JPH04103311A - Mold clamping force adjusting method - Google Patents

Mold clamping force adjusting method

Info

Publication number
JPH04103311A
JPH04103311A JP22114890A JP22114890A JPH04103311A JP H04103311 A JPH04103311 A JP H04103311A JP 22114890 A JP22114890 A JP 22114890A JP 22114890 A JP22114890 A JP 22114890A JP H04103311 A JPH04103311 A JP H04103311A
Authority
JP
Japan
Prior art keywords
mold
temperature
clamping force
stored
molding cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22114890A
Other languages
Japanese (ja)
Inventor
Masato Yamamura
正人 山村
Kunio Kojima
小嶋 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP22114890A priority Critical patent/JPH04103311A/en
Publication of JPH04103311A publication Critical patent/JPH04103311A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1751Adjustment means allowing the use of moulds of different thicknesses

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To retain the mold clamping force of an injection molding machine constant by sensing and storing the mold temperature at the time of adjusting mold thickness, comparing said mold temperature with the mold temperature at the time of mold thickness adjustment in every cycle after starting molding cycle, adjusting the mold thickness whenever the same is more than the set temperature difference and continuing the molding cycle. CONSTITUTION:When a new mold is mounted, the mold clamping force and the temperature difference (t) allowable to the mold to be generated by the temperature variation is set by CRT/MDI20, and the mold touching position sensing process is carried out by a CPU 22 for PMC and stored in a touching position storing register, and cores measured by a pair of thermocouples 9a and 9b and stored in a common RAM 15 and the existing average mold temperature Tp of cavity plates 7a and 7b are read in and stored in a mold temperature storing first register to complete the mold thickness adjusting process. When the molding cycle is started, the average mold temperature Tn of both plates are stored in a mold temperature storing second register, and the temperature variation amount Tn-Tp=DELTAT of a mold 7 is computed and stored in the temperature variation storing register. If DELTAT>t is indicated, the mold thickness adjusting process is carried out anew. The mold clamping force is retained constant by said arrangement without anything to do with the temperature variation of the mold.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、射出成形機の型締力を一定に維持する型締力
調整方式に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a mold clamping force adjustment method for maintaining a constant mold clamping force of an injection molding machine.

従来の技術 射出成形機の型締力は、搭載した金型がロックアツプさ
れた状態で金型に作用する圧縮力であり、この圧縮力は
金型タッチ位置から、更に、可動プラテンを固定プラテ
ンの方向に微小移動させることによって得られ、タイバ
ーの微小な伸びによって維持される。
The mold clamping force of conventional injection molding machines is the compressive force that acts on the mold when the mounted mold is locked up, and this compressive force is applied from the mold touch position to the movable platen and the fixed platen. It is obtained by slight movement in the direction and maintained by minute elongation of the tie bar.

つまり、型締力はロックアツプ時に生ずるタイバーの伸
びによって一義的に決定される値であり、実際に型締力
を調整する場合には、金型タッチ位置からロックアツプ
位置に至るプラテンの微小な移動量(追込み量)を変化
させてタイバーの伸びを調整することで行う。
In other words, the mold clamping force is a value uniquely determined by the elongation of the tie bars that occurs during lock-up, and when actually adjusting the mold clamping force, it is necessary to adjust the minute amount of movement of the platen from the mold touch position to the lock-up position. This is done by changing the amount of push-in and adjusting the extension of the tie bar.

そして、数値制御袋acNc装置)を備え自動化された
射出成形機では、設定された型締力に基づいた追込み量
を記憶し、また、金型を搭載して型締力を設定(入力)
すると、NC装置がプログラムにしたかって型厚調整手
段を作動し、金型タッチ位置を検出してこれを記憶する
In an automated injection molding machine equipped with a numerically controlled bag (acNc device), the amount of push-in based on the set mold clamping force is memorized, and the mold clamping force is set (input) when the mold is mounted.
Then, the NC device operates the mold thickness adjusting means according to the program, detects the mold touch position, and stores it.

以下、記憶された金型タッチ位置と追込み量に従って型
締動作が行なわれる。
Thereafter, the mold clamping operation is performed according to the stored mold touch position and push-in amount.

ところが、同じ金型であっても型厚は温度変化によって
生ずる金型の膨張、収縮により刻々と変化し、射出成形
機に設定された金型タッチ位置と追込み量が型厚調整時
にセットされた一定の値のままであると、金型の温度が
型厚調整時に比べて低下した場合には型締力が不足する
一方、金型の温度が型厚調整時に比べて上昇した場合に
は型締力が増加し、型締力を一定に保てないという問題
があった。
However, even if the mold is the same, the mold thickness changes from moment to moment due to expansion and contraction of the mold caused by temperature changes, and the mold touch position and push-in amount set on the injection molding machine are not set when adjusting the mold thickness. If the value remains constant, the mold clamping force will be insufficient if the mold temperature drops compared to when adjusting the mold thickness, but if the mold temperature rises compared to when adjusting the mold thickness, the mold clamping force will be insufficient. There was a problem in that the clamping force increased and the mold clamping force could not be kept constant.

このため、例えば、長時間に亘って射出成形機の無人運
転を行った場合等、外気温の影響で型温に変化が生じる
と型締力が変わるために成形不良をおこすことがあった
For this reason, when the mold temperature changes due to the influence of outside air temperature, for example, when the injection molding machine is operated unattended for a long period of time, the mold clamping force changes and molding defects may occur.

発明が解決しようとする課題 この発明は、射出成形機の型締力を常に一定に維持する
ことができる型締力調整方式の提供を課題とする。
Problems to be Solved by the Invention An object of the present invention is to provide a mold clamping force adjustment method that can always maintain the mold clamping force of an injection molding machine constant.

問題点を解決するための手段 自動型厚調整手段を備えた型締機構に金型温度を検出す
る型温検出手段を設ける。
Means for Solving the Problems A mold temperature detection means for detecting the mold temperature is provided in a mold clamping mechanism equipped with an automatic mold thickness adjustment means.

型厚調整時に、そのときの金型温度を検出し記憶する。When adjusting mold thickness, the mold temperature at that time is detected and stored.

成形サイクル開始後は、各成形サイクル毎に上記型温検
出手段により金型の温度を検出し、これと型厚調整時に
記憶した金型温度を比較し、温度差が設定温度差(1)
以上であるか否か判定する。
After the molding cycle starts, the temperature of the mold is detected by the mold temperature detection means for each molding cycle, and this is compared with the mold temperature memorized when adjusting the mold thickness, and the temperature difference is determined as the set temperature difference (1).
It is determined whether or not the above is satisfied.

設定温度差(1)内にあれば成形サイクルをそのまま継
続し、設定値以上であれば上記と同様な自動型厚調整を
新たに行い、その後に上記と同様に成形サイクルを継続
する。
If the temperature difference is within the set temperature difference (1), the molding cycle is continued as is, and if it is above the set value, automatic mold thickness adjustment similar to the above is performed anew, and then the molding cycle is continued in the same manner as above.

作用 温度検出手段と記憶手段は、型厚調整時と今回の金型温
度の差分を得るデータを提供する。
The operating temperature detection means and the storage means provide data for obtaining the difference in mold temperature between the mold thickness adjustment time and the current mold temperature.

新たな自動型厚調整は、型締力を設定した値に修正する
The new automatic mold thickness adjustment modifies the mold clamping force to the set value.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

第2図は電動式射出成形機の要部を示す図で、符号3は
リアプラテン、符号8は固定プラテンであり、両プラテ
ン間は弾性材料から成るタイバー5.5(上下、左右に
あり計4本)によって連結されている。
Figure 2 is a diagram showing the main parts of an electric injection molding machine, where numeral 3 is a rear platen, numeral 8 is a fixed platen, and between both platens there are tie bars 5.5 (top, bottom, left and right, in total 4 tie bars made of elastic material). books).

リアプラテン3に固設されたクランプ軸用のサーボモー
タ2のモータ軸にはボールネジ4が固着され、該ボール
ネジ4の回転により可動プラテン6をタイバー5,5に
沿って摺動させ、型閉じ。
A ball screw 4 is fixed to the motor shaft of a servo motor 2 for a clamp shaft fixed to the rear platen 3, and the rotation of the ball screw 4 causes the movable platen 6 to slide along the tie bars 5, 5, thereby closing the mold.

型開き、型締、型厚調整の各動作が行われる。Mold opening, mold clamping, and mold thickness adjustment operations are performed.

なお、第2図においては、射出成形機のクランプ軸に関
するものだけを示しているが、射出軸。
In addition, in FIG. 2, only the clamp shaft of the injection molding machine is shown, but the injection shaft.

スクリュー回転軸、エジェクタ軸等は従来と同様の構成
を有する。
The screw rotation shaft, ejector shaft, etc. have the same configuration as conventional ones.

符号7は可動プラテン6に装着されたコアプレート7a
と固定プラテン8に装着されたキャビティプレート7b
とから成る金型であり、コアプレート7aとキャビティ
プレート7bにはそれぞれ型温測定手段の一部を構成す
る熱電対9a、  9bが装着され、各熱電対の出力端
子はA/D変換器16を介して入力回路17に接続され
ている。
Reference numeral 7 denotes a core plate 7a attached to the movable platen 6.
and the cavity plate 7b attached to the fixed platen 8.
The core plate 7a and the cavity plate 7b are each equipped with thermocouples 9a and 9b, which constitute a part of the mold temperature measuring means, and the output terminal of each thermocouple is connected to an A/D converter 16. It is connected to the input circuit 17 via.

また、制御系要部を示すブロック図において、符号13
はNC用のマイクロプロセッサ(以下、CPUという)
、符号22はプログラマブルマシンコントローラ(以下
、PMCという)用のCPUである。PMC用CPU2
2には射出成形機のシーケンス動作を制御するシーケン
スプログラム等を記憶したROM23が接続され、又、
データの一時記憶等に利用されるRAM24が接続され
ている。NC用CPU13には、射出成形機を全体的に
制御する管理プログラムを記憶したROM14及び射出
用、クランプ用、スクリュー回転用7エジエクタ用等の
各軸サーボモータを駆動制御するサーボ回路10がサー
ボインタフェース11を介して接続されている。
In addition, in the block diagram showing the main parts of the control system, reference numeral 13
is a microprocessor for NC (hereinafter referred to as CPU)
, 22 is a CPU for a programmable machine controller (hereinafter referred to as PMC). CPU2 for PMC
2 is connected to a ROM 23 which stores sequence programs etc. for controlling sequence operations of the injection molding machine, and
A RAM 24 used for temporary storage of data is connected. The NC CPU 13 has a servo interface that includes a ROM 14 that stores a management program that controls the injection molding machine as a whole, and a servo circuit 10 that drives and controls servo motors for each axis such as those for injection, clamp, and seven screw rotation ejectors. 11.

なお、第2図では、クランプ軸用のサーボモータ2のサ
ーボ回路10のみを示しており、該サーボモータ2には
モータの回転を検出するパルスコーダ1が装着され、サ
ーボ回路10に信号が入力されるよう接続されている。
Note that FIG. 2 only shows the servo circuit 10 of the servo motor 2 for the clamp shaft, and the servo motor 2 is equipped with a pulse coder 1 that detects the rotation of the motor, and signals are input to the servo circuit 10. connected so that

また、符号15は不揮発性の共有RAMで、射出成形機
の各動作を制御するNCプログラム等を記憶するメモリ
部と各種設定値、パラメータ、マクロ変数用のメモリ部
を有する。
Reference numeral 15 denotes a nonvolatile shared RAM, which has a memory section for storing NC programs and the like for controlling each operation of the injection molding machine, and a memory section for various setting values, parameters, and macro variables.

符号18はバスアービタコントローラ(以下、BACと
いう)で、NC用CPU13及びPMC用CPU22.
共有RAMI 5.入力回路17゜出力回路21の各バ
スが接続され、更にオペレータパネルコントローラ19
(以下、oPCという)を介してCRT表示装置付き手
動データ入力装置(以下、CRT/MDIという)20
が接続され、該BAC18によって使用するバスが制御
されるようになっている。
Reference numeral 18 is a bus arbiter controller (hereinafter referred to as BAC), which includes an NC CPU 13 and a PMC CPU 22 .
Shared RAMI 5. Each bus of the input circuit 17 and output circuit 21 is connected, and furthermore, the operator panel controller 19
Manual data input device (hereinafter referred to as CRT/MDI) 20 with a CRT display device (hereinafter referred to as CRT/MDI)
is connected, and the bus to be used is controlled by the BAC 18.

符号12は、NC用CPUI 3にバス接続されたRA
Mでデータの一時記憶等に利用されるものである。
Reference numeral 12 is an RA connected to the NC CPUI 3 by bus.
M is used for temporary storage of data.

以上のような構成において、射出成形機は共有RAM1
5に格納された射出成形機の各動作を制御するNCプロ
グラム及びROM23に格納されているシーケンスプロ
グラムにより、PMC用CPU22がシーケンス制御を
行いながら、NC用CPUI 3が射出成形機の制御を
行うため、射8成形機の各軸のサーボ回路1oヘサーボ
インタフエース11を介してパルス分配し、射8成形機
を制御するもので、各軸のサーボ回路10は、サーボイ
ンタフェース11を介して受けた分配パルスからパルス
コーダ1からのパルスを減じ、指令位置に対する現在位
置のエラー量を出力するエラーレジスタによって、現在
位置と指令位置とを比較し、サーボモータに流す電流を
制御し、出力トルクを制御するようになっている。
In the above configuration, the injection molding machine uses shared RAM1
The NC CPU 3 controls the injection molding machine while the PMC CPU 22 performs sequence control based on the NC program that controls each operation of the injection molding machine stored in the CPU 5 and the sequence program stored in the ROM 23. The servo circuit 10 of each axis distributes pulses to the servo circuit 1o of each axis of the injection molding machine via the servo interface 11 to control the injection molding machine. Subtracts the pulse from pulse coder 1 from the distributed pulse and outputs the error amount of the current position relative to the command position.The current position is compared with the command position, and the current flowing to the servo motor is controlled to control the output torque. It looks like this.

以上の構成において、新しい金型を搭載した場合には、
CRT/MD I 20より型締力(型締力より型締力
付与移動量をPMC用CPU22で計算していない場合
は型締力付与移動量、すなわち、追込み量)および温度
変化に伴う金型の練炭形に関し、成形上で許容し得る温
度差tを設定したあと、策1図(a)に示す型厚調整処
理(初回)を行う。
In the above configuration, when a new mold is installed,
From the CRT/MD I 20, the mold clamping force (if the PMC CPU 22 does not calculate the clamping force application movement amount from the mold clamping force, the mold clamping force application movement amount, that is, the push-in amount) and the mold change due to temperature change. Regarding the briquette shape, after setting an allowable temperature difference t for forming, perform the mold thickness adjustment process (first time) shown in Figure 1 (a).

なお、上記の設定温度差(1)は金型の大きさ、形状あ
るいは成形品に求められる仕上り精度によって異なり、
−律ではないが、例えば2〜5℃程度である。
Note that the above set temperature difference (1) varies depending on the size and shape of the mold or the finishing accuracy required for the molded product.
- Although not critical, it is, for example, about 2 to 5°C.

PMC用CPU22は、まず、従来と同様に、金型タッ
チ位置検出処理を行い、タッチ位置Pをタッチ位置記憶
レジスタR(p)に記憶する(ステップ5QL)。
First, the PMC CPU 22 performs mold touch position detection processing as in the prior art, and stores the touch position P in the touch position storage register R(p) (step 5QL).

次に、熱電対9a、9bによって測定されA/D変換器
16を介してデジタル化され入力回路17、BAC18
を介して共有RAM15に記憶されたコアプレート7a
’及びキャビティプレート7bの現在の型温Tl、T2
を読込み(ステップ5O2)、コアプレート7aの型温
T1とキャビティプレート7bの型温T2を基に単純平
均を算出して金型7の現在の型温Tpと見做し、金型7
の型温を配憶する型温記憶第2レジスタR(Tp)に記
憶する(ステップ503)。
Next, it is measured by the thermocouples 9a and 9b and is digitized via the A/D converter 16 and input to the input circuit 17 and the BAC 18.
The core plate 7a stored in the shared RAM 15 via
' and the current mold temperature Tl, T2 of the cavity plate 7b
is read (step 5O2), and a simple average is calculated based on the mold temperature T1 of the core plate 7a and the mold temperature T2 of the cavity plate 7b, which is regarded as the current mold temperature Tp of the mold 7.
The mold temperature is stored in the second mold temperature storage register R (Tp) (step 503).

このようにして、型厚調整処理は終了する。In this way, the mold thickness adjustment process ends.

そして、成形サイクルが開始されると、第1図(b)に
示すフローチャートの型厚修正処理を、各成形サイクル
の最初に行う。
When the molding cycle is started, the mold thickness correction process shown in the flowchart shown in FIG. 1(b) is performed at the beginning of each molding cycle.

PMC用CPU22は、まず、熱電対9a、9bによっ
て測定されA/D変換器16を介してデジタル化され入
力回路17.8AC18を介して共有RAM15に記憶
されたコアプレート7a及びキャビティプレー)7bの
現在の型温Tnl。
The PMC CPU 22 first reads the values of the core plate 7a and cavity plate 7b, which are measured by the thermocouples 9a and 9b, digitized via the A/D converter 16, and stored in the shared RAM 15 via the input circuit 17.8AC18. Current mold temperature Tnl.

Tn2を読込み(ステップ5IO)、コアプレー)7a
の型温Tnlとキャビティプレート7bの型温Tn2を
基に単純平均を算出して金型7の現在の型温Tnと見做
し、金型7の型温を記憶する型温記憶第2レジスタR(
Tn)に記憶する(ステップ511)。
Load Tn2 (step 5IO), core play) 7a
A second mold temperature storage register stores the mold temperature of the mold 7 by calculating a simple average based on the mold temperature Tnl of the mold temperature Tnl and the mold temperature Tn2 of the cavity plate 7b and considering it as the current mold temperature Tn of the mold 7. R(
Tn) (step 511).

次に、今回測定し記憶された金型7の型温Tnから初回
の型厚調整時に測定し記憶された金型7の型温Tpを減
じた値、即ち、初回型厚調整時から今回の成形サイクル
に至る間の金型7の温度変化量ΔTを演算し、金型7の
温度変化量を記憶する温度変化量記憶レジスタR(ΔT
)に記憶する(ステップ512)。
Next, the value obtained by subtracting the mold temperature Tp of the mold 7 measured and stored at the time of the first mold thickness adjustment from the mold temperature Tn of the mold 7 measured and stored this time, that is, the value obtained by subtracting the mold temperature Tp of the mold 7 measured and stored at the time of the first mold thickness adjustment. A temperature change amount storage register R (ΔT
) (step 512).

次に、ステップS12で求めた金型の温度変化量ΔTが
設定温度差(1)より大であるか否かを判別しくステッ
プ513)、金型7の温度変化量ΔT>tであって、前
回の成形サイクルから今回の成形サイクルに至る間に金
型7に設定温度差以上の温度変化が生じていれば、第1
図(a)の自動型厚調整処理と同様の処理を新たに行う
(ステップ14)。
Next, it is determined whether the temperature change amount ΔT of the mold obtained in step S12 is larger than the set temperature difference (1) (step 513), and the temperature change amount ΔT>t of the mold 7, If a temperature change greater than the set temperature difference has occurred in the mold 7 between the previous molding cycle and the current molding cycle, the first
A process similar to the automatic mold thickness adjustment process shown in FIG. 3(a) is newly performed (step 14).

これにより、型温記憶第ルジスタR(Tp)における前
回の成形サイクルまでの型温は今回の型厚調整時の型温
Tnに書き換えられ、前回との温度変化に対応した新し
い金型タッチ位11Epが設定される。
As a result, the mold temperature up to the previous molding cycle in the mold temperature memory register R (Tp) is rewritten to the mold temperature Tn at the time of the current mold thickness adjustment, and a new mold touch position 11Ep corresponding to the temperature change from the previous time is rewritten. is set.

そして、この後、追込み量を付加してロックアツプ処理
を行い、以後、射出、保圧、冷却、計量の成形サイクル
の処理が行なわれる。
Then, a lock-up process is performed by adding a push-in amount, and thereafter, a molding cycle process of injection, pressure holding, cooling, and metering is performed.

次の成形サイクルでも同様に型厚修正処理が行われ、前
回の型厚調整時から今回の成形サイクルに至る間の金型
7の温度変化量ΔTが設定値以上であるときに、再び自
動型調整が行われ、型厚か現時点における実際の型厚に
修正される。
The mold thickness correction process is performed in the same way in the next molding cycle, and when the temperature change ΔT of the mold 7 from the previous mold thickness adjustment to the current molding cycle is greater than or equal to the set value, the automatic mold An adjustment is made to correct the mold thickness to the current actual mold thickness.

なお、ステップ13において△T≦tの場合は新たに自
動型厚調整を行うことな(、成形サイクルが継続される
Note that if ΔT≦t in step 13, no new automatic mold thickness adjustment is performed (and the molding cycle is continued).

以上のように、成形サイクルの型締処理において追込み
を開始する位置、即ち、金型タッチ位置が金型の温度変
化に伴って自動的に補正されるため、設定された追込み
量を付加することで、型締力を常に一定に保つことがで
きる。
As described above, the position at which the push-in starts in the mold clamping process of the molding cycle, that is, the mold touch position, is automatically corrected according to the temperature change of the mold, so the set push-in amount can be added. Therefore, the mold clamping force can always be kept constant.

なお、上述の型厚修正処理を実行するタイミングは型締
処理実行以前であればどこでもよいが型閉開始直前に行
われることが最適である。
Note that the above-described mold thickness correction process may be performed at any time before the mold clamping process is performed, but it is optimal to perform the mold thickness correction process immediately before the start of mold closing.

また、上記実施例では、直圧式の型締装置の例を示した
が、クランク式、トグル式など、リンク式型締装置の場
合には、自動型厚調整の際に、リンク機構をロックアツ
プ前の金型タッチ状態にして(追込み量に相当する伸長
量を残して)、サーボモーター2に変わる型厚調整用サ
ーボモーター31(第1図)を駆動し、金型タッチ位置
までリアプラテン3の位置を補正するようにすればよい
In addition, in the above embodiment, an example of a direct pressure type mold clamping device was shown, but in the case of a link type mold clamping device such as a crank type or a toggle type, the link mechanism is closed before locking up during automatic mold thickness adjustment. When the mold is touched (leaving an extension amount equivalent to the amount of drive-in), drive the mold thickness adjustment servo motor 31 (Fig. 1), which replaces the servo motor 2, and move the rear platen 3 to the mold touch position. All you have to do is correct it.

上記モーター31はインダクションモータでもよく、こ
の場合の金型タッチまでの回転量はタイマーで設定され
る。
The motor 31 may be an induction motor, and in this case, the amount of rotation until the mold touches is set by a timer.

更に、上記実施例においては、ステップ812からステ
ップS14の処理において、前回の型厚調整時に測定し
た型温と今回の成形サイクル時に測定した型温との差を
求めることで処理を進めているが、初回の型厚調整処理
で求めた型温Tpと各成形サイクル時に測定した型温T
nとの差ΔTを求めて同様な処理を進めても良い。
Furthermore, in the above embodiment, in the processing from step 812 to step S14, the processing is proceeded by determining the difference between the mold temperature measured during the previous mold thickness adjustment and the mold temperature measured during the current molding cycle. , the mold temperature Tp obtained in the first mold thickness adjustment process and the mold temperature T measured during each molding cycle.
Similar processing may be performed by calculating the difference ΔT from n.

しかし、この場合、初回の型厚調整処理時を金型温度が
熱平衡状態となった後に行って、金型温度が不安定なた
めに生じる当初の頻繁な型厚調整作動を避けるようにし
た方が好ましいことがある。
However, in this case, it is recommended to carry out the initial mold thickness adjustment process after the mold temperature has reached a thermal equilibrium state to avoid frequent initial mold thickness adjustment operations that occur due to the instability of the mold temperature. is sometimes preferable.

発明の効果 本発明によれば、金型の温度変化に関係なく型締力が常
に一定に保たれるので、射出成形機に搭載した金型が熱
平衡の状態に達して金型の寸法が安定するのを待って型
厚調整を行う必要はなくなり、金型温度の変化が成形条
件に影響を与えないような樹脂を用いて成形作業を行う
場合であれば、射出成形機に金型を搭載して型厚調整を
行った後、直ちに成形作業を開始することができ作業の
能率が向上する。
Effects of the Invention According to the present invention, the mold clamping force is always kept constant regardless of changes in the temperature of the mold, so the mold mounted on the injection molding machine reaches a state of thermal equilibrium and the dimensions of the mold are stabilized. There is no longer any need to wait for the mold thickness to be adjusted, and if molding is performed using a resin where changes in mold temperature do not affect molding conditions, the mold can be mounted on the injection molding machine. After adjusting the mold thickness, molding work can be started immediately, improving work efficiency.

また、外気の温度変化等の外的要因によって金型に温度
変化が生じた場合であっても、型締力は常に一定に保た
れるので、例えば、長時間に亘って射出成形機の無人運
転を行っている最中に気温が低下して金型が収縮した場
合であっても、従来のように型締力が低下することはな
く、パリ発生等の重大な事故を未然に防止することが可
能となり無人運転による成形作業の信頼性が向上する。
In addition, even if the temperature of the mold changes due to external factors such as changes in the temperature of the outside air, the mold clamping force is always kept constant. Even if the mold shrinks due to a drop in temperature during operation, the mold clamping force will not decrease like in the past, preventing serious accidents such as cracking. This makes it possible to improve the reliability of molding operations through unmanned operation.

さらに、金型に設定温度差以上の温度変化があった場合
に自動型厚調整によって直接に金型タッチ位置を見つけ
る型厚調整を行うので、金型の熱膨張率からその伸び量
を算出し、これにより金型タッチ位置を修正するなどの
面倒な処理を必要としないから、型厚修正処理が速く、
実際的でしかも確実である。
Furthermore, if there is a temperature change in the mold that exceeds the set temperature difference, automatic mold thickness adjustment will directly find the mold touch position, so the amount of elongation can be calculated from the coefficient of thermal expansion of the mold. This eliminates the need for troublesome processes such as correcting the mold touch position, so the mold thickness correction process is fast.
It's practical and certain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例における型厚調整処理
のフローチャート、第1図(b)は型厚修正処理を示す
フローチャート、第2図は同実施例のブロック図である
。 1・・・パルスコーダ、2・・・クランプ軸用サーボモ
ータ、3・・・リアプラテン、4・・・ボールネジ、5
・・・タイバー、6・・・可動プラテン、7・・・金型
、7a・・・コアプレート、7b・・・キャビティプレ
ート、8・・・固定プラテン、9a、9b・・・熱電対
、10・・・サーボ回路、11・・・サーボインタフェ
ース、12.24・・・RAM、13・・・NC用マイ
クロプロセッサ、14.23・・・ROM、15・・・
共有RAM。 16・・・A/D変換器、17・・・入力回路、18・
・・バスアービタコントローラ、19・・・オペレータ
コントロールパネル、2o・・・CRT表示装置付き手
動データ入力装置、21由出力回路、22・・・プログ
ラマブルマシンコントローラ用CPtJ0第1図(Q)
FIG. 1(a) is a flowchart of mold thickness adjustment processing in one embodiment of the present invention, FIG. 1(b) is a flowchart showing mold thickness correction processing, and FIG. 2 is a block diagram of the same embodiment. 1... Pulse coder, 2... Servo motor for clamp axis, 3... Rear platen, 4... Ball screw, 5
... Tie bar, 6... Movable platen, 7... Mold, 7a... Core plate, 7b... Cavity plate, 8... Fixed platen, 9a, 9b... Thermocouple, 10 ... Servo circuit, 11... Servo interface, 12.24... RAM, 13... NC microprocessor, 14.23... ROM, 15...
Shared RAM. 16... A/D converter, 17... Input circuit, 18.
... Bus arbiter controller, 19... Operator control panel, 2o... Manual data input device with CRT display, 21 Output circuit, 22... CPtJ0 for programmable machine controller Figure 1 (Q)

Claims (2)

【特許請求の範囲】[Claims] (1)自動型厚調整手段を備えた型締機構であって、金
型温度を検出する型温検出手段を設け、型厚調整時に、
そのときの金型温度を検出して記憶し、成形サイクル開
始後は、各成形サイクル毎に金型の温度を検出して、そ
の温度と前回の型厚調整時における金型温度を比較し、
その差が設定温度差(t)以上である時、新たに上記と
同様の型厚調整を行った後、上記同様に成形サイクルを
継続することを特徴とした型締力調整方式。
(1) A mold clamping mechanism equipped with an automatic mold thickness adjustment means, which is equipped with a mold temperature detection means to detect the mold temperature, and when adjusting the mold thickness,
The mold temperature at that time is detected and stored, and after the molding cycle starts, the mold temperature is detected for each molding cycle, and the temperature is compared with the mold temperature at the previous mold thickness adjustment.
A mold clamping force adjustment method characterized in that when the difference is greater than or equal to the set temperature difference (t), the mold thickness is newly adjusted in the same way as above, and then the molding cycle is continued in the same manner as above.
(2)自動型厚調整手段を備えた型締機構であって、金
型温度を検出する型温検出手段を設け、初回の型厚調整
を金型の熱平衡の後に行い、そのときの金型温度を検出
して記憶し、成形サイクル開始後は、各成形サイクル毎
に金型の温度を検出して、その温度と初回の型厚調整時
における金型温度を比較し、その差が設定温度差(t)
以上である時、新たに上記と同様の型厚調整を行った後
、上記同様に成形サイクルを継続することを特徴とした
型締力調整方式。
(2) A mold clamping mechanism equipped with an automatic mold thickness adjustment means, which is equipped with a mold temperature detection means to detect the mold temperature, performs the first mold thickness adjustment after the mold has reached thermal equilibrium, and The temperature is detected and stored, and after the molding cycle starts, the temperature of the mold is detected for each molding cycle, and the temperature is compared with the mold temperature at the time of the first mold thickness adjustment, and the difference is the set temperature. Difference (t)
When the above is the case, the mold clamping force adjustment method is characterized in that the mold thickness is newly adjusted in the same manner as above, and then the molding cycle is continued in the same manner as above.
JP22114890A 1990-08-24 1990-08-24 Mold clamping force adjusting method Pending JPH04103311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22114890A JPH04103311A (en) 1990-08-24 1990-08-24 Mold clamping force adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22114890A JPH04103311A (en) 1990-08-24 1990-08-24 Mold clamping force adjusting method

Publications (1)

Publication Number Publication Date
JPH04103311A true JPH04103311A (en) 1992-04-06

Family

ID=16762219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22114890A Pending JPH04103311A (en) 1990-08-24 1990-08-24 Mold clamping force adjusting method

Country Status (1)

Country Link
JP (1) JPH04103311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013018328A1 (en) 2012-11-09 2014-05-15 Fanuc Corporation Adjusting device for the thickness of the injection mold of an injection molding machine
WO2024089851A1 (en) * 2022-10-27 2024-05-02 ファナック株式会社 Determination device and determination method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286658A (en) * 1986-06-06 1987-12-12 Ube Ind Ltd Control method of die clamping force for forming machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286658A (en) * 1986-06-06 1987-12-12 Ube Ind Ltd Control method of die clamping force for forming machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013018328A1 (en) 2012-11-09 2014-05-15 Fanuc Corporation Adjusting device for the thickness of the injection mold of an injection molding machine
JP2014094507A (en) * 2012-11-09 2014-05-22 Fanuc Ltd Mold thickness adjustment device for injection molding machine
US9022767B2 (en) 2012-11-09 2015-05-05 Fanuc Corporation Mold thickness adjusting apparatus of injection molding machine
WO2024089851A1 (en) * 2022-10-27 2024-05-02 ファナック株式会社 Determination device and determination method

Similar Documents

Publication Publication Date Title
EP1645395B1 (en) Controller of injection molding machine
EP0700768B1 (en) Injection molding controlling method for injection molding machine
JP2001030326A (en) Mold protecting device for injection molding machine
JPH0358821A (en) Injection pressure control method for motorized injection molding machine
EP0455820A1 (en) Method of correcting defective molding in injection molding machine
EP0396770B1 (en) Back pressure control method and apparatus for electric injection molding machine
JPH01168419A (en) Method for adjusting die clamping force
WO1993000211A1 (en) Method of making positioning correction on electric injection molding machine
US5251146A (en) Injection compression molding method and an apparatus therefor
US7287971B2 (en) Load determining device for an electrically-operated injection molding machine
US4837490A (en) Control method for an injection motor of an injection molding machine
EP1084813B1 (en) Excessive load detecting device for injection screw of injection molding machine
JPH07125032A (en) Cylinder temperature control device in injection molding machine
JP2691439B2 (en) Mold clamping abnormality detection method
JPH04103311A (en) Mold clamping force adjusting method
JP2000052396A (en) Device and method for controlling injection molding
EP0362395B1 (en) Method and apparatus for injection compression molding
JPH04259523A (en) Protecting and controlling method of mold of motor-driven injection molding machine
JP3881633B2 (en) Mold clamping control method of injection molding machine
JPH0698656B2 (en) Method and device for setting optimum allowable value of monitoring data of injection molding machine
JP3550206B2 (en) Injection control method for injection molding machine
JP3156814B2 (en) Method of operating mold clamping device of injection molding machine and mold clamping device
JPS6018264A (en) Safety device for die clamping of direct pressure type die casting machine
JP2736683B2 (en) Insulation control device for injection molding machine
JPH0622825B2 (en) Injection molding machine