JPH0396338A - Corrosion resistant material - Google Patents

Corrosion resistant material

Info

Publication number
JPH0396338A
JPH0396338A JP3744490A JP3744490A JPH0396338A JP H0396338 A JPH0396338 A JP H0396338A JP 3744490 A JP3744490 A JP 3744490A JP 3744490 A JP3744490 A JP 3744490A JP H0396338 A JPH0396338 A JP H0396338A
Authority
JP
Japan
Prior art keywords
layer
corrosion
sealing
resistant material
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3744490A
Other languages
Japanese (ja)
Inventor
Ryuichiro Ebara
江原 隆一郎
Yoshikazu Yamada
義和 山田
Susumu Sogami
曽我美 晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPH0396338A publication Critical patent/JPH0396338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To obtain the corrosion resistant material with improved corrosion resistance and high fatigue strength by a method in which an epoxy resin layer is stuck onto the surface of aluminum alloy through an oxidized film, the sealing layer and the intermediate layer of bonding resin, thereby forming a multilayer structure, and the intermediate layer of bonding resin is chemically bonded to the layer of hole-sealing treatment by oxygen atom. CONSTITUTION:Corrosion resistant material is composed of the sealing layer 3 made of hydrate and hydroxide formed on the surface of aluminum alloy 1 through an oxidized film 2 and the epoxy resin 5 formed on the surface of the sealing layer 3 through the intermediate layer 4 of bonding resin. As mentioned above, in the corrosion resistant material, since epoxy resin is stuck onto the surface of aluminum alloy through the oxidized film, the sealing layer and the layer of intermediate bonding resin, and the intermediate layer of bonding resin is chemically bonded to the sealing layer by oxygen atom, its bonding strength is layer. The intermediate layer of bonding resin is further formed on the sealing layer, whereby the adhesion properties between the sealing layer and the epoxy resin layer of an uppermost layer are improved and its corrosion resistance is heightened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば半導体製造設備のエッチングライン等
の機器に適用される耐食材科に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to corrosion resistance applied to equipment such as etching lines of semiconductor manufacturing equipment, for example.

〔従来の技術〕[Conventional technology]

半導体製造プロセスのシリコンウエハのパターン形或の
エンチング工程に》いては、塩素、弗化水素等腐食性の
強いガスが発生する。このためエッチング処理を行う反
応容器、配管等の腐食が問題となっている。
During the patterning or etching process of silicon wafers in semiconductor manufacturing processes, highly corrosive gases such as chlorine and hydrogen fluoride are generated. For this reason, corrosion of reaction vessels, piping, etc. in which the etching process is performed has become a problem.

従来の反応容器、配管用材科としては、耐食性に優れた
ステンレス鋼( JIS規格 SUS316L)が用い
られていたが、iお著しい腐食が生ずるために、寿命が
短かいという問題があった。ステンレス鋼よりも耐食性
に優れた材料は多数存在するが、一方でコストが高くな
るという欠点を有する。そこで、従来はステンレス鋼表
面にNiメッキを施工するなどして耐食性の改善を計っ
ていた。
Stainless steel (JIS standard SUS316L), which has excellent corrosion resistance, has been used as a conventional material for reaction vessels and piping, but it suffers from severe corrosion and has a short lifespan. Although there are many materials that have better corrosion resistance than stainless steel, they have the disadvantage of being higher in cost. Therefore, conventional efforts have been made to improve corrosion resistance by applying Ni plating to the surface of stainless steel.

また、半導体製造設備の排気ライン等にはターボ分子ポ
ンプが設置されているが、このターボ分子ボ/プはシリ
コンウエハのパターン形式のエッチング工程で排出され
る塩素ガス等腐食性ガスの環境中で運転されるため、タ
ーボ分子ポンプの設計に際しては、動翼や靜翼などの翼
材の耐食性が重視されている。
Additionally, turbomolecular pumps are installed in the exhaust lines of semiconductor manufacturing equipment, but these turbomolecular pumps operate in an environment of corrosive gases such as chlorine gas discharged during the etching process of silicon wafer patterns. When designing turbomolecular pumps, emphasis is placed on the corrosion resistance of blade materials such as rotor blades and blades.

従来のターボ分子ポンプに釦いては、翼材として軽量、
低コスト、強度などの面から通常アルミニウム合金が用
いられているが、アルミニウム合金は塩素ガス危どの環
境中では著しく腐食するために、アルミニウム合金の表
面に陽極酸化処理により酸化被膜を生成させたり、ある
いはNiメンキ処理によりメッキ被膜を生成させるなど
して耐食性の向上を計っていた。
Conventional turbo molecular pumps use lightweight blade material,
Aluminum alloys are usually used due to their low cost and strength, but since aluminum alloys corrode significantly in environments with dangerous chlorine gas, an oxide film is formed on the surface of the aluminum alloys by anodizing. Alternatively, attempts have been made to improve corrosion resistance by forming a plating film through Ni coating treatment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の反応容器、配管にかいては、一般に耐食性の改善
のみを計るのみであればステンレス鋼よりも耐食性に優
れる、例えば高Ni基合金、チタン合金(Ti−6%A
N−4%V合金)などの耐食材科を使用すればよいが、
半導体製造装置にかいてはコスト低減の要求が強いため
、上記材科を用いることはできず、反応容器、配管用材
料としてはステンレス鋼並のコストで、かつステンレス
鋼よりも耐食性に優れる材料が強く望1れていた。しか
しながら前記の要求を満足する材料は見当らず、ステン
レス鋼についてNiメソキ処理によって耐食性の改善を
計っているが、Niメンキはピンホール等の欠陥が必ず
発生し、腐食はその欠陥部から選択的に進行し、結局は
著しい局部腐食が生ずる。現状では、このビンホール等
の欠陥を皆無にする耐食コーティングは無いため、これ
らの欠陥をいかに少なくするかが課題である。また、従
来のターボ分子ポンプにおいて、アルミニウム合金製の
翼材の表面に施される陽極酸化処理による酸化被膜は、
般的に多孔質であり空孔が無数にあるために封孔処理が
行われているが、この封孔処理によって完全に空孔を皆
無にすることは不可能である。
For conventional reaction vessels and piping, if the only objective is to improve corrosion resistance, it is generally better to use materials such as high Ni-based alloys and titanium alloys (Ti-6%A), which have better corrosion resistance than stainless steel.
You can use a corrosion-resistant material such as N-4%V alloy), but
Due to the strong demand for cost reduction in semiconductor manufacturing equipment, the above materials cannot be used, and materials for reaction vessels and piping that cost as much as stainless steel and have better corrosion resistance than stainless steel are needed. It was highly desired. However, no material has been found that satisfies the above requirements, and attempts have been made to improve the corrosion resistance of stainless steel by Ni coating, but Ni coating always produces defects such as pinholes, and corrosion occurs selectively from the defective parts. The corrosion progresses and eventually severe local corrosion occurs. Currently, there is no corrosion-resistant coating that completely eliminates defects such as bottle holes, so the challenge is how to reduce these defects. In addition, in conventional turbo molecular pumps, the oxide film formed by anodizing on the surface of the aluminum alloy blade material is
Since it is generally porous and has countless pores, a sealing treatment is performed, but it is impossible to completely eliminate all pores by this sealing treatment.

筐た、Niメンキ処理はピンホールなどの欠陥が必ず発
生するためにこの欠陥部から選択的に腐食が進行し、局
部的に著しい腐食を生ずるなどの不具合を抱えていた。
However, the Ni coating process inevitably causes defects such as pinholes, which causes corrosion to progress selectively from these defects, resulting in significant localized corrosion.

このため、発明者らは、アルミニウム金属またはアルミ
ニウム合金の耐食性の向上を計るために、本出願人の出
願に係る昭和62年特許願第289617号及び昭和6
3年特許願第313030号の発明をした。
Therefore, in order to improve the corrosion resistance of aluminum metal or aluminum alloy, the inventors have proposed Patent Application No. 289617 filed in 1989 and Patent Application No. 289617 filed by the present applicant.
Invented the patent application No. 313030 in 3 years.

前者の発明は、アルミニウム金属1たはアルミニウム合
金の表面に形或された酸化被膜と、同被膜を温水中で沸
騰処理して得られた水和物による封孔処理部と、前記被
膜及び前記封孔処理部上に形成されたエポキシ樹脂眉と
を有することを特徴としてかり、二重、三重の耐食構造
を有している。しかしながらこの発明は耐食性の改善効
果は認められたものの、疲労強度の向上は認められなか
った。これは酸化被膜及び封孔処理部とエポキシ樹脂層
が単に機械的に形或されているためである。
The former invention comprises: an oxide film formed on the surface of aluminum metal 1 or an aluminum alloy; a pore-sealing portion made of a hydrate obtained by boiling the film in hot water; It is characterized by having an epoxy resin layer formed on the sealing part, and has a double or triple corrosion-resistant structure. However, in this invention, although the effect of improving corrosion resistance was observed, no improvement in fatigue strength was observed. This is because the oxide film, the sealing portion, and the epoxy resin layer are simply shaped mechanically.

そこで、繰返し応力が作用しても被膜が破壊され難〈、
耐食性とともに疲労強度(腐食彼労強度)が改善される
ことを目的に後者の発明をした。同発明は、アルミニウ
ム金141たはアルミニウム合金の表面に酸化被膜と、
該酸化被膜を温水中で沸騰処理して得られた水和物によ
る封孔処理層上、該封孔処理層上に形成された中間結合
用樹脂層と、該中間結合用樹脂層上に形成されたエポキ
シ樹脂層とを有することを特徴としてかり、酸化被膜の
表面に生成しているOH基、及び中間結合用樹脂層の上
に形威されているエポキシ樹脂のエポキシ基が化学的に
結びつき、単に機械的に形成されている被膜に比べて基
材との密着力が向上している。そのため、耐食性ととも
に疲労強度が改善されたターボ分子ポンプ用耐食材科が
得られた。
Therefore, the coating is difficult to break even if repeated stress is applied.
The latter invention was made with the aim of improving fatigue strength (corrosion stress) as well as corrosion resistance. The invention provides an oxide film on the surface of aluminum gold 141 or aluminum alloy,
A sealing layer made of a hydrate obtained by boiling the oxide film in hot water, an intermediate bonding resin layer formed on the sealing layer, and an intermediate bonding resin layer formed on the intermediate bonding resin layer. The OH group formed on the surface of the oxide film and the epoxy group of the epoxy resin formed on the intermediate bonding resin layer are chemically bonded. , the adhesion to the base material is improved compared to films that are simply formed mechanically. As a result, a corrosion-resistant material for turbomolecular pumps with improved corrosion resistance and fatigue strength was obtained.

しかしながら、最近のターボ分子ポンプはさらに性能(
排気速度等)の向上が計られつつあり、そのため回転数
が増えつつある。
However, recent turbomolecular pumps have even better performance (
(exhaust speed, etc.) are being improved, and as a result, the number of revolutions is increasing.

このため、繰返C応力が作用する動翼等には、従来より
もさらに疲労強度の改善が望まれてかり、耐食性ととも
に疲労強度の高い耐食被膜が必要とされている。
For this reason, it is desired to improve the fatigue strength of rotor blades and the like to which repeated C stress acts even further than in the past, and a corrosion-resistant coating with high fatigue strength as well as corrosion resistance is required.

本発明はかかる現状に鑑み従来の材料よりも耐食性に優
れかつ低コストの材料を提供するために発明されたもの
で塩素ガス、弗化水素ガス等の腐食性の強いガス環境中
でも十分安全に使用することができるように耐食性が改
善され疲労強度が高い耐食材科を提供することを目的と
したものである。
In view of the current situation, the present invention was invented to provide a material with superior corrosion resistance and lower cost than conventional materials, which can be used safely even in highly corrosive gas environments such as chlorine gas and hydrogen fluoride gas. The purpose is to provide a corrosion-resistant material with improved corrosion resistance and high fatigue strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る耐食材料は、アルミニウム合金の表面に形
成された酸化被膜と、該酸化被膜を酢酸ニッケル浴中に
て処理して得られた水和物及び水酸化物よりなる封孔処
理層と、該封孔処理層上に形威された中間結合用樹脂層
と、該中間結合用樹脂層上に形威されたエポキシ樹脂層
よりなり、塩素ガス及び弗化水素ガスに対して耐食性を
有することを特徴としている。
The corrosion-resistant material according to the present invention includes an oxide film formed on the surface of an aluminum alloy, and a sealing layer made of hydrate and hydroxide obtained by treating the oxide film in a nickel acetate bath. , consisting of an intermediate bonding resin layer formed on the sealing layer and an epoxy resin layer formed on the intermediate bonding resin layer, and has corrosion resistance against chlorine gas and hydrogen fluoride gas. It is characterized by

〔作用〕[Effect]

本発明に係る耐食材料は、アルミニウム合金の表面に酸
化被膜よりなる第1層が形或されている。同酸化被膜の
上には、同被膜の空孔を封孔するために水和物A Jh
 Os●xfl, Qと水酸化物N i ( OH ’
)t , A l ( OH )s  よりなる封孔処
理層が酢酸ニッケル中への浸漬により第2層として形成
されている。さらに同第2層の上には、第3Nとして中
間結合用樹脂層が形成され第3層の上にはエポキシ樹脂
が付着されている。中間結合用樹脂層は封孔処理層とエ
ポキシ樹脂とそれぞれ化学的に結合してかり封孔処理層
は酸素Oとけい素Siを介して、また、エポキシ樹脂は
エポキシ基を介して結合している。
In the corrosion-resistant material according to the present invention, a first layer made of an oxide film is formed on the surface of an aluminum alloy. Hydrate A Jh is placed on the oxide film to seal the pores of the film.
Os●xfl, Q and hydroxide Ni (OH'
)t, Al(OH)s is formed as a second layer by dipping into nickel acetate. Furthermore, an intermediate bonding resin layer is formed as a third layer on the second layer, and an epoxy resin is adhered on the third layer. The intermediate bonding resin layer is chemically bonded to the sealing layer and the epoxy resin, and the sealing layer is bonded via oxygen O and silicon Si, and the epoxy resin is bonded via an epoxy group. .

このように、本発明の耐食材科は、アルミニウム合金の
表面に酸化被膜、封孔処理層、中間結合用樹脂眉な介し
てエポキシ樹脂が付着され中間結合用樹脂層は封孔処理
層と酸素原子によって化学的に結合されているため、そ
の結合は強力である。
In this way, the corrosion-resistant material of the present invention has an epoxy resin attached to the surface of the aluminum alloy through an oxide film, a sealing layer, and an intermediate bonding resin layer. The bond is strong because it is chemically bonded by atoms.

一般の酸化被膜は多孔質であり、そのままでは十分な耐
食性を得ることが難しい。そこで封孔処理によりできる
限り空孔を封じ込め、耐食性の向上を計っている。本発
明では前記の如く酢酸二ンケル浴中に浸漬して行ってい
るが、さらに耐食性を改善させるためには封孔処理のみ
では十分とは言い難い。何故々らは現実には封孔処理を
施こしてもピンホール、割れ等の欠陥によって改善され
るが、時間の経過とともに欠陥部に腐食性ガスが侵入し
、その結果基材のアルミニウム合金を腐食させてし筐う
。したがって二重、三重の耐食構造を有する表面処理を
施こすことが重要であるが、必要以上の耐食構造を施こ
すこともない。何故ならば必要以上の耐食性を与えるこ
とによってコストアンプになるからである。
A general oxide film is porous, and it is difficult to obtain sufficient corrosion resistance as it is. Therefore, we use sealing treatment to seal the pores as much as possible and improve corrosion resistance. In the present invention, immersion is carried out in a nickel acetate bath as described above, but it is difficult to say that sealing treatment alone is sufficient to further improve corrosion resistance. The reason for this is that in reality, defects such as pinholes and cracks can be corrected even with sealing treatment, but as time passes, corrosive gases enter the defective areas, resulting in damage to the aluminum alloy base material. Let it corrode. Therefore, it is important to perform a surface treatment that has a double or triple corrosion-resistant structure, but it is also important not to apply an unnecessary corrosion-resistant structure. This is because providing more corrosion resistance than necessary increases costs.

本発明は封孔処理眉の上にさらに中間結合用樹脂層を形
成さぜ封孔処理層と最上層のエポキシ樹脂層との密着性
を改善している。しかもこれらの耐食被膜の厚さは何れ
も数十一以下で、コーティング材科、コーティング時間
が短かくてすむ。また、基材にアルミニウム合金を用い
ているのでステンレス鋼に比べ材料コストが安く、加え
て軽量である。このように本発明の耐食材料はコスト面
からもメリットが大きい。
The present invention improves the adhesion between the sealing layer and the uppermost epoxy resin layer by further forming an intermediate bonding resin layer on the sealing layer. Moreover, the thickness of each of these corrosion-resistant coatings is less than several tens of thousands, so the coating material and coating time can be shortened. Furthermore, since aluminum alloy is used as the base material, the material cost is lower than that of stainless steel, and it is also lightweight. As described above, the corrosion-resistant material of the present invention has great advantages in terms of cost as well.

一方、Niメツキ処理も耐食性向上の手段としては有望
であるが、同処理はビンホール等の欠陥が必ず発生する
ため欠陥部から選択的に腐食が進行し、結局は著しい局
部腐食が生ずる。従って、ビンホール、割れ等の欠陥を
可能々限り少なくてきうる表面処理方法が最善であるが
、−i類の耐食被膜で耐食性を改善することは技術的に
も難しい。
On the other hand, Ni plating treatment is also promising as a means of improving corrosion resistance, but since defects such as bottle holes are always generated in this treatment, corrosion progresses selectively from the defective portions, eventually resulting in severe local corrosion. Therefore, it is best to use a surface treatment method that can reduce defects such as holes and cracks as much as possible, but it is technically difficult to improve corrosion resistance with a -i type corrosion-resistant coating.

本発明はこのような現象を十分に勘案し、複数の被膜を
可能な限り薄く重ね合わせることにより、従来よりも優
れfc耐食性を有する耐食材科を生みだしたものである
。すなわち、本発明は酸化被膜、封孔処理、中間結合用
樹脂、エポキシ樹脂の4段階による多層構造により欠陥
を低減し、かつ被膜間の密着性を改善し、耐食性の向上
を計ったものである。
The present invention takes such phenomena into full consideration and creates a corrosion-resistant material that has superior fc corrosion resistance than conventional materials by overlapping a plurality of coatings as thinly as possible. That is, the present invention aims to reduce defects, improve adhesion between coatings, and improve corrosion resistance by using a multilayer structure consisting of four stages: oxide coating, sealing treatment, intermediate bonding resin, and epoxy resin. .

〔実施例〕〔Example〕

本発明の一実施例に係る耐食材科の断面を第1図に示す
FIG. 1 shows a cross section of a corrosion-resistant material according to an embodiment of the present invention.

第1図に示す本実施例は、アルミニウム合金1の表面に
酸化被膜2を介して形威された水和物と水酸化物より彦
る封孔処理層3、をよび同封孔処理層3の表面に中間結
合用樹脂層4を介して形成されたエポキシ樹脂5より戒
っている。
The present embodiment shown in FIG. This is because the epoxy resin 5 is formed on the surface via the intermediate bonding resin layer 4.

本実施例に係る耐食材科形成のための処理は次の手順で
行う。筐ず、脱脂、アルカリ洗浄、水洗、中和、水洗の
順に行われる工程で前処理サレたJIS2014に基づ
〈アルミニウム合金1を一定の濃度(10〜25wt僑
〉、温度(10〜30℃)に保持された硫酸水溶液中に
浸漬し、同アルミニウム合金1に所定の時間(10〜3
0分)通電(電流密度1〜2A/dm,!圧10〜20
V)t,て電解によりアルミニウム合金lの表面にAx
tosから或る酸化被膜2(膜厚約20μ)を形成する
The process for forming a corrosion-resistant family according to this example is performed in the following steps. Based on JIS 2014, aluminum alloy 1 was pretreated in the following steps: degreasing, alkaline cleaning, water washing, neutralization, and water washing. The aluminum alloy 1 was immersed in a sulfuric acid aqueous solution held in
0 minutes) energization (current density 1 to 2 A/dm, ! pressure 10 to 20
V) t, Ax is applied to the surface of aluminum alloy l by electrolysis.
A certain oxide film 2 (film thickness of about 20 μm) is formed from TOS.

な訟、この場合の通電時間は被膜の厚さによって異なる
。このようにして形戒された酸化被膜2には空孔2aが
あるため、酸化被膜2が形成されたアルミニウム合金1
は、水洗を行った後温度80℃以上、pH5.0〜6.
0  に保持された酢酸ニンケル中に10分間以上浸漬
し、空孔2aの部分にAll−tos ’ XHsOか
らなる水和物とNi (OH)t及びA 12 ( O
H )s  からなる水酸化物を生或させて封孔し、封
孔処理層3を形成させる。
In this case, the current application time varies depending on the thickness of the coating. Since the oxide film 2 formed in this way has pores 2a, the aluminum alloy 1 on which the oxide film 2 is formed
After washing with water, the temperature is 80°C or higher and the pH is 5.0 to 6.
It was immersed in nickel acetate maintained at 0.0 for 10 minutes or more, and a hydrate consisting of All-tos'XHsO, Ni(OH)t and A12(O
A hydroxide consisting of H ) s is generated to seal the pores and form a pore-sealing layer 3 .

前記封孔処理により酸化被膜2表面に形成された水和物
及び水酸化物よりなる封孔処理層3の上には、γ−グリ
シドキシプロビルトリメトキシシラン樹脂を浸漬処理し
て中間結合用樹脂層4を形成させた後さらにエポキシ樹
脂5を浸漬処理により付着させる。その後温度100℃
で熱処理を行い化学結合を促進させ、耐食材科の形成を
完了する。
On the sealing layer 3 made of hydrate and hydroxide formed on the surface of the oxide film 2 by the sealing treatment, a γ-glycidoxypropyltrimethoxysilane resin is immersed to form an intermediate bond. After forming the resin layer 4, an epoxy resin 5 is further applied by dipping. Then temperature 100℃
Heat treatment is performed to promote chemical bonding and complete the formation of the corrosion-resistant family.

次に、前記の処理方法によって得られた耐食材科と従来
の材料とについて行った比較試験の結果を第2図及び第
3図により説明する。第2図は塩素ガスに、又第3図は
弗化水素ガスに水分を混入させ、和対湿度70%,温度
80℃とした湿りガス中で行ったものである。第2図及
び第3図は、腐食試験前後の試験片の重量減量から計算
により求めた腐食速度と試験日数との関係を表わすグラ
フで、図に示すようにいずれのガス中に釦いてもアルミ
ニウム合金のみの場合は、従来のステンレス鋼、Niメ
ッキ処理による耐食コーティング材科及び本実施例に係
る耐食材料に比べ著しく耐食性が劣る。さらにステンレ
ス鋼、Niメッキ処理による耐食材科とも、本実施例に
係る耐食材料に比べると耐食性が劣って分り、本実施例
に係る耐食材科に比べると耐食性が劣って卦り、本実施
例に係る耐食材料結合は、第4図に示すようにシランカ
ップリング処理により封孔処理層中のOH基と処理液中
のCH.0が反応してメタノールを生成し、同メタノー
ルは除去され、残る酸素原子Oによって行われる。
Next, the results of a comparative test conducted on the corrosion-resistant material obtained by the above treatment method and a conventional material will be explained with reference to FIGS. 2 and 3. Figure 2 shows the results obtained by mixing moisture with chlorine gas, and Figure 3 with hydrogen fluoride gas mixed with water, and the tests were conducted in a humid gas atmosphere with a total humidity of 70% and a temperature of 80°C. Figures 2 and 3 are graphs showing the relationship between the corrosion rate calculated from the weight loss of the test piece before and after the corrosion test and the number of test days. In the case of using only an alloy, the corrosion resistance is significantly inferior to that of conventional stainless steel, anti-corrosion coating materials using Ni plating, and anti-corrosion materials according to this example. Furthermore, both stainless steel and the corrosion-resistant material made of Ni plating were found to have inferior corrosion resistance compared to the corrosion-resistant material according to this example; As shown in FIG. 4, the corrosion-resistant material is bonded to the OH groups in the sealing layer and the CH. 0 reacts to form methanol, which is removed and carried out by the remaining oxygen atom O.

上記のように、本実施例の材料は従来の材料に比べて耐
食性に優れているため、本実施例の材料を用いた反応容
器や配管等は塩素ガスや弗素ガスの環境中にかいても、
十分安全に使用することが可能となった。
As mentioned above, the material of this example has superior corrosion resistance compared to conventional materials, so reaction vessels and piping made of the material of this example can be exposed to environments containing chlorine gas or fluorine gas. ,
It is now possible to use it safely.

次に、本実施例の耐食材科が動翼及び靜翼に適用された
ターボ分子ポンプについて、第5図により説明する。
Next, a turbo molecular pump in which the corrosion-resistant material of this embodiment is applied to the moving blades and the silent blades will be explained with reference to FIG.

第5図に示すターボ分子ポンプは、ケーシング16の上
部に吸気口12、ケーシング16の下部に排気口13が
設けられてかり、ロータ6に装着した複数の動翼15を
ケーシング16に設けられた複数の靜IR14間の溝状
の空間内で高速回転させることにより、排気作用を得て
吸気口12側を高真空にしている。上記ロータ6は高速
回転するため、ロータ6の上部軸受8はロータ6の中心
軸7に装着した永久磁石8aと、ロータ6の中心軸7の
周囲に中心軸7と間隔をかいてケーシング16の下部か
ら上方に向って伸びる支持台10に装着した永久磁石8
bとをある間隙を設けて対向させ、磁気的に反撥させた
磁気軸受であり、下部軸受9はロータ6の中心軸7の軸
方向卦よび軸直角方向に負荷能力を有スる、例えばスパ
イラルグループベアリングのようなすべり軸受で構成さ
れている。11はモータである。
The turbo molecular pump shown in FIG. 5 has an intake port 12 at the top of a casing 16, an exhaust port 13 at the bottom of the casing 16, and a plurality of rotor blades 15 attached to a rotor 6. By rotating at high speed within the groove-shaped space between the plurality of silent IRs 14, an exhaust effect is obtained and the intake port 12 side is made into a high vacuum. Since the rotor 6 rotates at high speed, the upper bearing 8 of the rotor 6 has a permanent magnet 8a mounted on the central shaft 7 of the rotor 6, and a casing 16 arranged around the central shaft 7 of the rotor 6 at a distance from the central shaft 7. A permanent magnet 8 attached to a support base 10 extending upward from the bottom
The lower bearing 9 is a magnetic bearing that has a load capacity in the axial direction of the central shaft 7 of the rotor 6 and in the direction perpendicular to the axis, for example, a spiral bearing. It consists of a plain bearing like a group bearing. 11 is a motor.

次に、上記ターボ分子ポンプについて、本実施例の耐食
材科を用いたものと従来の材料を用いたものについて行
った疲労試験の結果を第6図により説明する。なか、こ
の試験は、塩素ガスに水分を混入させ、相対湿度70%
、温度80℃とした湿りガス中で行ったものである。
Next, the results of fatigue tests conducted on the above-mentioned turbomolecular pumps using the corrosion-resistant material of this embodiment and those using conventional materials will be explained with reference to FIG. In this test, water is mixed with chlorine gas and the relative humidity is 70%.
, conducted in humid gas at a temperature of 80°C.

上記の試験結果は、第6図に示すように、従来の単に陽
極酸化被膜のみのもの、あるいはその上にエポキシ樹脂
層を形成させたもの、又温水中で沸騰処理した上に中間
結合用樹脂層を形成させその上にエポキシ樹脂を形成さ
せたものよりも、本実施例の耐食材科を用いたターボ分
子ポンプが強度的に優れていることが判る。な》、こ\
ではアルミニウム合金を用いた場合について記載したが
、アルミニウム金属を用いた場合についても同様の作用
効果が得られる。
As shown in Figure 6, the above test results show that the conventional anodic oxidation film alone, the epoxy resin layer formed on it, and the intermediate bonding resin film that has been boiled in hot water. It can be seen that the turbomolecular pump using the corrosion-resistant material of this example is superior in strength to the one in which a layer is formed and an epoxy resin is formed thereon. Na》、ko\
Although the case where an aluminum alloy is used has been described above, similar effects can be obtained when aluminum metal is used.

上記により、本実施例の耐食材科は、従来の耐食材科よ
りも耐食性に優れ、かつ疲労強度が改善されているため
、塩素ガス、弗素ガスなどの腐食性ガスの環境中でもタ
ーボ分子ポンプを十分安全に高速運転させることが可能
となった。
As a result of the above, the corrosion-resistant material of this example has superior corrosion resistance and improved fatigue strength than conventional corrosion-resistant materials, so the turbo molecular pump can be used even in environments with corrosive gases such as chlorine gas and fluorine gas. It is now possible to drive at high speeds safely.

〔発明の効果〕〔Effect of the invention〕

本発明の耐食材料は、アルミニウム合金の表面に酸化被
膜、封孔処理層、中間結合用樹脂層を介してエポキシ樹
脂層が付着され、多層構造を形成し、前記中間結合用樹
脂層は封孔処理層と酸素原子によって化学的に結合され
ることによって、従来の材料よりも耐食性に優れるため
、本発明の耐食材科を用いた反応容器や配管等は塩素ガ
ス、弗化水素ガスの環境中にかいても十分安全に使用す
ることが可能となり、筐た、疲労強度も改善されるため
、ターボ分子ポンプを十分安全に高速運転させることが
可能となった。
In the corrosion-resistant material of the present invention, an epoxy resin layer is attached to the surface of an aluminum alloy via an oxide film, a sealing layer, and an intermediate bonding resin layer to form a multilayer structure, and the intermediate bonding resin layer is a sealing resin layer. Chemically bonded to the treated layer by oxygen atoms, it has better corrosion resistance than conventional materials, so reaction vessels and piping using the corrosion-resistant material of the present invention can be used in environments containing chlorine gas or hydrogen fluoride gas. It is now possible to use the turbomolecular pump safely and safely, and the fatigue strength of the casing has also been improved, making it possible to operate the turbomolecular pump safely and at high speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る説明図、第2図は上記
一実施例と従来の材料に関する塩素ガスによる腐食速度
の試験結果の説明図、第3図は上記一実施例と従来の材
料に関する弗化水素ガスによる腐食速度の試験結果の説
明図、第4図は上記一実施例のシランカツブリング処理
の説明図、第5図は上記一実施例が適用されるターボ分
子ポンプの構造図、第6図は上記一実施例と従来の材料
を用いたターボ分子ポンプの彼労試験結果の説明図であ
る。 1・・・アルミニウム合金、2・・・酸化被膜、2a・
・・空孔、3・・・封孔処理層、4・・・中間結合用樹
脂層、5・・・エポキシ樹脂。 痢1図
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of test results of corrosion rates by chlorine gas for the above embodiment and conventional materials, and Fig. 3 is an explanatory diagram of the above embodiment and conventional materials. FIG. 4 is an explanatory diagram of the test results of the corrosion rate by hydrogen fluoride gas for the material, FIG. 4 is an explanatory diagram of the silane cobbling treatment of the above embodiment, and FIG. The structural diagram and FIG. 6 are explanatory diagrams of the labor test results of the turbo-molecular pump using the above-mentioned embodiment and conventional materials. 1... Aluminum alloy, 2... Oxide film, 2a.
... Void, 3... Sealing layer, 4... Intermediate bonding resin layer, 5... Epoxy resin. Diarrhea diagram 1

Claims (1)

【特許請求の範囲】[Claims]  アルミニウム合金の表面に形成された酸化被膜と、該
酸化被膜を酢酸エツケル浴中にて処理して得られた水和
物及び水酸化物よりなる封孔処理層と、該封孔処理層上
に形成された中間結合用樹脂層と、該中間結合用樹脂層
上に形成されたエポキシ樹脂層よりなり、塩素ガス及び
弗化水素ガスに対して耐食性を有することを特徴とする
耐食材料。
An oxide film formed on the surface of an aluminum alloy, a sealing layer made of hydrates and hydroxides obtained by treating the oxide film in an acetic acid Etzkel bath, and a sealing layer formed on the sealing layer. A corrosion-resistant material comprising an intermediate bonding resin layer formed and an epoxy resin layer formed on the intermediate bonding resin layer, and having corrosion resistance against chlorine gas and hydrogen fluoride gas.
JP3744490A 1989-06-14 1990-02-20 Corrosion resistant material Pending JPH0396338A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14955389 1989-06-14
JP1-149553 1989-06-14

Publications (1)

Publication Number Publication Date
JPH0396338A true JPH0396338A (en) 1991-04-22

Family

ID=15477680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3744490A Pending JPH0396338A (en) 1989-06-14 1990-02-20 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JPH0396338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel
CN107075691A (en) * 2014-11-11 2017-08-18 株式会社神户制钢所 Aluminium alloy material, conjugant, the manufacture method of member for automobile and aluminium alloy material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855072A (en) * 1971-11-15 1973-08-02
JPS6041158A (en) * 1983-08-15 1985-03-04 Fujitsu Ltd Bus control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855072A (en) * 1971-11-15 1973-08-02
JPS6041158A (en) * 1983-08-15 1985-03-04 Fujitsu Ltd Bus control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel
CN107075691A (en) * 2014-11-11 2017-08-18 株式会社神户制钢所 Aluminium alloy material, conjugant, the manufacture method of member for automobile and aluminium alloy material

Similar Documents

Publication Publication Date Title
US20110206532A1 (en) Electroless metal coatings
TW515853B (en) Improved anode formulation and methods of manufacture
JPH05261852A (en) Articles made of aluminum magnesium, or titanium with an oxide ceramic layer filled with fluorine polymer and production thereof
KR20110007067A (en) Production method of a coating layer for a piece of turbomachinery component, the component itself and the corresponding piece of machinery
JP2010265887A (en) Method for producing protective coating for component of turbomachine, the component, and the machine
EP1493843A1 (en) Coated metallic component
US6881452B2 (en) Method for improving the TBC life of a single phase platinum aluminide bond coat by preoxidation heat treatment
JPH0396338A (en) Corrosion resistant material
JP2006316793A (en) Pump and its manufacturing method
GB2188942A (en) Protective coating
JP2563541B2 (en) Corrosion resistant material for turbo molecular pump
CN107904646A (en) A kind of processing method of CMP tool carrier-table surface
JP2008261282A (en) Fuel pump having component subjected to alumite treatment, and alumite treatment method of component thereof
JPH01132796A (en) Corrosion-resistant material for turbo molecular pump
JP4508208B2 (en) Surface treatment layer for turbo molecular pump
JP2007197766A (en) Rotary machine with anticorrosive coating applied thereon
US3647647A (en) Process for plating titanium
JPH09263868A (en) Aluminum alloy sheet excellent in adhesion of coated film and its production
JPH09303289A (en) Surface treatment method for molecular pump
JPH10259790A (en) Pump and its manufacture
JP3978050B2 (en) Surface treatment layer for turbo molecular pump
JP2006233978A (en) Turbo-molecular pump
JPH08281868A (en) Corrosion-resistant structure
CN108730229B (en) High-strength compressor impeller
JP7161192B2 (en) LAMINATED COATING LAYER, METHOD FOR FORMING LAMINATED COATING LAYER, AND METHOD FOR DETERMINING LAMINATED STRUCTURE