 10 is supplied to the hot air stove 20. An operation panel 3 is provided on the top surface of the processing furnace 10.
0 and a power panel 40 are provided. The operation panel 30 controls the power supply 0N10FF, drives the conveyor 12, sets and controls the temperature inside the furnace, and also sets the tube surface temperature of the far-infrared radiant heater, etc. from the temperature sensor (electrothermal couple) installed in each part. Various controls are performed based on the signals.

上記のような処理装置によって木材1を乾燥させる場合
、処理する材木の形状・寸法(長さ・幅・厚さ)に応じ
てコンベア12の搬送速度・放射される遠赤外線の波長
が設定される。
When drying the wood 1 using the processing device described above, the conveyance speed of the conveyor 12 and the wavelength of the emitted far-infrared rays are set depending on the shape and dimensions (length, width, thickness) of the wood to be processed. .

そして、材木1が処理炉10に投入されると、コンベア
12によって一定速度で移動する。この材木1は移動す
る間、上部ヒーターユニット及び下部ヒーターユニット
により遠赤外線が照射される。遠赤外線が照射される間
、材木lは乾燥される。処理炉10を通過した材木1は
そのまま熱風炉20に投入される。そして、熱風炉20
内において、木材1の表面が熱気にさらされ、溶融した
松ヤニが徐々に硬化する。
When the lumber 1 is put into the processing furnace 10, it is moved at a constant speed by the conveyor 12. While the timber 1 is moving, it is irradiated with far infrared rays by the upper heater unit and the lower heater unit. The timber l is dried while being irradiated with far infrared rays. The lumber 1 that has passed through the treatment furnace 10 is directly put into the hot blast furnace 20. And hot stove 20
Inside, the surface of the wood 1 is exposed to hot air, and the molten pine resin gradually hardens.

最終的に処理の終了した材木1は熱風炉20から搬出さ
れる。
Finally, the treated lumber 1 is carried out from the hot blast furnace 20.

〔実験例〕[Experiment example]

一条 件− 板厚43mmの松材(米松)を次の3条件により乾燥処
理を行った。
One condition - Pine wood (Japanese pine) with a thickness of 43 mm was dried under the following three conditions.

■ 投入口に近いヒーターユニットの管面温度・・・3
50℃(12μmの放射光に対応)他のヒーターユニッ
トの管面温度・・・230″C(18μmの放射光に対
応) ■ 投入口に近いヒーターユニットの管面温度−400
℃(1011mの放射光に対応)他のヒーターユニット
の管面温度・・・230℃(18μmの放射光に対応) ■ 投入口に近いヒーターユニットの管面温度・・・3
00℃(15μmの放射光に対応)他のヒーターユニッ
トの管面温度・・・230℃(18μmの放射光に対応
) 上記の各場合において遠赤外線の照射時間は2時間IO
分で処理炉10の炉内温度は実測値で最大147℃で最
小135℃である。なお、排気管16.18及び吸気管
19のファンはOFFの状態である。
■ Tube surface temperature of the heater unit near the input port...3
50℃ (corresponds to 12μm radiation light) Tube surface temperature of other heater units...230"C (corresponds to 18μm radiation light) ■ Tube surface temperature of heater unit near the input port -400
°C (corresponds to radiant light of 1011 m) Tube surface temperature of other heater units...230 °C (corresponds to 18 μm radiant light) ■ Tube surface temperature of heater unit near input port...3
00℃ (corresponds to 15μm synchrotron radiation) Tube surface temperature of other heater units...230℃ (corresponds to 18μm synchrotron radiation) In each of the above cases, far infrared ray irradiation time is 2 hours IO
The actual temperature within the processing furnace 10 is a maximum of 147°C and a minimum of 135°C. Note that the fans of the exhaust pipes 16 and 18 and the intake pipe 19 are in an OFF state.

上記■、■、■の条件における松材の内部温度を測定し
た結果、その温度の変化は第3図に示すようになった。
As a result of measuring the internal temperature of the pine wood under the conditions of (1), (2), and (3) above, the temperature changes were as shown in FIG. 3.

即ち、 ■ ・・・ 実線  (最終108℃)■ ・・・ 破
線  (最終105℃)■ ・・・ −点鎖線(最終9
2℃) −結 果− (1)内部含水率 内部含水率を松材の中心部の3点と表層部(表面から5
mm〜6Mの位置)の3点で測定した結果は次表のよう
になる。
That is, ■ ... solid line (final 108℃) ■ ... dashed line (final 105℃) ■ ... - dotted line (final 9
2℃) -Results- (1) Internal moisture content The internal moisture content was measured at 3 points in the center of the pine wood and at the surface layer (5 points from the surface).
The results measured at three points (positions from mm to 6M) are shown in the following table.

表 ■、■の条件では加熱前に20%であった表層部の含水
率が略0%となった。■の条件では表層部の含水率は1
2%迄しか低下しなかった。
Under the conditions shown in Tables 1 and 2, the moisture content of the surface layer, which was 20% before heating, became approximately 0%. Under the conditions of ■, the moisture content of the surface layer is 1
It only decreased to 2%.

中心部の含水率は、■、■の条件において、15%以下
になるが、■の条件では充分な低下がみられない。
The moisture content in the center area becomes 15% or less under the conditions (■) and (2), but a sufficient reduction is not observed under the conditions (■).

(2)松ヤニ 上記■、■、■の条件で処理した松材を湿度96%の恒
温恒温度槽内に投入して、温度を50℃〜90℃まで上
昇させ表面の状態を観察した。
(2) Pine tar The pine wood treated under the conditions of (1), (2), and (2) above was placed in a constant temperature bath with a humidity of 96%, the temperature was raised to 50°C to 90°C, and the surface condition was observed.

その結果、■及び■の条件で処理した松材は、共に90
℃に到った時点で、切断面に数カ所樹脂の噴き出しが確
認出来たが、松材表面には樹脂の噴き出しは全く認めら
れなかった。■の条件で処理した松材は、60℃程度で
松材表面への樹脂の噴き出しが確認され、表面が多少ベ
タついた感じとなった。
As a result, the pine wood treated under the conditions of ■ and ■ both had a
When the temperature reached ℃, resin was observed to be ejected at several places on the cut surface, but no resin was observed on the surface of the pine wood. For the pine wood treated under the conditions (2), it was confirmed that resin was blown out onto the surface of the pine wood at about 60°C, and the surface became somewhat sticky.

表層部分の硬化結晶物をカッターで切除して得た粉末を
調べたところ、ロジン(アビエチレン酸系)とテレピン
油の混合物が確認出来た。
When the powder obtained by cutting off the hardened crystals on the surface layer with a cutter was examined, a mixture of rosin (abiethylene acid type) and turpentine oil was confirmed.

なお、測定器は+100倍率・+1000倍率の顕微鏡
である。
Note that the measuring instrument is a microscope with +100 magnification and +1000 magnification.

「割れ」 「内部割れ」 「歪み」等の発生は■、■。Occurrence of "cracking", "internal cracking", "distortion" etc. is ■, ■.

■のどの条件においても無かった。■There were no cases under any of the conditions.

[発明の効果1 以上説明してきたように、本発明によれば、松材に遠赤
外線を照射し、内部温度を100〜150℃に所定時間
保持するようにしたため、松材が短時間で乾燥できると
共に松ヤニの噴き出しを確実に防止することができる。
[Effect of the invention 1 As explained above, according to the present invention, the pine wood is irradiated with far infrared rays and the internal temperature is maintained at 100 to 150°C for a predetermined period of time, so the pine wood dries in a short time. At the same time, it is possible to reliably prevent pine resin from spewing out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の乾燥処理方法を実現する乾燥装置の基
本構成例を示す図、第2図はヒーターユニットの構造を
示す図、第3図は松材内部の温度上昇特性の例を示す図
である。
Figure 1 shows an example of the basic configuration of a drying device that implements the drying method of the present invention, Figure 2 shows the structure of a heater unit, and Figure 3 shows an example of temperature rise characteristics inside pine wood. It is a diagram.

Claims (2)

【特許請求の範囲】[Claims] (1)松材に遠赤外線を照射し、松材の内部温度を10
0℃以上150℃以下の範囲内に所定時間保持する事を
特徴とする松材の乾燥処理方法。
(1) Irradiate the pine wood with far infrared rays to lower the internal temperature of the pine wood to 10
A method for drying pine wood, characterized by maintaining the temperature within a range of 0°C or more and 150°C or less for a predetermined time.
(2)請求項(1)記載の松材の乾燥処理方法において
、松材の内部温度を100℃以上150℃以下の範囲内
に所定時間保持した後に、上記温度より低い温度の熱気
中で松材の含む松ヤニの材表層部の硬化を促進させるこ
とを特徴とする松材の乾燥処理方法。
(2) In the method for drying pine wood according to claim (1), after maintaining the internal temperature of the pine wood within a range of 100°C or more and 150°C or less for a predetermined time, the pine wood is dried in hot air at a temperature lower than the above temperature. A method for drying pine wood characterized by accelerating the hardening of the surface layer of pine tar contained in the wood.
JP22181590A 1990-08-23 1990-08-23 Method of drying pine material with far infrared ray Pending JPH04103986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22181590A JPH04103986A (en) 1990-08-23 1990-08-23 Method of drying pine material with far infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22181590A JPH04103986A (en) 1990-08-23 1990-08-23 Method of drying pine material with far infrared ray

Publications (1)

Publication Number Publication Date
JPH04103986A true JPH04103986A (en) 1992-04-06

Family

ID=16772630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22181590A Pending JPH04103986A (en) 1990-08-23 1990-08-23 Method of drying pine material with far infrared ray

Country Status (1)

Country Link
JP (1) JPH04103986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011077A (en) * 1983-06-30 1985-01-21 土屋 公三 Method and device for removing and treating water content inwood

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011077A (en) * 1983-06-30 1985-01-21 土屋 公三 Method and device for removing and treating water content inwood

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790092B1 (en) * 2010-04-30 2011-10-12 日本碍子株式会社 Coating film drying furnace

Similar Documents

Publication Publication Date Title
EP0555257B2 (en) Drying procedure
RU2403988C2 (en) Radiator for fast heating of surfaces (versions), device and plant for deposition of powder coats on wood elements or elements based on average-density fibre board
US3199213A (en) Method of changing the moisture content of wood
US6174388B1 (en) Rapid infrared heating of a surface
WO2007059294A2 (en) Process for pulsed uv curing of coatings on wood
US20090302031A1 (en) Microwave Heater
US20070006480A1 (en) Method and apparatus for drying honeycomb formed body
JPH01212886A (en) Drier for plate for building
JP2015527507A (en) Method of heating a continuous mat of mineral fibers or plant fibers
JPH0462257B2 (en)
US20220281131A1 (en) Systems and methods for drying wood products
US4305898A (en) Method for the manufacture of a bonded abrasive grinding product
JPH04103986A (en) Method of drying pine material with far infrared ray
US11814319B2 (en) Production of foamed sand using near infrared
JP2009126746A (en) Method for drying formed product of clay such as tile and apparatus for drying the same
EP0459204A1 (en) Method and device for the speedy drying of a material by application of microwaves
US2400051A (en) Process for treating plywood
Tarakanov Effect of γ-radiation on the structure and thermal properties of polyacrylonitrile fibres
RU2744242C1 (en) Method for elimination of defects of mineral wool plates in the process of their production
JP3235887B2 (en) Drying method for moisture content
JPH0752139A (en) Drying of reinforcing net-containing alc panel
JPS6353155B2 (en)
SU880381A1 (en) Method of treating silkworm cocoons
JPS6036373Y2 (en) wood paint drying equipment
Tukhvatullin Development of a microwave electrotechnological installation with a hybrid chamber for microwave treatment of biological substrates