JPH0398843A - Recycling type self standing container with weighted bottom for gas containing beverage - Google Patents

Recycling type self standing container with weighted bottom for gas containing beverage

Info

Publication number
JPH0398843A
JPH0398843A JP1221812A JP22181289A JPH0398843A JP H0398843 A JPH0398843 A JP H0398843A JP 1221812 A JP1221812 A JP 1221812A JP 22181289 A JP22181289 A JP 22181289A JP H0398843 A JPH0398843 A JP H0398843A
Authority
JP
Japan
Prior art keywords
container
printed
gas
weighted
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1221812A
Other languages
Japanese (ja)
Inventor
Toru Suzuki
通 鈴木
Hirotaka Watanabe
祐登 渡辺
Koji Sato
幸司 佐藤
Yosuke Yasuda
洋介 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP1221812A priority Critical patent/JPH0398843A/en
Publication of JPH0398843A publication Critical patent/JPH0398843A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PURPOSE:To prevent fracture of a printed display due to expansion or contraction of a container from occurring by a method wherein a recessed spot for printing which sinks inward from the peripheral surface is provided on the outer periphery of a body part, and the drawn in-surface degree of orientation of the recessed spot for printing is specified, and a display pattern is printed on this recessed spot for printing. CONSTITUTION:The title container is a polyester resin self-standing container with weighted bottom 1 which is drawing-blow molded by a heating temperature of 90 - 120 deg.C and heat set temperature of 70 - 150 deg.C. On the outer periphery of a body part 2, a recessed spot for sprinting 4 which sinks inward from the peripheral surface is provided, and the drawn in-surface degree of orientation (l+m) of the recessed spot for printing is made to be 0.1 - 0.5, and on this recessed spot for printing, a display pattern is printed. Therefore, expansion/ contraction of a container which is formed by drawing-blow molding can be made smaller. By this method, a fracture of the printed display due to expansion or contraction of the container can be prevented from occurring, and collection and recycling of the polyester resin container becomes possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリエステル樹脂を用いて延伸ブロー戒形し
た再使用型ガス含有飲料用底部加重自立容器に関する. [従来の技術] 従来、ガス含有飲料用容器として使用されている容器は
、金属容器を除くと、ガラス製の容器と延伸ブロー成形
したポリエステル樹脂製の容器に大別される.延伸ブロ
ー成形したポリエステル樹脂製の容器は、透明性、耐衝
撃性、耐圧性、容器重量の軽減化、適度な剛性、等の点
で優れており、広く使用されている. 両者の流通形態を較べると、ガラス製の容器は回収され
再使用されているが、ポリエステル樹脂製の容器は1回
使用しただけで捨てられるいわゆる使い捨てが普通であ
る. しかしながら省資源、製造コスト、廃棄物の処理等の多
くの面からポリエステル樹脂製の容器の回収、再使用の
必要性が要求されている.[本発明が解決すべき課M] 前述のように、ポリエステル樹脂製のガス含有飲料用容
器が回収され再使用されないのは幾つかの原因があるが
一番重大な問題は、容器の膨朕、収縮によりもたらされ
る.即ち、ポリエステル樹脂製のガス含有飲料用容器が
回収され再使用される場合、まず、回収された容器は6
5〜70℃、3〜4%のアルカリ水溶液で洗浄される.
この洗浄工程でポリエステル樹脂製容器は収縮する.次
に、ガス含有飲料が充填されるが、容器の内圧は、常温
でもほぼ4kg/alとなるため容器は膨らみ、容器は
膨脹する.回収、再使用の際かならずこのB朕、収縮を
受るわけである.通常回収、再使用を行う為にはコスト
的にみても5回以上好ましくは10回〜25回繰り返す
必要があるが、このような膨脹、収縮を受けると、容器
に施した、印刷表示が破損してしまうのである.改めて
印刷を行うのであれば回収、再使用を行う利点はなく、
むしろ新しい容器をその都度使用するほうがアルカリ洗
浄などを行う必要もなく、回収費を考えるまでもなくコ
スト的にみても有利である.本発明は、この様な容器の
膨腰、収縮による、印刷表示の破損という従来解決でき
なかった問題を解決して、回収再使用できるポリエステ
ル樹脂製のガス含有飲料用底部加重自立容器を提供した
ものである. [課題を解決した手段] 本発明は、 「 1. 加熱温度90〜120℃熱固定温度70〜1
50℃で延伸ブロー成形した、ポリエステル樹脂底部加
重自立容器であって、胴部外周に周面より内方に陥没し
た印刷凹所を配設し、印刷凹所部分の延仲面内配向度 
1+m)を0.1〜0.5とし、この印刷凹所に表示パ
ターンを印刷してなる、再使用型ガス含有飲料用底部加
重自立容器. 2. 容器の肉厚が胴部0.4〜1。00111、底部
1.0〜560圓である請求項1に記載された、再使用
型ガス含有飲料用底部加重自立容器.3. 再使用時の
アルカリ洗浄時の収縮と、ガス含有飲料充填時の容器の
膨脹の差が、縦方向2.7%以内であり、径方向1.9
%以内である、請求項1または2に記載された、再使用
型ガス含有飲料用底部加重自立容器. 4. 容器壁が複数の壁材で構成された多層楕遣である
、請求項1ないし3のいずれか1項に記載された、再使
用型ガス含有飲料用底部加重自立容器. 5.ポリエステル樹脂がポリエチレンテレフタレートで
ある、請求項1ないし4のいずれか1項に記載された、
再使用型ガス含有飲料用底部加重自立容器. 6, 印刷凹所部分の延伸面内配向度(l+m)を0.
1〜0.5が、偏光螢光法で測定した値である、請求項
エないし5のいずれかl項に記載された、再使用型ガス
含有飲料用底部加重自立容器.jに関する. 通常、ポリエステル容器にはポリウレタン系の二液反応
型スクリーンプロセスインキを用いて、スクリーン印刷
法で印刷を施したり、UV硬化型インキを用いて印刷を
施すが、容器体に施した印刷表示は繰り返し生ずる容器
の膨脹、収縮に追従することが出来ず破損する.本発明
者等は種々研究の結果、延伸ブロー戒形した容器の膨脹
、収縮を小さくしなければ容器の印刷表示の破損は防止
できないとの結論に達し、そのためには、延伸ブロー成
形における、延伸温度を低くする、つまり、プリフォー
ムの加熱温度を低くし、延伸倍率を小さくし、一方熱固
定は、金型温度を高くして十分に行うことが必要である
ことを解明して本発明を完成した. そして再使用における印刷表示の破損を防ぐ為に容器の
膨脹、収縮の最大巾を縦方向2.65%以内、経方向1
.9%以内にすると印刷表示の破損を防止に有効である
ことが実験的に明らかになつた. ここで膨脹、収縮率は、それぞれ、《膨脹時の長さーも
との長さ/もとの長さ)XIOO、及び、(もとの長さ
一収縮の長さ/もとの長さ)×100、で与えられる, さらに、容器の膨脹、収縮は容器の分子配向と大きな関
係があり、膨脹、収縮率を上記範囲に押さえるためには
、容器の印刷を施す部分の延伸面内配向度は0.1〜0
.5でなければならないことを見出だした.0.1以下
の場合膨張が大きく、収縮と膨脹の差が径方向において
1.9%以上になり印刷剥がれをおこす.また0.5を
こえると収縮が大きく径方向において2.65%以上に
もなり、印刷剥がれをおこす, また、回収、再使用するためには、容器の肉厚を大きく
して強度を増強すると共に、容器の胴部外周に周面より
内方に陥没した印刷凹所を配設しこの印刷凹所に表示パ
ターンを印刷することにより、輸送などの流通過程にお
ける印刷表示の摩擦、衝突などによる機械的破損を防ぐ
必要がある.この、印刷凹所を配設することは後で具体
的に説明するが、印刷表示の摩擦破損防止に予想以上の
効果がある.繰り返すが、この部分の延仲配向度は、前
述のように0.1〜0.5でなければならない.容器に
ベースカップなどを配設することは使い捨ての場合は問
題ないが、回収、再使用する場合は取扱上不都合が多い
ので特に底部の肉厚を大きくして底部加重型とし、自立
性を持たせる必要がある.底部加重型のボトルは、移送
工程でのガイドやボトル同志のぶつかり合いに対しての
動揺が少ないため印刷面に傷がつきにくいという利点を
有する. 本発明の容器に充填するガス含有飲料として
は、種々のガスを含有したものが充填できるが炭酸ガス
を含有した飲料が最も好適である.また容器の器壁を複
数の壁材を使用して多層構造とすることにより単層の容
器では奏せない効果を奏させることができる. 例えばエチレンービニルアルコール共重合体等の酸素遮
断層を配置すれば酸素の影響を防ぐことができる.その
ほかポリアリレートやポリカーボネート等の耐熱性材料
を配置すれば、熱水での洗浄時の収縮がより小さくなり
、印刷の破損が少なくなる. ポリエステル樹脂の分子配向を現す尺度として密度が一
般的に使われているが、密度は分子配向の程度のみなら
ず、他の要因によっても変化するため、本発明の場合、
分子配向を示す尺度としては適さない. これに対して、偏光螢光法では、分子配内高分子に吸着
された螢光性分子の光学的異方性を利用して高分子の分
子配向を定量的に測定するものであり、前述した熱固定
の影響を受けずに分子配向の程度を求めることができる
のである.この偏光螢光法による容器壁内に置ける二次
元配向度はつぎの式で表される. l Iノ (  ω)  =K  φ (Acos’ 
 ω +msin’÷3Xn/8冫 [式中、l II (ω)はポリエステル樹脂から発す
る、螢光の偏光成分強度を表し、またIIは入射偏光の
振動方向と測光偏光方向が平行であることを示し、ωは
上記偏光の振動方向にたいする、試料の回転角を示す.
Kは試料分子軸と励起螢光の振動方向が平行である時の
最大励起確率、φは分子螢光収率を示す.ぶは最終戒型
容器壁面内任意の一方向へ分子が配向している割合、m
はぶと直角方向に分子が配向している割合、nは面内無
配向の割合を示し、f+m+n=1である.]で定量的
に現すことができる. こうしてωを変化させ(0゜、45’、90°)このω
にたいする偏光成分強度f II (ω)を測定し、得
られた3つの連立方程式の解として、ぶ、m,nの値を
求めることができる. [実施例] 次に本発明を実施例に就いて具体的に説明する.第1図
は本発明の実施例を示す再使用型ガス含有飲料用容器の
正面断面図である。容器1の胴部外周に周面より内方に
陥没した印刷凹所4が配設されているがこの部分は、0
.5〜1.0m程度外周、周面より内方に陥没している
.またこの例では、この部分のポリエステル樹脂壁の延
伸面内配向度は0.1〜0.5である.胴部2は0.5
〜0。8flの膜厚である41た底部3は1.5〜4.
0mの厚膜であって、底部加重となっており、自立性を
有する容器であることが理解できる.第2図は従来の使
い捨てポリエステル容器を示す.P部2は平らであって
本発明の印刷凹所は形成されていない.また、器壁は胴
部2も底部3も均一の厚みであって底部加重型になって
いないのでガス含有飲料を充填したときはともかく、洗
浄工程時は空であるため、自立性が乏しく、自立搬送が
不安定であり、容器が倒れ易く工程トラブルの原因とな
る.また、ベースカップ5を使用しなければならないた
めに洗浄が困難である.次に本発明容器の製造方法と、
従来の使い捨て容器の製造方法を示し、次いで両者の比
較試験の結果を表1に示す. 製造例1 射出戒形機にて、ポリエステル樹脂(PETIV=0.
849)を使用して重量100gの有底プリフォームを
戒形する.このプリフォームを東洋食品機械株式会社製
のOBM−IG型二軸延伸ブロー成形機を使用して10
5℃に予備加熱した後、キャビテイ内面が120℃に加
熱された内容積が約1 5 5 0 mlのブロー用金
型内で二軸延仲ブローすると同時に約20秒間ヒートセ
ットした後取り出すことによって第1図に示す容器を製
造してた. 製造例2 射出戒形機にて、ポリエステル樹脂(PETIV=0.
75)を使用して重量50gの有底プリフォームを成形
する.このプリフォームを東洋食品機械株式会社製のO
BM−IG型二軸延伸ブロー成形機を使用してキャビテ
イ表面温度を約20℃に調節した、内容積が約1 5 
4 0 (IIIのブロー用金型内で二軸延仲ブローを
約10秒間行い第2図に示す容器を製遺してた. 実施例と従来例の容器の性能を比較したデータを表1に
示す. 表  1 (以下余白) [注] 熱安定性テストは、炭酸ガス含有飲料を充填後38℃で
1週間保存後の寸法変化で表した.印刷剥がれテストは
、3.5%、65℃のアルカリ水溶液で15分洗浄した
後炭酸ガス含有飲料を充填し20時間放置後アルカリ水
溶液洗浄と炭酸ガス含有飲料充填を繰返し、印刷部分の
表面積の10%がはがれ、または亀裂の状態になったサ
イクル数で示した. [効果コ このように本発明は繰返再使用出来る優れた効果を示す
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reusable bottom-weighted self-supporting container for gas-containing beverages made of polyester resin and stretch-blown. [Prior Art] Containers conventionally used for gas-containing beverages, excluding metal containers, are broadly classified into containers made of glass and containers made of stretch-blow-molded polyester resin. Containers made of stretch-blow molded polyester resin are widely used because of their excellent transparency, impact resistance, pressure resistance, reduced container weight, and appropriate rigidity. Comparing the distribution forms of the two, glass containers are collected and reused, while polyester resin containers are generally disposable, meaning they can be thrown away after just one use. However, there is a need to collect and reuse polyester resin containers from many aspects such as resource conservation, manufacturing costs, and waste disposal. [Problem M to be solved by the present invention] As mentioned above, there are several reasons why gas-containing beverage containers made of polyester resin are not collected and reused, but the most serious problem is the expansion of the container. , caused by contraction. That is, when gas-containing beverage containers made of polyester resin are collected and reused, first, the collected containers are
Washed with 3-4% alkaline aqueous solution at 5-70°C.
During this cleaning process, the polyester resin container shrinks. Next, the gas-containing beverage is filled, but the container expands because the internal pressure of the container is approximately 4 kg/al even at room temperature. When collecting and reusing materials, this material B is always subject to shrinkage. Normally, in order to collect and reuse it, it is necessary to repeat it 5 times or more, preferably 10 to 25 times, from a cost standpoint, but such expansion and contraction can damage the printed label on the container. That's what happens. If you print again, there is no advantage to collecting and reusing it.
In fact, it is more advantageous from a cost perspective to use a new container each time, since there is no need for alkaline cleaning, and there is no need to consider collection costs. The present invention solves the previously unsolvable problem of damage to the printed display due to expansion and contraction of the container, and provides a self-supporting bottom-weighted container for gas-containing beverages made of polyester resin that can be recovered and reused. It is something. [Means for Solving the Problems] The present invention has the following features: 1. Heating temperature: 90 to 120 degrees Celsius;
It is a self-supporting polyester resin bottom-loaded container made by stretch blow molding at 50°C, and has a printed recess that is depressed inward from the circumferential surface on the outer periphery of the body, and the degree of orientation in the plane of the stretched portion of the printed recess is
1+m) is 0.1 to 0.5, and a display pattern is printed on the printed recess. 2. 2. The reusable bottom-weighted self-supporting container for gas-containing beverages according to claim 1, wherein the wall thickness of the container is 0.4 to 1.00111 mm at the body and 1.0 to 560 mm at the bottom. 3. The difference between the shrinkage during alkaline cleaning during reuse and the expansion of the container during filling with gas-containing beverages is within 2.7% in the vertical direction and 1.9% in the radial direction.
% or less. 4. 4. A reusable bottom-weighted self-supporting container for gas-containing beverages according to any one of claims 1 to 3, wherein the container wall is a multi-layered elliptical structure composed of a plurality of wall materials. 5. As described in any one of claims 1 to 4, wherein the polyester resin is polyethylene terephthalate.
Reusable bottom-weighted self-supporting container for gas-containing beverages. 6. The degree of orientation in the stretching plane (l+m) of the printed concave portion is set to 0.
The reusable bottom-weighted self-supporting container for gas-containing beverages according to claim 5, wherein the value is 1 to 0.5 as measured by polarized fluorescence. Regarding j. Usually, polyester containers are printed using a screen printing method using a polyurethane-based two-component reactive screen process ink, or printed using a UV curable ink, but the printed display on the container body is repeated. It is not possible to follow the expansion and contraction of the container that occurs, resulting in damage. As a result of various studies, the present inventors have come to the conclusion that damage to the printed label on the container cannot be prevented unless the expansion and contraction of the stretch-blow molded container is reduced. We discovered that it is necessary to lower the temperature, that is, lower the heating temperature of the preform and lower the stretching ratio, and on the other hand, heat setting must be carried out sufficiently by increasing the mold temperature, and developed the present invention. completed. In order to prevent damage to the printed label during reuse, the maximum width of expansion and contraction of the container should be within 2.65% in the longitudinal direction and 1% in the longitudinal direction.
.. It has been experimentally found that keeping it within 9% is effective in preventing damage to printed displays. Here, the expansion and contraction rates are respectively 《expanded length - original length / original length) XIOO and (original length - deflated length / original length) ) × 100, Furthermore, the expansion and contraction of the container has a large relationship with the molecular orientation of the container, and in order to keep the expansion and contraction rate within the above range, the in-plane orientation of the printed portion of the container must be adjusted. degree is 0.1~0
.. I found that it must be 5. If it is less than 0.1, the expansion will be large, and the difference between contraction and expansion will be 1.9% or more in the radial direction, causing print peeling. If the value exceeds 0.5, the shrinkage will be large, reaching 2.65% or more in the radial direction, which will cause the print to peel off.Also, in order to collect and reuse, the container should be made thicker to increase its strength. In addition, by arranging a printing recess that is sunken inward from the circumferential surface on the outer periphery of the body of the container, and printing a display pattern on this printing recess, it is possible to prevent friction and collisions of the printed display during the distribution process such as transportation. It is necessary to prevent mechanical damage. As will be explained in detail later, the provision of printing recesses is more effective than expected in preventing frictional damage to printed displays. Again, the degree of orientation in this part must be between 0.1 and 0.5 as described above. Placing a base cup etc. in a container is not a problem if it is disposable, but it is often inconvenient to handle if it is to be collected and reused, so the bottom wall thickness is particularly increased and the bottom is weighted to make it self-supporting. It is necessary to Bottom-weighted bottles have the advantage that the printed surface is less likely to be scratched because there is less vibration due to collisions between guides and bottles during the transfer process. The gas-containing beverage to be filled into the container of the present invention can be filled with beverages containing various gases, but beverages containing carbon dioxide gas are most suitable. In addition, by using multiple wall materials to create a multilayer structure for the container wall, it is possible to achieve effects that cannot be achieved with a single layer container. For example, the effects of oxygen can be prevented by placing an oxygen barrier layer such as ethylene-vinyl alcohol copolymer. In addition, if a heat-resistant material such as polyarylate or polycarbonate is used, shrinkage during washing with hot water will be smaller, and damage to the print will be reduced. Density is generally used as a measure of the molecular orientation of polyester resins, but since density varies not only depending on the degree of molecular orientation but also on other factors, in the case of the present invention,
It is not suitable as a measure of molecular orientation. On the other hand, polarized fluorescence spectroscopy uses the optical anisotropy of fluorescent molecules adsorbed to polymer molecules to quantitatively measure the molecular orientation of polymers. The degree of molecular orientation can be determined without being affected by heat fixation. The degree of two-dimensional orientation within the container wall obtained by this polarized fluorescence method is expressed by the following formula. l Iノ (ω) = K φ (Acos'
ω + m sin' ÷ 3 where ω indicates the rotation angle of the sample with respect to the vibration direction of the polarized light.
K is the maximum excitation probability when the vibration direction of the excited fluorescence is parallel to the sample molecule axis, and φ is the molecular fluorescence yield. bu is the ratio of molecules oriented in any one direction within the wall surface of the final precept type container, m
The proportion of molecules oriented in the direction perpendicular to the blade, n indicates the proportion of non-oriented molecules in the plane, and f+m+n=1. ] can be expressed quantitatively. In this way, ω is changed (0°, 45', 90°) and this ω
By measuring the polarization component intensity f II (ω) with respect to [Example] Next, the present invention will be specifically explained with reference to an example. FIG. 1 is a front sectional view of a reusable gas-containing beverage container showing an embodiment of the present invention. A printing recess 4 recessed inward from the circumferential surface is provided on the outer periphery of the body of the container 1;
.. The outer periphery has sunk inward from the circumferential surface by approximately 5 to 1.0 m. Further, in this example, the degree of orientation in the stretching plane of the polyester resin wall in this portion is 0.1 to 0.5. Body 2 is 0.5
The bottom part 3, which has a film thickness of ~0.8fl, has a thickness of 1.5~4.
It can be seen that the container has a thickness of 0 m and is weighted at the bottom, making it a self-supporting container. Figure 2 shows a conventional disposable polyester container. The P portion 2 is flat and does not have the printing recesses of the present invention formed therein. In addition, since both the body 2 and the bottom 3 have uniform thickness and are not bottom-weighted, the container is empty during the cleaning process, regardless of when it is filled with gas-containing beverages, so it has poor self-sustainability. Self-supporting conveyance is unstable, and containers tend to fall over, causing process problems. Furthermore, cleaning is difficult because the base cup 5 must be used. Next, a method for manufacturing the container of the present invention,
Table 1 shows the conventional manufacturing method for disposable containers, and then shows the results of a comparative test between the two. Production Example 1 Polyester resin (PETIV=0.
849) to form a bottomed preform weighing 100 g. This preform was molded using an OBM-IG type biaxial stretch blow molding machine manufactured by Toyo Food Machinery Co., Ltd.
After preheating to 5°C, the inner surface of the cavity was heated to 120°C and the mold was biaxially stretched and blown in a blowing mold with an internal volume of about 1550 ml, and at the same time, it was heat set for about 20 seconds and then taken out. The container shown in Figure 1 was manufactured. Production Example 2 Polyester resin (PETIV=0.
75) to mold a bottomed preform weighing 50 g. This preform was manufactured by Toyo Food Machinery Co., Ltd.
The cavity surface temperature was adjusted to about 20°C using a BM-IG type biaxial stretch blow molding machine, and the internal volume was about 15.
40 (Biaxial elongation blowing was performed for about 10 seconds in the blowing mold of III to produce the container shown in Figure 2. Table 1 shows data comparing the performance of the containers of the example and the conventional example. Table 1 (margins below) [Note] The thermal stability test was expressed as the dimensional change after filling with a carbonated beverage and storing it at 38°C for one week.The print peeling test was performed at 3.5% and 65°C. After washing with an alkaline aqueous solution for 15 minutes, filling with a carbonated beverage and leaving it for 20 hours, the process of washing with an alkaline aqueous solution and filling with a carbonated beverage was repeated, resulting in 10% of the surface area of the printed part peeling off or cracking. This is shown in numbers. [Effects] The present invention thus shows an excellent effect in that it can be reused repeatedly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例であって、本発明の容器の正
面1部断面図である. 第2図は、従来使用されている容器を示す、正面1部断
面図である. 1・・・飲料用容器 2・・・胴部 3・・・底部 4・・・印刷部
FIG. 1 shows an embodiment of the present invention, and is a partially sectional front view of a container of the present invention. FIG. 2 is a front partial sectional view showing a conventionally used container. 1...Beverage container 2...Body part 3...Bottom part 4...Printing part

Claims (1)

【特許請求の範囲】 1、加熱温度90〜120℃熱固定温度70〜150℃
で延伸ブロー成形した、ポリエステル樹脂底部加重自立
容器であって、胴部外周に周面より内方に陥没した印刷
凹所を配設し、印刷凹所部分の延伸面内配向度(l+m
)を0.1〜0.5とし、この印刷凹所に表示パターン
を印刷してなる、再使用型ガス含有飲料用底部加重自立
容器。 2、容器の肉厚が胴部0.4〜1.0mm、底部1.0
〜5.0mmである請求項1に記載された、再使用型ガ
ス含有飲料用底部加重自立容器。 3、再使用時のアルカリ洗浄時の収縮と、ガス含有飲料
充填時の容器の膨脹の差が、縦方向2.7%以内であり
、径方向1.9%以内である、請求項1または2に記載
された、再使用型ガス含有飲料用底部加重自立容器。 4、容器壁が複数の壁材で構成された多層構造である、
請求項1ないし3のいずれか1項に記載された、再使用
型ガス含有飲料用底部加重自立容器。 5、ポリエステル樹脂がポリエチレンテレフタレートで
ある、請求項1ないし4のいずれか1項に記載された、
再使用型ガス含有飲料用底部加重自立容器。 6、印刷凹所部分の延伸面内配向度(l+m)を0.1
〜0.5が、偏光螢光法で測定した値である、請求項1
ないし5のいずれか1項に記載された、再使用型ガス含
有飲料用底部加重自立容器。
[Claims] 1. Heating temperature: 90-120°C Heat-fixing temperature: 70-150°C
This is a self-supporting polyester resin bottom-loaded container made by stretch blow molding, and has a printed recess that is depressed inward from the circumferential surface on the outer periphery of the body, and the degree of orientation in the stretched plane of the printed recess (l + m
) is 0.1 to 0.5, and a display pattern is printed on the printed recesses. 2. The wall thickness of the container is 0.4 to 1.0 mm at the body and 1.0 mm at the bottom.
A reusable bottom-weighted self-supporting container for gas-containing beverages according to claim 1, having a diameter of ˜5.0 mm. 3. The difference between shrinkage during alkali cleaning during reuse and expansion of the container during filling with a gas-containing beverage is within 2.7% in the vertical direction and within 1.9% in the radial direction, or 2. 4. The container wall has a multilayer structure composed of multiple wall materials,
A reusable bottom-weighted self-supporting container for gas-containing beverages as claimed in any one of claims 1 to 3. 5. As described in any one of claims 1 to 4, wherein the polyester resin is polyethylene terephthalate.
Reusable bottom-weighted free-standing container for gas-containing beverages. 6. The degree of orientation in the stretching plane (l+m) of the printed concave portion is 0.1
-0.5 is a value measured by polarized fluorescence method.
6. The reusable bottom-weighted self-supporting container for gas-containing beverages according to any one of items 5 to 5.
JP1221812A 1989-08-30 1989-08-30 Recycling type self standing container with weighted bottom for gas containing beverage Pending JPH0398843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1221812A JPH0398843A (en) 1989-08-30 1989-08-30 Recycling type self standing container with weighted bottom for gas containing beverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1221812A JPH0398843A (en) 1989-08-30 1989-08-30 Recycling type self standing container with weighted bottom for gas containing beverage

Publications (1)

Publication Number Publication Date
JPH0398843A true JPH0398843A (en) 1991-04-24

Family

ID=16772580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1221812A Pending JPH0398843A (en) 1989-08-30 1989-08-30 Recycling type self standing container with weighted bottom for gas containing beverage

Country Status (1)

Country Link
JP (1) JPH0398843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022012032A (en) * 2020-06-30 2022-01-17 株式会社吉野工業所 Method for recycling synthetic resin-made container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137A (en) * 1984-05-31 1986-01-06 株式会社クラレ Orienting blow multilayer bottle and manufacture thereof
JPS6211710B2 (en) * 1981-03-13 1987-03-13 Toyota Jidosha Kk
JPS6342A (en) * 1986-05-30 1988-01-05 コンチネンタル ペット テクノロジーズ,インコーポレーテッド Refillable polyester vessel and preform for forming said vessel
JPS6346310B2 (en) * 1982-03-11 1988-09-14 Kishikawa Tokushu Barubu Seisakusho Kk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211710B2 (en) * 1981-03-13 1987-03-13 Toyota Jidosha Kk
JPS6346310B2 (en) * 1982-03-11 1988-09-14 Kishikawa Tokushu Barubu Seisakusho Kk
JPS61137A (en) * 1984-05-31 1986-01-06 株式会社クラレ Orienting blow multilayer bottle and manufacture thereof
JPS6342A (en) * 1986-05-30 1988-01-05 コンチネンタル ペット テクノロジーズ,インコーポレーテッド Refillable polyester vessel and preform for forming said vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022012032A (en) * 2020-06-30 2022-01-17 株式会社吉野工業所 Method for recycling synthetic resin-made container

Similar Documents

Publication Publication Date Title
EP0409288B1 (en) Shrinkable polyester film
US5070180A (en) Shrinkable copolyester film
KR950008560B1 (en) Shrinkable polyester film
US20070178326A1 (en) Thermo-shrinkable polyester film
JPS584611B2 (en) plastic containers
JP3616687B2 (en) Self-supporting container with excellent heat and pressure resistance
JPH0398843A (en) Recycling type self standing container with weighted bottom for gas containing beverage
JPS596216B2 (en) Method for manufacturing stretch-molded containers with excellent heat resistance
JP2003191319A (en) Bottle-shaped vessel and manufacturing method thereof
JPH0448086B2 (en)
JPH07309320A (en) One-piece type heat-resistant polyester bottle and manufacture thereof
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JPS63156833A (en) Heat-shrinkable polyester based film
JPS6340747B2 (en)
JPS5944970B2 (en) Method for manufacturing a hollow container with a frosted glass-like surface
JP3296629B2 (en) How to reuse polyester bottles
JPH03122116A (en) Copolymer polyethylene terephthalate and use thereof
JPH06339991A (en) Production of heat-shrinkable polyester-based film
JPS5850177B2 (en) Method for manufacturing biaxially oriented bottles
JPH08164555A (en) Saturated polyester bottle and manufacture thereof
JPH0126940B2 (en)
JPH04156323A (en) Manufacture of saturated polyester bottle
JPH05200860A (en) Heat-resistant bag
JPH10101051A (en) Bottle made of saturated polyester resin and its manufacture
JPH07309319A (en) One-piece type pressure-resistant or thermal-pressure-resistant polyester bottle and manufacture thereof