JP2009126746A - Method for drying formed product of clay such as tile and apparatus for drying the same - Google Patents

Method for drying formed product of clay such as tile and apparatus for drying the same Download PDF

Info

Publication number
JP2009126746A
JP2009126746A JP2007304138A JP2007304138A JP2009126746A JP 2009126746 A JP2009126746 A JP 2009126746A JP 2007304138 A JP2007304138 A JP 2007304138A JP 2007304138 A JP2007304138 A JP 2007304138A JP 2009126746 A JP2009126746 A JP 2009126746A
Authority
JP
Japan
Prior art keywords
drying
clay
drying chamber
air
microwave power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007304138A
Other languages
Japanese (ja)
Inventor
Akiichi Harada
明一 原田
Takeko Matsumura
竹子 松村
Yasutoshi Kono
保敏 河野
Takao Goto
喬雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Planning
CIVIL PLANNING KK
MINERVA LIGHT LAB
MINERVA LIGHT LABORATORY
Micro Denshi Co Ltd
Original Assignee
Civil Planning
CIVIL PLANNING KK
MINERVA LIGHT LAB
MINERVA LIGHT LABORATORY
Micro Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Planning, CIVIL PLANNING KK, MINERVA LIGHT LAB, MINERVA LIGHT LABORATORY, Micro Denshi Co Ltd filed Critical Civil Planning
Priority to JP2007304138A priority Critical patent/JP2009126746A/en
Publication of JP2009126746A publication Critical patent/JP2009126746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that conventional ceramic products such as tiles are produced through treating processes of drying and baking of formed products of clay with remaining heat of a hot blast generating furnace and a kiln, therefore, productivity is low and the processes are not suitable for mass production. <P>SOLUTION: In a drying apparatus for drying formed products of clay 100 for producing massive or thick ceramic products such as tiles, drying time is extraordinarily shortened by installing a drying chamber 10 for drying the formed products of clay 100 by irradiating micro wave power, an absorption port 16 for introducing air into the drying chamber 10 and a discharge port 18 for delivering the air outside of the drying chamber 10, and drying the formed products of clay 100 by irradiating the micro wave power through moving the air in the drying chamber 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、屋根瓦(鬼瓦、桟瓦、役瓦など)、碍子、土管などのような塊状或いは厚物状のセラミック製品の生産に必要な粘土形成物の乾燥方法と乾燥装置に関する。   The present invention relates to a drying method and a drying apparatus for clay formation necessary for the production of massive or thick ceramic products such as roof tiles (demon tiles, pier tiles, functional tiles, etc.), insulators, clay pipes, and the like.

屋根瓦などのセラミック製品は、各種成分を混合した原土に水を加えて土練した粘土を所定形状に形成し、さらに、その粘土形成品を熱風発生炉と窯の余熱を利用して乾燥させた後、焼成工程などを経て製造される。
また、このような製造過程では、含水率20〜25%程度の粘土を所定形状に形成し、乾燥工程において含水率5%程度になるまで乾燥させた後に焼成工程に入ることが一般的である。
このことから、屋根瓦を生産する場合には、乾燥工程に2.5日程を要し、焼成工程に3日程の処理時間が必要であった。
Ceramic products such as roof tiles are formed by adding water to the raw soil mixed with various components to form clay that has been kneaded into a predetermined shape, and then drying the clay-formed product using the residual heat of the hot air generator and kiln. Then, it is manufactured through a baking process.
Moreover, in such a manufacturing process, it is common to form a clay having a water content of about 20 to 25% into a predetermined shape, and after drying the clay until the water content becomes about 5% in the drying step, enter the firing step. .
For this reason, when producing roof tiles, the drying process required approximately 2.5 days, and the firing process required approximately 3 days of processing time.

一方、セラミック製品の生産には、乾燥時間を短縮するために、マイクロ波加熱を利用することが既に知られている。
しかし、上記したところの屋根瓦等のセラミック製品は、塊状または厚物状の物品となるために、その粘土形成物に一定のマイクロ波電力を照射して乾燥すると、加熱された水の急激な膨張や気化による爆発的膨張により、粘土形成物がクラックしたり粉々に割れたりする。
また、水の急激な膨張が生じなくとも、粘土形成物の内部と外部の温度差が大きく作用し、クラックや変形が生じるようになる。
したがって、マイクロ波加熱による乾燥は、自動車のハニカム製品や食器皿などのように、薄い構成部分からなる粘土形成物に限られて行われている。
On the other hand, in the production of ceramic products, it is already known to use microwave heating in order to shorten the drying time.
However, since the ceramic products such as the roof tiles described above become a lump or thick article, when the clay formation is irradiated with a certain microwave power and dried, the heated water becomes abrupt. Explosive expansion due to expansion or vaporization causes the clay formation to crack or break into pieces.
Moreover, even if rapid expansion of water does not occur, the temperature difference between the inside and the outside of the clay formation acts greatly, and cracks and deformation occur.
Therefore, drying by microwave heating is limited to clay-formed products composed of thin components such as automobile honeycomb products and tableware.

特開平6−345541号公報JP-A-6-345541 特開2003−106773号公報JP 2003-106773 A

従来の瓦等のセラミック製品は、粘土形成物の乾燥工程と焼成工程を経て生産される。
乾燥工程は熱風発生炉と窯の余熱を利用する方法であるので、生産能率が低く、量産性にも適当ではなかった。
そこで、本発明では、マイクロ波乾燥を積極的に取り入れることで、粘土形成物の乾燥時間を飛躍的に短縮させ、瓦等のセラミック製品の生産能率と量産性とを高めることを目的とする。
Conventional ceramic products such as roof tiles are produced through a drying process and a firing process of a clay formed product.
Since the drying process uses the hot air generator and the residual heat of the kiln, the production efficiency is low and it is not suitable for mass production.
Therefore, the present invention aims to drastically shorten the drying time of the clay formation by actively incorporating microwave drying, and to increase the production efficiency and mass productivity of ceramic products such as roof tiles.

上記した目的を達成するため、本発明では、第1の発明として、瓦等のような塊状または厚物状のセラミック製品を生産するための粘土形成物を乾燥させる乾燥方法において、乾燥室内で粘土形成物にマイクロ波電力を照射して乾燥させる乾燥工程と、乾燥室外から乾燥室内に空気を導入すると共に、乾燥室内から乾燥室外に空気を導出して乾燥室内の空気を動かす工程とを含むことを特徴とする瓦等の粘土形成物の乾燥方法を提案する。   In order to achieve the above-mentioned object, in the present invention, as a first invention, in a drying method for drying a clay product for producing a massive or thick ceramic product such as a roof tile, A drying step of irradiating the formed product with microwave power and a step of introducing air from the outside of the drying chamber into the drying chamber, and a step of moving the air in the drying chamber by extracting the air from the drying chamber to the outside of the drying chamber. We propose a method for drying clay products such as roof tiles.

第2の発明としては、瓦等のような塊状または厚物状のセラミック製品を生産するための粘土形成物を乾燥させる乾燥装置において、粘土形成物にマイクロ波電力を照射して乾燥させる乾燥室と、乾燥室外から乾燥室内に空気を導入すると共に、乾燥室内から乾燥室外に空気を導出して乾燥室内の空気を動かす空気流動手段とを備えて構成したことを特徴とする瓦等の粘土形成物の乾燥装置を提案する。   As a second invention, in a drying apparatus for drying a clay formation for producing a lump or thick ceramic product such as a tile, a drying chamber for drying the clay formation by irradiation with microwave power And a clay formation such as a roof tile, characterized in that it is provided with air flow means for introducing air from outside the drying chamber into the drying chamber and for extracting air from the drying chamber to the outside of the drying chamber and moving the air in the drying chamber Proposal of equipment drying equipment.

第3の発明としては、第2の発明の乾燥装置において、乾燥開始から所定時間の間は小さいマイクロ波電力を照射し、所定時間の経過後は大きいマイクロ波電力を照射して乾燥させるマイクロ波電力の制御手段を備えたことを特徴とする瓦等の粘土形成物の乾燥装置を提案する。   As a third invention, in the drying apparatus according to the second invention, a microwave that is irradiated with a small microwave power for a predetermined time from the start of drying and is irradiated with a large microwave power after the predetermined time has elapsed to be dried. The present invention proposes a drying apparatus for clay formations such as roof tiles, which is provided with electric power control means.

第4の発明としては、第2の発明の乾燥装置において、乾燥初期の段階では小さいマイクロ波電力を照射し、その後は段階的又は連続的に大きくしたマイクロ波電力を照射して乾燥させるマイクロ波電力の制御手段を備えたことを特徴とする瓦等の粘土形成物の乾燥装置を提案する。   According to a fourth invention, in the drying apparatus according to the second invention, a microwave that is irradiated with a small microwave power at an initial stage of drying and thereafter is irradiated with a microwave power increased stepwise or continuously to be dried. The present invention proposes a drying apparatus for clay formations such as roof tiles, which is provided with electric power control means.

第5の発明としては、第2の発明〜第4の発明のいずれかの乾燥装置において、乾燥室内の一部の空気を循環させる空気循環手段を備えたことを特徴とする瓦等の粘土形成物の乾燥装置を提案する。   According to a fifth aspect of the present invention, in the drying apparatus according to any one of the second to fourth aspects of the present invention, clay is formed such as roof tiles, and the like. Proposal of equipment drying equipment.

第1、第2の発明は、粘土形成物にマイクロ波電力を照射して乾燥させる他に、乾燥室内に空気を導入し、また、乾燥室の空気を導出して粘土形成物から蒸発する水蒸気を乾燥室外に放出しながら乾燥させるので、乾燥時間を大きく短縮することができる。
なお、この発明では、粘土形成物にクラックや変形などが発生しない程度のマイクロ波電力に設定することが好ましい。
In the first and second inventions, in addition to drying the clay formation by irradiating it with microwave power, air is introduced into the drying chamber, and the water vapor evaporating from the clay formation by deriving the air in the drying chamber Is dried while being discharged to the outside of the drying chamber, so that the drying time can be greatly shortened.
In the present invention, it is preferable to set the microwave power so as not to cause cracks or deformations in the clay formed product.

第3、4の発明のように、乾燥初期段階ではマイクロ波電力を弱く、その後はマイクロ波電力を強くすれば乾燥時間をさらに短縮することができる。
乾燥が進んだ後はマイクロ波電力を強くしてもクラックや変形などが発生しないから、第3の発明の乾燥装置は一層効果を高めることができる。
As in the third and fourth inventions, the drying time can be further shortened by reducing the microwave power at the initial drying stage and increasing the microwave power thereafter.
After drying has progressed, cracks and deformation do not occur even if the microwave power is increased, so the drying apparatus of the third invention can further enhance the effect.

第5の発明では、乾燥室内の一部の空気を循環させるので、乾燥室内の空気温度の変化が小さくなる。
したがって、粘土形成物の表面状態に与えるマイクロ波加熱の影響を少なくすることができる。
In the fifth invention, since a part of the air in the drying chamber is circulated, the change in the air temperature in the drying chamber is reduced.
Therefore, the influence of microwave heating on the surface state of the clay formed product can be reduced.

次に本発明の一実施形態について図面に沿って説明する。
図1は、第1実施形態として示した乾燥装置の簡略構成図を示し、10は粘土形成物100をマイクロ波乾燥させる乾燥室(アプリケータ)で、11は粘土形成物100を乾燥室10に収納し、また、取り出す蓋である。
12は乾燥室10内にマイクロ波電力を照射するアンテナで、これはマイクロ波発振器13に連結されている。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a simplified configuration diagram of the drying apparatus shown as the first embodiment. Reference numeral 10 denotes a drying chamber (applicator) for microwave drying the clay formation 100, and 11 denotes the clay formation 100 in the drying chamber 10. A lid for storing and taking out.
Reference numeral 12 denotes an antenna for irradiating microwave power into the drying chamber 10, which is connected to a microwave oscillator 13.

14は乾燥室10内に設けたターンテーブルで、このターンテーブル14をモーター15で回転させるようにしてある。
粘土形成物100は、ターンテーブル14に乗せて回転させながらマイクロ波電力を照射する。
Reference numeral 14 denotes a turntable provided in the drying chamber 10, and this turntable 14 is rotated by a motor 15.
The clay formation 100 is irradiated with microwave power while being rotated on the turntable 14.

16は乾燥室10内に空気を取り入れる吸収口で、この吸収口16としてパンチングメタルからなるマイクロ波遮蔽板17を設けてある。
このマイクロ波遮蔽板17はマイクロ波電力を遮断し空気を通すものである。
18は乾燥室10内から外に空気を出す排出口で、この排出口18にも上記したマイクロ波遮蔽板17と同様のマイクロ波遮蔽板19が設けてある。
Reference numeral 16 denotes an absorption port for taking air into the drying chamber 10, and a microwave shielding plate 17 made of punching metal is provided as the absorption port 16.
The microwave shielding plate 17 cuts off microwave power and allows air to pass through.
Reference numeral 18 denotes a discharge port for discharging air from the inside of the drying chamber 10, and the discharge port 18 is also provided with a microwave shielding plate 19 similar to the above-described microwave shielding plate 17.

本実施形態では、上記の乾燥装置を使って平瓦の粘土形成物100について乾燥実験を行った。
この実験では、厚さ25mm、重量約2kg、含水率20%の平瓦を一個ターンテーブル14に載せてマイクロ波電力を照射した。
この実験では、実験条件をいろいろ変えて4回の実験を行い、下記の表1〜表4に示す実験結果を得た。
なお、平瓦の粘土形成物100としては、複数の原土を混合し、水を加えて土練した粘土を所定形状に成形した粘土形成物としてある。
In the present embodiment, a drying experiment was performed on the flat tile clay formation 100 using the above-described drying apparatus.
In this experiment, one flat roof tile having a thickness of 25 mm, a weight of about 2 kg, and a moisture content of 20% was placed on the turntable 14 and irradiated with microwave power.
In this experiment, four experiments were performed under various experimental conditions, and experimental results shown in Tables 1 to 4 below were obtained.
The flat roof clay formation 100 is a clay formation formed by mixing a plurality of raw soils, adding water, and kneading clay into a predetermined shape.

乾燥実験1

Figure 2009126746
Drying experiment 1
Figure 2009126746

この乾燥実験1では、最初の4時間は通風を行なわず、129Wのマイクロ波電力を照射し、粘土形成物100から出る水の放出量を求め、次の3時間は通風を行い、250Wのマイクロ波電力を照射し、粘土形成物100から出る水の放出量を求めた。   In this drying experiment 1, ventilation was not conducted for the first 4 hours, 129 W of microwave power was applied to determine the amount of water released from the clay formation 100, and ventilation was conducted for the next 3 hours, with 250 W of micro-flow. The amount of water discharged from the clay formation 100 was determined by applying wave power.

図2は、この乾燥実験によって得られた乾燥特性図で、横軸にマイクロ波電力の照射エネルギー、縦軸に粘土形成物100から放出された水の累積放出量として描いてある。
なお、この特性図において、実線が実際の実験結果で、点線が最初の4時間についても通風していたと仮定したときの推定値を示す。
FIG. 2 is a drying characteristic diagram obtained by this drying experiment, in which the horizontal axis represents the irradiation energy of microwave power and the vertical axis represents the cumulative amount of water released from the clay formation 100.
In this characteristic diagram, the solid line indicates the actual experimental result, and the dotted line indicates the estimated value when it is assumed that the first four hours have been ventilated.

表1に示すように、通風なしの条件で約1.9Mジュールのマイクロ波電力を照射して35gの水が放出されたが、通風があれば、約3分の1の0.6Mジュールで35gの水の放出ができることが、図2のグラフの傾向から容易に推定できる。
すなわち、乾燥室10内を通風すれば、水の放出効果が3倍になることが推定でき、このことから乾燥には乾燥室10の通風が重要であることが確認された。
As shown in Table 1, 35 g of water was released by irradiating microwave power of about 1.9 M joules under the condition of no ventilation, but if there was ventilation, about 1/3 of 0.6 M joule It can be easily estimated from the tendency of the graph of FIG. 2 that 35 g of water can be released.
That is, it can be estimated that if the air is passed through the drying chamber 10, the water release effect will be tripled. This confirms that the ventilation of the drying chamber 10 is important for drying.

この乾燥実験1では、粘土形成物100にクラックや変形が生じなく、また、爆発することもなく、約150gの水が放出できた。
この結果から、更にマイクロ波電力の照射を続ければ、目標とする含水率5%まで乾燥が進む見通しを得ることができた。
In this drying experiment 1, about 150 g of water could be released without causing any cracks or deformation in the clay-formed product 100 and without causing an explosion.
From this result, it was possible to obtain a prospect of drying to a target moisture content of 5% if microwave power irradiation was continued.

乾燥実験2

Figure 2009126746
Drying experiment 2
Figure 2009126746

この乾燥実験では、乾燥室10を通風として、一定のマイクロ波電力250Wを10時間照射した。
この実験においてもクラックも爆発も生じることなく、259gの水が放出できた。
照射したマイクロ波エネルグーは9Mジュールである。
In this drying experiment, a constant microwave power of 250 W was irradiated for 10 hours while the drying chamber 10 was ventilated.
In this experiment, 259 g of water could be released without causing cracks or explosions.
The irradiated microwave energy is 9M joules.

乾燥実験3

Figure 2009126746
Drying experiment 3
Figure 2009126746

この乾燥実験では、乾燥室10を通風として500Wのマイクロ波電力を2時間照射し、水の放出量が219gになったことを確認した。
その後、直ちに1kWのマイクロ波電力を15分間照射したところ、さらに49gの水の放出量を得た。
いずれの場合にもクラックの発生も爆発も生じなかった。
図3は、この乾燥時間において、照射したマイクロ波エネルギーと粘土形成物100からの水の放出量との関係を示した乾燥特性図である。
In this drying experiment, it was confirmed that 500 W of microwave power was irradiated for 2 hours with the drying chamber 10 as ventilation, and the amount of water released was 219 g.
Immediately after that, when microwave power of 1 kW was irradiated for 15 minutes, an additional 49 g of water was obtained.
In either case, neither cracking nor explosion occurred.
FIG. 3 is a drying characteristic diagram showing the relationship between the irradiated microwave energy and the amount of water released from the clay formation 100 during this drying time.

図3の乾燥特性図から分かるように、照射エネルギー約4.5Mジュールで、水の放出量が268gとなり、乾燥実験2の9Mジュールで259gの水の放出量に対し半分のエネルギーでほぼ同量の水の放出ができた。
マイクロ波電力の総照射時間も2時間15分であり、短時間乾燥を実現することができた。
As can be seen from the drying characteristic diagram of FIG. 3, when the irradiation energy is about 4.5 M Joule, the amount of water released is 268 g, and the amount of water released by 9 M Joule in Drying Experiment 2 is almost the same amount with half the energy of 259 g of water released Of water was released.
The total irradiation time of the microwave power was 2 hours and 15 minutes, and drying could be realized for a short time.

すなわち、乾燥が進めば、大きなマイクロ波電力を照射することができ、乾燥時間も短縮できることが分かった。
また、このことは乾燥の進行と共に、照射するマイクロ波電力を段階的に増加すれば、さらに短時間で乾燥できることを示唆した。
なお、乾燥の進行を確認する方法は、瓦の重量変化を確認する方法と、瓦の表面温度を確認する方法の2つがある。
That is, if drying progressed, it turned out that a big microwave electric power can be irradiated and drying time can also be shortened.
In addition, this suggests that drying can be performed in a shorter time if the microwave power to be irradiated is increased stepwise as the drying progresses.
There are two methods for confirming the progress of drying: a method for confirming a change in the weight of the roof tile and a method for confirming the surface temperature of the roof tile.

乾燥実験4

Figure 2009126746
Drying experiment 4
Figure 2009126746

この乾燥実験は、含水率の高い粘土形成物100を試験した。
そして、この実験では乾燥室10の通風を行うと共に、400Wのマイクロ波電力を1時間照射し、続いて、マイクロ波電力を500Wに上昇させて30分間照射した後、粘土形成物100の重量を測定し、水の放出量が114gになっていることを確認した。
This drying experiment tested a clay formation 100 with a high moisture content.
In this experiment, the drying chamber 10 was ventilated and irradiated with 400 W of microwave power for 1 hour. Subsequently, the microwave power was increased to 500 W and irradiated for 30 minutes. Measurement was made and it was confirmed that the amount of water released was 114 g.

引き続き、マイクロ波電力を600Wに上昇させて15分間照射した後、粘土形成物100の重量を測定し、水の放出量が32gであることを確認した。
その後、直ちに、マイクロ波電力を1kWに上昇させて10分間照射して水の放出量が33gとなったことを確認した。
Then, after raising microwave power to 600W and irradiating for 15 minutes, the weight of the clay formation 100 was measured and it confirmed that the discharge | release amount of water was 32g.
Immediately thereafter, the microwave power was increased to 1 kW and irradiated for 10 minutes to confirm that the amount of water released was 33 g.

この乾燥実験においても、粘土形成物100にはクラックが発生しなかったし、爆発も生じなかった。
図4は、この乾燥実験で得られた乾燥特性図であり、上記した乾燥実験3の実験結果の結論を裏付ける結果となった。
Also in this drying experiment, the clay-formed product 100 did not crack and did not explode.
FIG. 4 is a diagram of drying characteristics obtained in this drying experiment, and confirmed the conclusion of the experimental results of the drying experiment 3 described above.

上記した各乾燥実験の他に、マイクロ波電力とクラックとの関係を調べる実験を行った。
この実験では、含水率が上限に近い22〜25%程度の粘土を使った粘土形成物100を用い、500Wのマイクロ波電力を照射したところ、照射時間20分でクラックが発生することがわかった。
図5はこの実験で求めたマイクロ波電力とクラックの関係を示す特性図である。
この図から分かるように、初期段階で照射するマイクロ波電力が400Wであれば、クラックの発生のない良好な乾燥ができることになる。
また、乾燥実験3との比較で500W前後のマイクロ波電力を照射したときは、粘土形成物100を形成する際の粘土の初期含水率の変動範囲内で乾燥が成功したりクラックが発生したりすることも分った。
In addition to the drying experiments described above, experiments were conducted to investigate the relationship between microwave power and cracks.
In this experiment, it was found that when a clay formation 100 using clay having a moisture content of about 22 to 25%, which is close to the upper limit, was irradiated with microwave power of 500 W, cracks occurred in an irradiation time of 20 minutes. .
FIG. 5 is a characteristic diagram showing the relationship between the microwave power and cracks obtained in this experiment.
As can be seen from this figure, if the microwave power irradiated in the initial stage is 400 W, good drying without cracks can be achieved.
In addition, when microwave power of around 500 W was irradiated in comparison with the drying experiment 3, drying was successful or cracks were generated within the fluctuation range of the initial moisture content of the clay when forming the clay formation 100. I also knew that to do.

図6は、第2実施形態として示した乾燥装置の簡略構成図を示す。
本実施形態では、排出口18の筒部にダンパー21を設け、空気の排出量を制御できる構成としたこと、また、吸収口16に連通させた空気の循環機構を設け、乾燥室10内の一部の空気を循環させる構成としたことに特徴があり、その他の構成は図1に示した第1実施形態と同じ構成としてある。
FIG. 6 shows a simplified configuration diagram of the drying apparatus shown as the second embodiment.
In the present embodiment, the damper 21 is provided in the cylindrical portion of the discharge port 18 so that the amount of air discharged can be controlled, and the air circulation mechanism communicated with the absorption port 16 is provided. The configuration is characterized in that a part of the air is circulated, and the other configuration is the same as that of the first embodiment shown in FIG.

本実施形態の循環機構は、吸収口16に連結させた筒状体22を構成し、この筒状体22の筒口23の近くに設けたダンパー24によって空気の取り入れ量を制御するようしてある。
また、筒状体22の筒口23の近くには、乾燥室10内から空気を取り出す取出口25を連結し、筒口23から入る空気と取出口25から出る空気とを混合させ、この混合空気を送風機27で送ると共にヒーター28で加温して吸収口16から乾燥室10内に吹き出させ、乾燥室10内の空気を循環させる。
なお、取出口25には、上記したマイクロ波遮蔽板17、19と同様のマイクロ波遮蔽板26が設けてある。
The circulation mechanism of this embodiment comprises a cylindrical body 22 connected to the absorption port 16, and the amount of air taken in is controlled by a damper 24 provided near the cylindrical port 23 of the cylindrical body 22. .
Further, an outlet 25 for taking out air from the inside of the drying chamber 10 is connected near the cylinder opening 23 of the cylindrical body 22, and the air entering from the cylinder opening 23 and the air exiting from the outlet 25 are mixed together. While sending with the air blower 27, it heats with the heater 28, it blows in the drying chamber 10 from the absorption opening 16, and the air in the drying chamber 10 is circulated.
The outlet 25 is provided with a microwave shielding plate 26 similar to the microwave shielding plates 17 and 19 described above.

このように構成した本実施形態では、排出口18から出る空気の排出量に関係なく、乾燥室10内の空気を循環させて動かすことができる他、吸収口16から吹き出す空気の温度を効率良く調整することができるから、乾燥室10内の湿度の制御が可能になり、乾燥室10内が水蒸気の飽和状態になることもなく、効率よく乾燥することができる。
また、過乾燥状態を避けることができるので、粘土形成物100の表面状態の劣化やクラックの発生を防ぐことができる。
In the present embodiment configured as described above, the air in the drying chamber 10 can be circulated and moved regardless of the amount of air discharged from the discharge port 18, and the temperature of the air blown from the absorption port 16 can be efficiently increased. Since it can be adjusted, the humidity in the drying chamber 10 can be controlled, and the drying chamber 10 can be efficiently dried without being saturated with water vapor.
Moreover, since an overdried state can be avoided, deterioration of the surface state of the clay formation 100 and generation | occurrence | production of a crack can be prevented.

なお、吸収口16から吹き出させる空気を加温する目的は、粘土形成物100の表面で蒸発する水が必要とする潜熱(気化熱)を、エネルギーコストの安い、例えば、石油や電気を利用して供給するためである。
したがって、マイクロ波エネルギーを利用して加温することもできる。
The purpose of heating the air blown out from the absorption port 16 is to use latent heat (vaporization heat) required by the water evaporated on the surface of the clay formation 100 by using, for example, petroleum or electricity at low energy cost. It is for supplying.
Therefore, it can also heat using microwave energy.

以上、好ましい実施形態について説明したが、第2実施形態のヒーター28は必ずしも必要ではなく、また、ターンテーブル14に関連する構造物に重量センサーを取り付けたり、粘土形成物100の表面温度を測定する温度センサーなどを設ければ、それらセンサーの検出信号に基づいてマイクロ波電力を段階的に、或いは、連続的に制御する乾燥装置として構成とすることができる。
なお、上記のセンサー信号に基づいて上記したダンパーの開閉を制御することもできる。
Although the preferred embodiment has been described above, the heater 28 of the second embodiment is not always necessary, and a weight sensor is attached to the structure related to the turntable 14 or the surface temperature of the clay formation 100 is measured. If a temperature sensor etc. are provided, it can be set as a drying apparatus which controls microwave electric power stepwise or continuously based on the detection signal of those sensors.
Note that the opening and closing of the damper can also be controlled based on the sensor signal.

瓦、碍子、土管などを生産するための粘土形成物の乾燥方法または乾燥装置として適用できる。   It can be applied as a drying method or drying apparatus for clay formed products for producing tiles, insulators, clay pipes and the like.

第1実施形態として示した乾燥装置の簡略構成図である。It is a simplified lineblock diagram of the drying device shown as a 1st embodiment. 乾燥実験1で得た乾燥特性図である。It is a drying characteristic figure obtained in drying experiment 1. 乾燥実験3で得た乾燥特性図である。It is a drying characteristic figure obtained in drying experiment 3. 乾燥実験4で得た乾燥特性図である。It is a drying characteristic figure obtained by drying experiment 4. マイクロ波電力とクラックとの関係を示す特性図である。It is a characteristic view which shows the relationship between a microwave electric power and a crack. 第2実施形態として示した乾燥装置の簡略構成図である。It is a simplified block diagram of the drying apparatus shown as 2nd Embodiment.

符号の説明Explanation of symbols

10 乾燥室
13 マイクロ波発振器
16 吸収口
18 排出口
22 筒状体
25 取出口
27 送風機
28 ヒーター
100 粘土形成物
DESCRIPTION OF SYMBOLS 10 Drying chamber 13 Microwave oscillator 16 Absorption port 18 Discharge port 22 Cylindrical body 25 Outlet 27 Blower 28 Heater 100 Clay formation

Claims (5)

瓦等のような塊状または厚物状のセラミック製品を生産するための粘土形成物を乾燥させる乾燥方法において、
乾燥室内で粘土形成物にマイクロ波電力を照射して乾燥させる乾燥工程と、
乾燥室外から乾燥室内に空気を導入すると共に、乾燥室内から乾燥室外に空気を導出して乾燥室内の空気を動かす工程と、
を含むことを特徴とする瓦等の粘土形成物の乾燥方法。
In a drying method for drying a clay formed product for producing a lump or thick ceramic product such as a tile,
A drying step of irradiating the clay-formed product with microwave power in a drying chamber and drying;
Introducing air from outside the drying chamber into the drying chamber, deriving air from the drying chamber to the outside of the drying chamber, and moving the air in the drying chamber;
A method for drying a clay-formed product such as a roof tile.
瓦等のような塊状または厚物状のセラミック製品を生産するための粘土形成物を乾燥させる乾燥装置において、
粘土形成物にマイクロ波電力を照射して乾燥させる乾燥室と、
乾燥室外から乾燥室内に空気を導入すると共に、乾燥室内から乾燥室外に空気を導出して乾燥室内の空気を動かす空気流動手段と、
を備えて構成したことを特徴とする瓦等の粘土形成物の乾燥装置。
In a drying apparatus for drying a clay formation for producing a block-shaped or thick ceramic product such as a tile,
A drying chamber for irradiating the clay formation with microwave power and drying;
An air flow means for introducing air from the outside of the drying chamber into the drying chamber, and for deriving the air from the drying chamber to the outside of the drying chamber and moving the air in the drying chamber;
A drying apparatus for clay formations such as roof tiles, characterized in that the apparatus is configured to include.
請求項2に記載した乾燥装置において、
乾燥開始から所定時間の間は小さいマイクロ波電力を照射し、所定時間の経過後は大きいマイクロ波電力を照射して乾燥させるマイクロ波電力の制御手段を備えたことを特徴とする瓦等の粘土形成物の乾燥装置。
The drying apparatus according to claim 2,
Clay, such as roof tile, characterized by having microwave power control means for irradiating with a small microwave power for a predetermined time from the start of drying and irradiating with a large microwave power after a predetermined time has elapsed. Molding drying equipment.
請求項2に記載した乾燥装置において、
乾燥初期の段階では小さいマイクロ波電力を照射し、その後は段階的又は連続的に大きくしたマイクロ波電力を照射して乾燥させるマイクロ波電力の制御手段を備えたことを特徴とする瓦等の粘土形成物の乾燥装置。
The drying apparatus according to claim 2,
Clay such as roof tiles, which is equipped with a microwave power control means for irradiating with a small microwave power at the initial stage of drying and then irradiating with a microwave power increased stepwise or continuously. Molding drying equipment.
請求項2〜4のいずれかに記載した乾燥装置において、
乾燥室内の一部の空気を循環させる空気循環手段を備えたことを特徴とする瓦等の粘土形成物の乾燥装置。
In the drying apparatus according to any one of claims 2 to 4,
An apparatus for drying a clay-formed product such as a roof tile, comprising an air circulation means for circulating a part of the air in the drying chamber.
JP2007304138A 2007-11-26 2007-11-26 Method for drying formed product of clay such as tile and apparatus for drying the same Pending JP2009126746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304138A JP2009126746A (en) 2007-11-26 2007-11-26 Method for drying formed product of clay such as tile and apparatus for drying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304138A JP2009126746A (en) 2007-11-26 2007-11-26 Method for drying formed product of clay such as tile and apparatus for drying the same

Publications (1)

Publication Number Publication Date
JP2009126746A true JP2009126746A (en) 2009-06-11

Family

ID=40818037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304138A Pending JP2009126746A (en) 2007-11-26 2007-11-26 Method for drying formed product of clay such as tile and apparatus for drying the same

Country Status (1)

Country Link
JP (1) JP2009126746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240374A (en) * 2011-05-23 2012-12-10 Taisei Corp Pillar member manufacturing method and pillar member
KR101567380B1 (en) 2014-12-12 2015-11-10 유용호 Frame for clay composition, producing device and method for the same
CN112759367A (en) * 2021-01-11 2021-05-07 西安建筑科技大学 Microwave sintered clay brick taking waste residue soil as raw material and preparation method thereof
CN113336525A (en) * 2021-04-29 2021-09-03 西安建筑科技大学 Microwave-fired slag-soil brick and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240374A (en) * 2011-05-23 2012-12-10 Taisei Corp Pillar member manufacturing method and pillar member
KR101567380B1 (en) 2014-12-12 2015-11-10 유용호 Frame for clay composition, producing device and method for the same
CN112759367A (en) * 2021-01-11 2021-05-07 西安建筑科技大学 Microwave sintered clay brick taking waste residue soil as raw material and preparation method thereof
CN113336525A (en) * 2021-04-29 2021-09-03 西安建筑科技大学 Microwave-fired slag-soil brick and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2000510434A (en) Method and apparatus for producing thick wall ceramic products
EP2083000A1 (en) Method of honeycomb molding pretreatment for burning and system for honeycomb molding pretreatment for burning
JP2009126746A (en) Method for drying formed product of clay such as tile and apparatus for drying the same
RU2007106710A (en) THERMOLYSIS OF ORGANIC WASTE IN FURNACES WITH BALLS
US4505787A (en) Process for production of a carbide by-product with microwave energy and aluminum by electrolysis
US20060266956A1 (en) Method of expanding mineral ores using microwave radiation
JPH10513428A (en) Method and apparatus for continuously calcining gypsum without using heat resistant equipment
JP6285588B1 (en) Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
KR102014673B1 (en) Torrefaction system using a microwaves and dielectric heating
JP5086986B2 (en) Asbestos detoxification treatment method
JP6243389B2 (en) Heating furnace and heating method
JP2007230796A (en) Method of manufacturing ceramic and ceramic firing furnace
JP5811017B2 (en) Method for producing reduced iron
CN111315705A (en) Production of foamed sand by near infrared radiation
JP2003322467A (en) Drying method of refractory by microwave
JP2011169504A (en) Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace
JP4730882B2 (en) Carbon material raw material drying method and carbon material raw material drying furnace
JP2003139470A (en) Furnace wall structure for monolithic refractory drying furnace
JP4630111B2 (en) Refractory, manufacturing method thereof, and heating furnace
JP2006289886A (en) Washing method of tire mold and mold preheating device adapted thereto
RU2545939C1 (en) Method of microwave heat treatment of semi-finished products from composite materials based on organic thermosetting bonds
RU2535548C1 (en) Production of foam materials and production line to this end
JP2018080891A (en) Wall surface material and heat treat furnace
RU2382964C1 (en) Microwave drying plant for cylindrical logs and bar
JPH0873207A (en) Apparatus for producing active carbon