JPH04103724U - surface acoustic wave device - Google Patents

surface acoustic wave device

Info

Publication number
JPH04103724U
JPH04103724U JP149991U JP149991U JPH04103724U JP H04103724 U JPH04103724 U JP H04103724U JP 149991 U JP149991 U JP 149991U JP 149991 U JP149991 U JP 149991U JP H04103724 U JPH04103724 U JP H04103724U
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric substrate
surface acoustic
acoustic wave
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP149991U
Other languages
Japanese (ja)
Inventor
大輔 山崎
俊二 林
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to JP149991U priority Critical patent/JPH04103724U/en
Publication of JPH04103724U publication Critical patent/JPH04103724U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

(57)【要約】 【目的】 温度による周波数変化を抑えることができる
表面弾性波素子を実現する。 【構成】 圧電基板の同一面上に電極間ピッチが異なる
と共に電極膜厚の等しい複数の電極が並列して形成さ
れ、この複数の電極の内、第2番目以降の電極が形成さ
れた圧電基板部はそれぞれ電極が形成された部分を除い
た周囲を電極毎に削りしろを変えて削ることにより、第
1番目の電極が形成された圧電基板部と第2番目以降の
電極が形成された圧電基板部の電極周囲の圧電基板部と
に階段状の段差を付けたことを特徴としている。
(57) [Summary] [Purpose] To realize a surface acoustic wave device that can suppress frequency changes due to temperature. [Structure] A piezoelectric substrate in which a plurality of electrodes having different inter-electrode pitches and the same electrode film thickness are formed in parallel on the same surface of the piezoelectric substrate, and the second and subsequent electrodes among the plurality of electrodes are formed. The piezoelectric substrate portion on which the first electrode is formed and the piezoelectric substrate portion on which the second and subsequent electrodes are formed are made by cutting the surrounding area excluding the part where the electrode is formed with different cutting margins for each electrode. A feature is that a step-like step is provided between the substrate section and the piezoelectric substrate section around the electrode.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、発振器の信号源として利用される表面弾性波素子に関し、特に使用 温度範囲が広い場合でも、変化量の少ない周波数信号を出力できるようにした表 面弾性波素子に関するものである。 This invention relates to a surface acoustic wave device used as a signal source for an oscillator. A table that allows output of frequency signals with little variation even over a wide temperature range. This relates to a surface acoustic wave element.

【0002】0002

【従来の技術】[Conventional technology]

表面弾性波素子は圧電基板上に形成された励振電極によって電気信号を表面弾 性波に変換して基板表面を伝搬させるように構成したものであり、フィルタを初 めとして各種の応用がなされている。 A surface acoustic wave element transmits an electric signal to a surface acoustic wave using an excitation electrode formed on a piezoelectric substrate. It is configured to convert into a magnetic wave and propagate on the substrate surface, and the filter is used for the first time. Various applications have been made for this purpose.

【0003】 図3は表面弾性波素子の従来例を示す構成図である。図3において、11は共 振測定に対して弾性定数の良い、例えば水晶やLi b 3 (ニオブ酸リチウム )などから成る圧電基板、12は表面弾性波励振用の櫛形電極、13,14は表 面弾性波を効率良く反射して定在波を起こすための反射電極であり、櫛形電極1 2,反射電極13,14は圧電基板11の表面弾性波が伝搬する面にエッチング などの技術を用いて形成されている。FIG. 3 is a configuration diagram showing a conventional example of a surface acoustic wave device. In FIG. 3, 11 is a piezoelectric substrate made of crystal or LiNbO3 (lithium niobate) having a good elastic constant for resonance measurement, 12 is a comb-shaped electrode for surface acoustic wave excitation, 13 , 14 are reflective electrodes that efficiently reflect surface acoustic waves to generate standing waves, and the comb-shaped electrodes 12 and reflective electrodes 13 and 14 are formed by etching or other techniques on the surface of the piezoelectric substrate 11 through which the surface acoustic waves propagate. It is formed using

【0004】 このような構成において、図示しない信号源に接続された櫛形電極12により 圧電基板11上に表面弾性波を励起させ、反射電極13,14により表面弾性波 を効率良く反射して定在波を起こしている。この表面弾性波を用いた表面弾性波 素子にあっては、数十〜数百MHzという高い周波数で利用されており、その共振 周波数は櫛形電極12の電極間ピッチで決定されている。0004 In such a configuration, the comb-shaped electrode 12 connected to a signal source (not shown) A surface acoustic wave is excited on the piezoelectric substrate 11, and the surface acoustic wave is excited by the reflective electrodes 13 and 14. It reflects efficiently and creates standing waves. Surface acoustic waves using this surface acoustic wave Elements are used at high frequencies of tens to hundreds of MHz, and their resonance The frequency is determined by the pitch between the comb-shaped electrodes 12.

【0005】[0005]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかしながら、上記従来技術に示すように表面弾性波素子は圧電基板を用いた 素子であり、この圧電基板の膨脹係数および圧電定数がそれぞれに温度係数を持 つため、温度により周波数が変化するという課題があった。 However, as shown in the above-mentioned conventional technology, the surface acoustic wave device uses a piezoelectric substrate. The expansion coefficient and piezoelectric constant of this piezoelectric substrate each have their own temperature coefficients. Therefore, there was a problem that the frequency changed depending on the temperature.

【0006】 本考案は、上記従来技術の課題を踏まえて成されたものであり、一個の圧電基 板上に温度特性の異なる複数の表面弾性波素子を形成することにより、温度によ る周波数変化を抑えることができる表面弾性波素子を提供することを目的とした ものである。[0006] The present invention was developed based on the above-mentioned problems of the conventional technology. By forming multiple surface acoustic wave elements with different temperature characteristics on a plate, The aim is to provide a surface acoustic wave device that can suppress frequency changes. It is something.

【0007】[0007]

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための本考案の構成は、圧電基板の同一面上に電極間ピッ チが異なると共に電極膜厚の等しい複数の電極が並列して形成され、この複数の 電極の内、第2番目以降の電極が形成された圧電基板部はそれぞれ電極が形成さ れた部分を除いた周囲を電極毎に削りしろを変えて削ることにより、第1番目の 電極が形成された圧電基板部と第2番目以降の電極が形成された圧電基板部の電 極周囲の圧電基板部とに階段状の段差を付けたことを特徴とするものである。 The structure of the present invention to solve the above problem is to provide an inter-electrode pitch on the same surface of the piezoelectric substrate. A plurality of electrodes with different thicknesses and the same electrode film thickness are formed in parallel. Among the electrodes, the piezoelectric substrate portion on which the second and subsequent electrodes are formed is By changing the cutting margin for each electrode and cutting the surrounding area excluding the removed part, the first The voltage of the piezoelectric substrate portion where the electrode is formed and the piezoelectric substrate portion where the second and subsequent electrodes are formed is It is characterized by having a step-like step between the piezoelectric substrate portion around the pole.

【0008】[0008]

【作用】[Effect]

本考案によれば、異なる温度特性を持つ表面弾性波素子を同一基板上に形成し ている。したがって、温度範囲によって、表面弾性波素子を選択できるため、周 波数変化を抑えることができる。 According to the present invention, surface acoustic wave elements with different temperature characteristics are formed on the same substrate. ing. Therefore, since surface acoustic wave elements can be selected depending on the temperature range, Wave number changes can be suppressed.

【0009】[0009]

【実施例】【Example】

以下、本考案を図面に基づいて説明する。 図1は本考案の表面弾性波素子の一実施例を示す構成図であり、(イ)図は全 体構成図、(ロ)図は第1の表面弾性波共振子用電極が形成された圧電基板部の 断面図、(ハ)図は第2の表面弾性波共振子用電極が形成された圧電基板部の断 面図である。図1において、14(14a,14b)は水晶やLi b 3 (ニ オブ酸リチウム)などから成る圧電基板であり、この圧電基板14の同一面上に は電極間ピッチは異なるが電極膜厚の等しい第1,第2の表面弾性波共振子用電 極15,16が形成されている。また、第2の表面弾性波共振子用電極16が形 成された圧電基板部14bは第2の表面弾性波共振子用電極16が形成された部 分だけを残して、周囲が削られており、第1の表面弾性波共振子用電極15が形 成された圧電基板部14aと前記第2の表面弾性波共振子用電極16が形成され た圧電基板部14bの電極周囲の圧電基板部14bとに段差を付けている。Hereinafter, the present invention will be explained based on the drawings. FIG. 1 is a configuration diagram showing an embodiment of the surface acoustic wave device of the present invention, in which (a) is an overall configuration diagram, and (b) is a piezoelectric wave device on which a first surface acoustic wave resonator electrode is formed. A cross-sectional view of the substrate part, (c) is a cross-sectional view of the piezoelectric substrate part on which a second surface acoustic wave resonator electrode is formed. In FIG. 1, 14 (14a, 14b) is a piezoelectric substrate made of crystal, L i N b O 3 (lithium niobate), etc. On the same surface of this piezoelectric substrate 14, there are electrode films, although the pitch between the electrodes is different. First and second surface acoustic wave resonator electrodes 15 and 16 having the same thickness are formed. Further, the piezoelectric substrate portion 14b on which the second surface acoustic wave resonator electrode 16 is formed is shaved around the circumference, leaving only the portion where the second surface acoustic wave resonator electrode 16 is formed. The piezoelectric substrate portion 14b around the electrodes of the piezoelectric substrate portion 14a on which the first surface acoustic wave resonator electrode 15 is formed and the piezoelectric substrate portion 14b on which the second surface acoustic wave resonator electrode 16 is formed. There are steps.

【0010】 このような構成において、第1,第2の表面弾性波共振子用電極15,16に よる表面弾性波の動作は図3装置と同様であるため、その説明は省略するが、こ こで、図1(ロ)および(ハ)に示すように、水晶からなる同一圧電基板14上 に形成された電極膜厚hm が同じで電極間ピッチが異なる2種類の表面弾性波共 振子用電極15,16において、それぞれ電極間ピッチをL1 ,L2 、共振周波 数をf1 ,f2 、表面波速度をv1 ,v2 とすると、次式が成り立つ。 f1 =v1 /L1 2 =v2 /L2 In such a configuration, the operation of the surface acoustic wave by the first and second surface acoustic wave resonator electrodes 15 and 16 is the same as that of the device shown in FIG. , as shown in FIGS. 1(b) and 1(c), two types of surface acoustic wave resonator electrodes are formed on the same piezoelectric substrate 14 made of quartz and have the same electrode film thickness h m but different interelectrode pitches. 15 and 16, the following equation holds true when the interelectrode pitch is L 1 and L 2 , the resonance frequency is f 1 and f 2 , and the surface wave velocity is v 1 and v 2 . f 1 =v 1 /L 1 f 2 =v 2 /L 2

【0011】 ここで、圧電基板14の材料としてSTカット水晶基板を用いると、周波数温 度特性は、頂点温度を持った2次曲線で近似できる。図1(ハ)に示すように、 表面弾性波共振子用電極16の周囲の圧電基板をhg だけ削った場合、表面弾性 波共振子用電極15,16の頂点温度T1 ,T2 は次のようになる。[0011]Here, if an ST-cut crystal substrate is used as the material of the piezoelectric substrate 14, the frequency-temperature characteristic can be approximated by a quadratic curve having a vertex temperature. As shown in FIG. 1(C), when the piezoelectric substrate around the surface acoustic wave resonator electrode 16 is shaved by h g , the peak temperatures T 1 and T 2 of the surface acoustic wave resonator electrodes 15 and 16 are as follows. It will look like this:

【0012】 表面弾性波共振子用電極15,16の電極間ピッチをL1 >L2 とすると、削 りしろhg =0の場合では、同一水晶、同一電極膜厚のため、表面波速度はv1 =v2 となり、図2(イ)に示すように、共振周波数はf1 <f2 、頂点温度は T1 =T2 となる。[0012] When the pitch between the electrodes 15 and 16 for the surface acoustic wave resonator is set to L 1 >L 2 , when the cutting margin h g =0, the surface wave velocity is the same because of the same crystal and the same electrode film thickness. v 1 =v 2 , and as shown in FIG. 2(a), the resonance frequency is f 1 <f 2 and the peak temperature is T 1 =T 2 .

【0013】 一方、削りしろhg を削った場合では、質量付加効果により、表面波速度はv 1 >v2 、頂点温度はT1 >T2 となるため、共振周波数がf1 =f2 となるよ うに削りしろhg を削った場合、図2(ロ)に示すようになり、共振周波数f1 とf2 を切り換えることにより、より広い温度範囲で周波数変化を小さく抑える ことができる。[0013] On the other hand, sharpen itgIn the case of cutting, the surface wave velocity becomes v due to the mass addition effect. 1 >v2, the peak temperature is T1>T2Therefore, the resonant frequency is f1=f2It will be Shave the sea urchingIf you shave off the resonant frequency f1 and f2By switching , frequency changes can be kept small over a wider temperature range. be able to.

【0014】 なお、上記実施例において、圧電基板14上に形成した表面弾性波共振子用電 極は2つに限るものではなく、電極間ピッチは異なるが電極膜厚の等しい3つ以 上の表面弾性波共振子用電極を電極周囲の圧電基板部にそれぞれ段差を設けて構 成しても良く、更に広い温度範囲で使用することができる。[0014] In the above embodiment, the surface acoustic wave resonator electrode formed on the piezoelectric substrate 14 The number of electrodes is not limited to two, but three or more with different electrode pitches but the same electrode film thickness. The surface acoustic wave resonator electrodes above are constructed by providing steps on the piezoelectric substrate around the electrodes. It can be used in a wider temperature range.

【0015】[0015]

【考案の効果】[Effect of the idea]

以上、実施例と共に具体的に説明したように、本考案によれば、異なる温度特 性を持つ表面弾性波素子を同一基板上に形成している。したがって、温度範囲に よって表面弾性波素子を選択できるため、周波数変化を抑える効果を有する表面 弾性波素子を実現できる。 As specifically explained above together with the embodiments, according to the present invention, different temperature characteristics can be achieved. surface acoustic wave elements with characteristics are formed on the same substrate. Therefore, in the temperature range Therefore, surface acoustic wave elements can be selected, so surface acoustic wave elements can be selected that have the effect of suppressing frequency changes. Acoustic wave elements can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の表面弾性波素子の一実施例を示す構成
図である。
FIG. 1 is a configuration diagram showing an embodiment of a surface acoustic wave device of the present invention.

【図2】図1装置の動作を説明するための図である。FIG. 2 is a diagram for explaining the operation of the device shown in FIG.

【図3】表面弾性波素子の従来例を示す構成図である。FIG. 3 is a configuration diagram showing a conventional example of a surface acoustic wave element.

【符号の説明】[Explanation of symbols]

14,14a,14b 圧電基板 15,16 表面弾性波共振子用電極 14, 14a, 14b piezoelectric substrate 15,16 Electrode for surface acoustic wave resonator

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 圧電基板の同一面上に電極間ピッチが異
なると共に電極膜厚の等しい複数の電極が並列して形成
され、この複数の電極の内、第2番目以降の電極が形成
された圧電基板部はそれぞれ電極が形成された部分を除
いた周囲を電極毎に削りしろを変えて削ることにより、
第1番目の電極が形成された圧電基板部と第2番目以降
の電極が形成された圧電基板部の電極周囲の圧電基板部
とに階段状の段差を付けたことを特徴とする表面弾性波
素子。
[Claim 1] A plurality of electrodes having different inter-electrode pitches and the same electrode film thickness are formed in parallel on the same surface of a piezoelectric substrate, and among the plurality of electrodes, the second and subsequent electrodes are formed. By cutting the circumference of the piezoelectric substrate part except for the part where each electrode is formed, changing the cutting allowance for each electrode,
A surface acoustic wave characterized by providing a step-like step between the piezoelectric substrate portion on which the first electrode is formed and the piezoelectric substrate portion around the electrode on which the second and subsequent electrodes are formed. element.
JP149991U 1991-01-22 1991-01-22 surface acoustic wave device Withdrawn JPH04103724U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP149991U JPH04103724U (en) 1991-01-22 1991-01-22 surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP149991U JPH04103724U (en) 1991-01-22 1991-01-22 surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPH04103724U true JPH04103724U (en) 1992-09-07

Family

ID=31728881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP149991U Withdrawn JPH04103724U (en) 1991-01-22 1991-01-22 surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH04103724U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103621A (en) * 2008-10-21 2010-05-06 Murata Mfg Co Ltd Elastic wave apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103621A (en) * 2008-10-21 2010-05-06 Murata Mfg Co Ltd Elastic wave apparatus

Similar Documents

Publication Publication Date Title
Plessky et al. Laterally excited bulk wave resonators (XBARs) based on thin Lithium Niobate platelet for 5GHz and 13 GHz filters
CN1902817B (en) Boundary acoustic wave device
Assila et al. High-frequency resonator using A 1 Lamb wave mode in LiTaO 3 plate
JPH10233645A (en) Surface acoustic wave device
EP0034351B1 (en) Surface acoustic wave device
JPS60126907A (en) Single response composite piezoelectric oscillating element
JPH0232807B2 (en)
JPH0213488B2 (en)
CN102084590A (en) HBAR resonator with a high level of integration
JPH11340775A (en) Piezoelectric oscillator
CH607880B (en) PIEZO-ELECTRIC RESONATOR.
JPH04103724U (en) surface acoustic wave device
JPS6357967B2 (en)
JPS5930332B2 (en) surface acoustic wave device
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JPH10327038A (en) Piezoelectric vibrator
JPS6173409A (en) Elastic surface wave device
JPS59213A (en) Surface acoustic wave device
JP3201088B2 (en) Surface acoustic wave resonator
JPH03128517A (en) Surface acoustic wave resonator
JPS594309A (en) Surface acoustic wave device
JPH10126208A (en) Surface acoustic wave device
JPS5837150Y2 (en) piezoelectric crystal resonator
JPH0537533Y2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19950518