JPH04101074A - Windmill - Google Patents

Windmill

Info

Publication number
JPH04101074A
JPH04101074A JP2213762A JP21376290A JPH04101074A JP H04101074 A JPH04101074 A JP H04101074A JP 2213762 A JP2213762 A JP 2213762A JP 21376290 A JP21376290 A JP 21376290A JP H04101074 A JPH04101074 A JP H04101074A
Authority
JP
Japan
Prior art keywords
hydraulic cylinder
movable
pitch angle
spring
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2213762A
Other languages
Japanese (ja)
Other versions
JP2824321B2 (en
Inventor
Tamotsu Shimada
保 島田
Yuji Matsunami
雄二 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2213762A priority Critical patent/JP2824321B2/en
Publication of JPH04101074A publication Critical patent/JPH04101074A/en
Application granted granted Critical
Publication of JP2824321B2 publication Critical patent/JP2824321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE:To stop a windmill automatically so as to prevent the damage of vanes by sliding a movable shaft by a spring in the direction of changing the pitch angle of a vane onto the feathering side for stopping the windmill at the oil pressure lost time of operating oil to be supplied into a hydraulic cylinder for changing the pitch angle of the vane. CONSTITUTION:In windmill vane pitch angle adjusting mechanism, a movable ring 6, a movable pin 7 and a movable shaft 5 slide axially while being rotated together with a main spindle 15 through a movable disc 9 and a movable bearing 8 by the operation of a hydraulic cylinder 10 so as to change the pitch angle of a vane 1 through an operating plate 4a and a link 3. The hydraulic cylinder 10 is provided inside a nacelle 17, and a spring 11 for stopping a windmill at the oil pressure lost time of operating oil is fitted parallel with the hydraulic cylinder 10 for backup. At the oil pressure lost time of the operating oil, the hydraulic cylinder 10 is placed in the free state, so that the movable shaft 5 is slid onto the rotor head 14 side by the spring force of the spring 11 so as to change the pitch angle of the vane 1 onto the feathering side where the windmill is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば風力発電などに適用される風車に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wind turbine applied to, for example, wind power generation.

〔従来の技術〕[Conventional technology]

第3図は従来の風車における翼のピッチ角可変機構の構
造説明図である0図において、従来の風車はローターヘ
ッド09内に設けられている油圧シリンダー02によっ
て翼01のピッチ角が変わるようになっており、油圧シ
リンダー02の作動油は油圧ポンプ07により主軸01
0を介して固定部のナセル08側から可動側のローター
ヘッド09内に導かれている。03は主軸010の第1
段軸受、04は第2段軸受、05は増速歯車装置、06
は発電機である。
FIG. 3 is a structural explanatory diagram of a variable pitch angle mechanism of blades in a conventional wind turbine. In FIG. The hydraulic oil in the hydraulic cylinder 02 is supplied to the main shaft 01 by the hydraulic pump 07.
0 from the fixed part nacelle 08 side to the movable side rotor head 09. 03 is the first shaft of the main shaft 010
Stage bearing, 04 is second stage bearing, 05 is speed increasing gear, 06
is a generator.

〔発明が解決しようとする課l1l) 上記のような従来の風車において、油圧シリンダー02
の作動油の油圧が喪失した場合には翼01のピッチ角を
変えることができない、一般に、風車の起動、停止は翼
01のピッチ角を変えて行っており、異常時に翼01の
ピッチ角を変えて風車を停止することができなければ翼
01の損傷を招き危険である。なお、油圧喪失時のバッ
クアップ用にスプリングを油圧シリンダー02に取付け
ればよいのであるが、ローターヘッド09内にはそのス
ペースが無く、取付けが難しい。
[Issues to be solved by the invention l1l] In the conventional wind turbine as described above, the hydraulic cylinder 02
If the oil pressure of the hydraulic oil is lost, the pitch angle of the blade 01 cannot be changed.Generally, wind turbines are started and stopped by changing the pitch angle of the blade 01, and in the event of an abnormality, the pitch angle of the blade 01 cannot be changed. If the wind turbine cannot be stopped by changing the blade 01, the blade 01 may be damaged, which is dangerous. Although it would be possible to attach a spring to the hydraulic cylinder 02 for backup when oil pressure is lost, there is no space for this in the rotor head 09, and attachment is difficult.

〔−課題を解決するための手段〕[-Means to solve the problem]

本発明に係る風車は上記課題の解決を目的にしており、
ナセル内に設けられリンク機構を介して翼のピッチ角を
変える可動軸をスライドさせる油圧シリンダーと、該油
圧シリンダーと並列に設けられ上記油圧シリンダーを作
動させる作動油の油圧喪失時に上記可動軸を翼のピッチ
角がフェザリング側に変わる方向へスライドさせるスプ
リングとを備えた構成を特徴としている。
The wind turbine according to the present invention aims to solve the above problems,
A hydraulic cylinder is provided in the nacelle and slides a movable shaft that changes the pitch angle of the blade via a link mechanism, and a hydraulic cylinder is provided in parallel with the hydraulic cylinder and operates the hydraulic cylinder. It features a configuration that includes a spring that slides in the direction in which the pitch angle of the blade changes to the feathering side.

〔作 用〕[For production]

即ち、本発明に係る風車においては、翼のピッチ角を変
える油圧シリンダーと作動油の油圧喪失時に翼のピッチ
角をフェザリング側へ変えるスプリングとがナセル内に
並列に設けられており、作動油の油圧喪失時にはスプリ
ングが翼のピッチ角を変える可動軸を翼のピッチ角が風
車の停止するフェザリング側に変わる方向へスライドさ
せて風車を自動的に停止させる。
That is, in the wind turbine according to the present invention, a hydraulic cylinder that changes the pitch angle of the blades and a spring that changes the pitch angle of the blades to the feathering side when hydraulic oil pressure is lost are provided in parallel in the nacelle, and the hydraulic cylinder changes the pitch angle of the blades to the feathering side when hydraulic oil pressure is lost. When oil pressure is lost, the spring slides the movable shaft that changes the pitch angle of the blades in the direction that changes the pitch angle of the blades to the feathering side where the wind turbine stops, automatically stopping the wind turbine.

〔実施例〕〔Example〕

第1図は本発明の一実施例に係る風車における翼のピッ
チ角可変機構の構造説明図、第2図はその作用説明図で
ある0図において、本実施例に係る風車は風力発電に使
用されており、図に示すように翼1のピッチ角を変える
油圧シリンダー10をナセル17内に設けるとともに、
作動油の油圧喪失時に風車を停止させるスプリング11
を油圧シリンダーlOと並列に取付けてバックアップさ
せている。
Fig. 1 is a structural explanatory diagram of a blade pitch angle variable mechanism in a wind turbine according to an embodiment of the present invention, and Fig. 2 is an explanatory diagram of its operation. As shown in the figure, a hydraulic cylinder 10 for changing the pitch angle of the blade 1 is provided in the nacelle 17, and
Spring 11 that stops the wind turbine when hydraulic oil pressure is lost
is installed in parallel with the hydraulic cylinder lO for backup.

即ち、主軸15はローターヘッド14を支持し、第1段
軸受12および第2段軸受13を介してナセル17によ
り回転可能に軸支されるとともに第1段軸受12により
スラスト力を保持されている。主軸15は中空で、内部
に可動軸5が軸方向にスライド可能に収納されている。
That is, the main shaft 15 supports the rotor head 14, is rotatably supported by the nacelle 17 via the first stage bearing 12 and the second stage bearing 13, and has a thrust force maintained by the first stage bearing 12. . The main shaft 15 is hollow, and the movable shaft 5 is housed therein so as to be slidable in the axial direction.

油圧シリンダー10およびスプリング11の一端は第2
段軸受13外側の軸受支持台16に揺動可能に取付けら
れており、この油圧シリンダーIOおよびスプリング1
1の他端に装着された可動円板9が可動軸受8を介し、
主軸15に嵌合して軸方向に摺動する可動環6と連結さ
れている。この可動環6は可動軸5と主軸15の長穴を
貰這する可動ピン7を介して連結されており、主軸15
とともに回転し、また主軸15の長穴径と可動ピン7の
ピン径との隙間だけ主軸15の軸方向にスライドするよ
うになっている。可動軸5はローターヘッド14内で作
動板取付軸4b、作動板4aを介してリンク3と連結さ
れ、リンク3はローターヘッド14に結合された連結ガ
イド18に回転自在に保持された翼連結軸2と連結され
、翼連結軸2は翼1と結合している。
One end of the hydraulic cylinder 10 and the spring 11 is connected to the second end.
The stage bearing 13 is swingably attached to the bearing support stand 16 on the outside, and this hydraulic cylinder IO and the spring 1
A movable disc 9 attached to the other end of the
It is connected to a movable ring 6 that fits onto the main shaft 15 and slides in the axial direction. This movable ring 6 is connected to the movable shaft 5 via a movable pin 7 that extends over the elongated hole of the main shaft 15.
The movable pin 7 rotates with the main shaft 15 and slides in the axial direction of the main shaft 15 by the gap between the elongated hole diameter of the main shaft 15 and the pin diameter of the movable pin 7. The movable shaft 5 is connected to the link 3 within the rotor head 14 via the actuation plate mounting shaft 4b and the actuation plate 4a, and the link 3 is a blade connection shaft rotatably held by a connection guide 18 connected to the rotor head 14. 2, and the blade connecting shaft 2 is connected to the blade 1.

油圧シリンダー10を作動させると可動円板9、可動軸
受8を介して可動環6、可動ピン7、可動軸5が主軸1
5とともに回転しながら軸方向にスライドする。また、
作動油の油圧喪失時は油圧シリンダー10はフリーな状
態になっており、スプリング11のばね力が可動円板9
、可動軸受8を介して可動環6、可動ピン7、可動軸5
を主軸15とともに回転させながらローターヘッド14
側へスライドさせる。スプリング11は風車の運転時に
は油圧シリンダーlOの駆動力によって圧縮されている
が、作動油の油圧喪失時にはこの圧縮されているスプリ
ング11が伸びる力によって可動軸5をスライドさせる
。翼1のピッチ角と可動軸5とは、第2図に示すように
スプリング11が伸びる方向が、翼lのピッチ角が風車
の停止するフェザリング側に変わる方向と一敗している
。また、風車の運転時には油圧シリンダーIOがスプリ
ング11を圧縮することによって可動軸5が逆方向にス
ライドし、翼1のピッチ角を0°側へ回転させる。
When the hydraulic cylinder 10 is operated, the movable ring 6, the movable pin 7, and the movable shaft 5 are connected to the main shaft 1 via the movable disc 9 and the movable bearing 8.
It slides in the axial direction while rotating with 5. Also,
When the hydraulic oil pressure is lost, the hydraulic cylinder 10 is in a free state, and the spring force of the spring 11 is applied to the movable disc 9.
, a movable ring 6, a movable pin 7, a movable shaft 5 via a movable bearing 8
The rotor head 14 is rotated together with the main shaft 15.
Slide it to the side. The spring 11 is compressed by the driving force of the hydraulic cylinder 10 when the windmill is operating, but when the hydraulic pressure of the hydraulic oil is lost, the movable shaft 5 is slid by the force of the compressed spring 11 being expanded. Regarding the pitch angle of the blade 1 and the movable axis 5, as shown in FIG. 2, the direction in which the spring 11 extends is the same as the direction in which the pitch angle of the blade 1 changes to the feathering side where the wind turbine stops. Further, when the windmill is operating, the hydraulic cylinder IO compresses the spring 11, so that the movable shaft 5 slides in the opposite direction, and the pitch angle of the blade 1 is rotated toward 0°.

このようにして、軸受支持台16と可動円板9との間に
並列に取付けられている油圧シリンダー10、スプリン
グ11の作用は可動円板9、可動軸受8を介して可動環
6、可動ピン7、主軸15内の可動軸5に伝達され、さ
らに作動板取付軸4b、作動板4aを介してリンク3に
伝達される。そして、リンク3の回転によりローターヘ
ッド14に結合された連結ガイド18に軸支されて翼連
結軸2が回転して翼1のピッチ角を変化させる。従って
、作動油の油圧喪失時には風車が自動的に停止する。ま
た、油圧シリンダー10およびスプリング11をナセル
17内に設けているので、設置スペースを充分にとるこ
とができ、油圧シリンダー10およびスプリング11の
充分な容量を確保することができる。
In this way, the action of the hydraulic cylinder 10 and spring 11, which are installed in parallel between the bearing support stand 16 and the movable disc 9, is applied to the movable ring 6 and the movable pin via the movable disc 9 and the movable bearing 8. 7. It is transmitted to the movable shaft 5 within the main shaft 15, and further transmitted to the link 3 via the actuation plate mounting shaft 4b and the actuation plate 4a. As the link 3 rotates, the blade connecting shaft 2 rotates while being supported by a connecting guide 18 connected to the rotor head 14, thereby changing the pitch angle of the blade 1. Therefore, the wind turbine automatically stops when the hydraulic oil pressure is lost. Further, since the hydraulic cylinder 10 and the spring 11 are provided in the nacelle 17, a sufficient installation space can be taken, and a sufficient capacity of the hydraulic cylinder 10 and the spring 11 can be secured.

〔発明の効果〕〔Effect of the invention〕

本発明に係る風車は前記の通り構成されており、作動油
の油圧喪失時にはスプリングが風車を自動的に停止させ
るので、異常時に翼の損傷を招くことなく安全である。
The wind turbine according to the present invention is configured as described above, and since the spring automatically stops the wind turbine when the hydraulic oil pressure is lost, the wind turbine is safe without causing damage to the blades in the event of an abnormality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る風車における翼のピッ
チ角可変機構の断面図、第2図はその作用説明図、第3
図は従来の風車における翼のピッチ角可変機構の断面図
である。 1・・・翼、         2・・・翼連結軸。 3・・・リンク、        4a・・・作動板。 4b・・・作動板取付軸、    5・・・可動軸。 6・・・可動環、       7・・・可動ビン。 8・・・可動軸受、      9・・・可動円板。 10・・・油圧シリンダー、11・・・スプリング。 12・・・第1段軸受、13・・・第2段軸受。 14・・・ローターヘッド、15・・・主軸。 16・・・軸受支持台、17・・・ナセル。 18・・・連結ガイド。
FIG. 1 is a sectional view of a blade pitch angle variable mechanism in a wind turbine according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG.
The figure is a sectional view of a blade pitch angle variable mechanism in a conventional wind turbine. 1... Wing, 2... Wing connecting shaft. 3... Link, 4a... Actuation plate. 4b... Operating plate mounting shaft, 5... Movable axis. 6...Movable ring, 7...Movable bottle. 8...Movable bearing, 9...Movable disk. 10... Hydraulic cylinder, 11... Spring. 12...1st stage bearing, 13...2nd stage bearing. 14... Rotor head, 15... Main shaft. 16... Bearing support stand, 17... Nacelle. 18...Connection guide.

Claims (1)

【特許請求の範囲】[Claims] ナセル内に設けられリンク機構を介して翼のピッチ角を
変える可動軸をスライドさせる油圧シリンダーと、該油
圧シリンダーと並列に設けられ上記油圧シリンダーを作
動させる作動油の油圧喪失時に上記可動軸を翼のピッチ
角がフェザリング側に変わる方向へスライドさせるスプ
リングとを備えたことを特徴とする風車。
A hydraulic cylinder is provided in the nacelle and slides a movable shaft that changes the pitch angle of the blade via a link mechanism, and a hydraulic cylinder is provided in parallel with the hydraulic cylinder and operates the hydraulic cylinder. A windmill characterized in that it is equipped with a spring that slides in a direction in which the pitch angle of the windmill changes to the feathering side.
JP2213762A 1990-08-14 1990-08-14 Windmill Expired - Lifetime JP2824321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213762A JP2824321B2 (en) 1990-08-14 1990-08-14 Windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213762A JP2824321B2 (en) 1990-08-14 1990-08-14 Windmill

Publications (2)

Publication Number Publication Date
JPH04101074A true JPH04101074A (en) 1992-04-02
JP2824321B2 JP2824321B2 (en) 1998-11-11

Family

ID=16644609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213762A Expired - Lifetime JP2824321B2 (en) 1990-08-14 1990-08-14 Windmill

Country Status (1)

Country Link
JP (1) JP2824321B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505342A (en) * 2008-10-08 2012-03-01 ブレード ダイナミクス リミテッド Windmill rotor
CN102996344A (en) * 2012-11-30 2013-03-27 张成革 Pitch changing and periodical pitch changing device of downwind wind driven generator
JP2015025444A (en) * 2013-07-29 2015-02-05 幸一郎 西村 Double wind-turbine type wind power generator
WO2015022309A1 (en) * 2013-08-13 2015-02-19 Aktiebolaget Skf Bearing assembly with mounting for spherical plain bearing
CN104514687A (en) * 2013-09-30 2015-04-15 Gu株式会社 Blade pitch controller for small-scale wind power generation system
CN110594095A (en) * 2018-06-12 2019-12-20 兰州理工大学 Hydraulic universal gear synchronous variable-pitch mechanism
CN110925136A (en) * 2019-12-07 2020-03-27 潍坊工程职业学院 Safe feathering device of wind turbine generator system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434389A (en) * 2011-11-24 2012-05-02 浙江华鹰风电设备有限公司 Pitch-changing linear driving mechanism of small and medium size wind driven generator
CN103174586A (en) * 2011-12-22 2013-06-26 大银微***股份有限公司 Blade pitch angle control mechanism of wind driven generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410671A (en) * 1987-07-03 1989-01-13 Nippon Telegraph & Telephone Compound semiconductor field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410671A (en) * 1987-07-03 1989-01-13 Nippon Telegraph & Telephone Compound semiconductor field effect transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505342A (en) * 2008-10-08 2012-03-01 ブレード ダイナミクス リミテッド Windmill rotor
CN102996344A (en) * 2012-11-30 2013-03-27 张成革 Pitch changing and periodical pitch changing device of downwind wind driven generator
JP2015025444A (en) * 2013-07-29 2015-02-05 幸一郎 西村 Double wind-turbine type wind power generator
WO2015022309A1 (en) * 2013-08-13 2015-02-19 Aktiebolaget Skf Bearing assembly with mounting for spherical plain bearing
CN104514687A (en) * 2013-09-30 2015-04-15 Gu株式会社 Blade pitch controller for small-scale wind power generation system
CN110594095A (en) * 2018-06-12 2019-12-20 兰州理工大学 Hydraulic universal gear synchronous variable-pitch mechanism
CN110925136A (en) * 2019-12-07 2020-03-27 潍坊工程职业学院 Safe feathering device of wind turbine generator system

Also Published As

Publication number Publication date
JP2824321B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
AU2008320935B2 (en) Blade pitch-angle control apparatus and wind turbine generator
JP5490879B2 (en) Stationary actuator device for controlling the pitch of turboprop fan blades
KR850000935B1 (en) Wind turbine blade pitch adjustment system
RU2523515C2 (en) Device for moving power cylinder for control over turboprop fan vanes
US8864470B2 (en) Unducted propeller with variable pitch blades for a turbomachine
EP2597304B1 (en) Wind turbine with a mechanism for synchronously varying the pitch of a multi-blade rotor
JPH0226711B2 (en)
WO2004070203A3 (en) Method for mounting rotor blades and rotor blade for a wind turbine
CN201902287U (en) Pitch changing device for wind power generator
JPH04101074A (en) Windmill
JPS6085202A (en) Pitch altering mechanism
US4257740A (en) Speed governing hub for windmill
CN103867388B (en) Electric direct-drive formula wind electricity change paddle drive system
JPS61157702A (en) Changer for pitch of blade
CN202031774U (en) Propeller torque changing device of propellers for wind power generation
US8535007B2 (en) Hydraulic actuator locking device
CN213744155U (en) Static blade adjusting mechanism of axial flow compressor and axial flow compressor using same
US20130343889A1 (en) Friction Wheel Drive Train for a Wind Turbine
JPH05149237A (en) Variable pitch device for windmill
IES20090973A2 (en) A wind turbine blade assembly
JPS6354144B2 (en)
JPH074344A (en) Variable pitch mechanism for wing of windmill
CN113883091B (en) Aeroengine with adjustable attack angle of fan rotor
CN109690075A (en) Rotor shutdown device and method for wind energy plant
US20210284324A1 (en) Blade pitch actuation mechanism