JPH0395929A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0395929A
JPH0395929A JP23313589A JP23313589A JPH0395929A JP H0395929 A JPH0395929 A JP H0395929A JP 23313589 A JP23313589 A JP 23313589A JP 23313589 A JP23313589 A JP 23313589A JP H0395929 A JPH0395929 A JP H0395929A
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
junction
passivation film
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23313589A
Other languages
Japanese (ja)
Inventor
Takashi Suga
菅 孝
Masaru Wakatabe
勝 若田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP23313589A priority Critical patent/JPH0395929A/en
Publication of JPH0395929A publication Critical patent/JPH0395929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To easily form a second passivation film by a low temperature treating and to improve environmental resistance reliability such as moisture resistance characteristic, etc., by providing a silicon oxide covering at least one PN junction exposed on the surface, and a second layer of amorphous silicon insulator formed in contact with at least part at a specific substrate temperature. CONSTITUTION:In an example of a bipolar power transistor, Al wirings are generally bonded to the wide parts of an emitter electrode E and a base electrode B. A thin passivation film of SiO2, etc., covering n P-N junction J is generally formed on a part 4. When ionic contaminant stains the surface, electrons or holes are induced in a boundary between the film and Si to deteriorate the characteristics of a semiconductor. For example, an amorphous silicon insulating layer 5 is formed several microns on a whole surface in a wafer state having many cells at 400 deg.C or lower, i.e., about 100-300 deg.C in a microwave CVD unit. After an a-SiX is formed on the whole surface, only the a-SiX on a bonding land is removed.

Description

【発明の詳細な説明】 本発明は半導体装置の構造に関するものであり、特に表
面安定化処理(バシベーション)に関するものである. ダイオード、トランジスタ等の半導体装置においては、
外部環境に対して敏感であるので、特にその表面保護処
理(パシベーション)が重要である.これらの保護膜と
はシリコン系酸化物(810■等)リンガラス、或いは
窒化膜(813N,)が知られている.又、シリコン酸
化膜(Si○2)は膜質の良さからプレナ−面のPN接
合を直接覆い、更に耐温、耐汚染等耐環境面から該Si
n2膜上に上記のSi,Nいリンガラス或いはポリシリ
コン等を積層することが行われている。然し乍らこれら
の膜は1000℃前後の高温処理を要するため工程管理
に工数を要し、又、PN接合特性にしばしば悪影響を及
ぼす重金層汚染を受けることがある.本発明を係る点を
鑑み、Si○2膜の長所を 生がし、第2バシペーショ
ン膜として、上記Si○2の短所を補うと共に400℃
以下の低温処理により容易に形或できるアモルファスシ
リコン系絶縁膜(以下a−SiX)(XはH,F,N,
O、Cの少なくとも1つ以上の原子組成を指す)を設け
て、上記の問題点を解消した半導体装置を提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a semiconductor device, and particularly to surface stabilization treatment (vasivation). In semiconductor devices such as diodes and transistors,
Since it is sensitive to the external environment, surface protection treatment (passivation) is particularly important. These protective films are known to be silicon-based oxides (810, etc.), phosphorous glass, or nitride films (813N, etc.). In addition, the silicon oxide film (Si○2) directly covers the PN junction on the planar surface due to its good film quality, and is also suitable for environmental resistance such as temperature resistance and pollution resistance.
The above-mentioned Si, N phosphorus glass, polysilicon, etc. are laminated on the n2 film. However, these films require high-temperature treatment at around 1000°C, which requires a lot of man-hours for process control, and they are also subject to heavy metal layer contamination, which often has an adverse effect on PN junction properties. In view of the points related to the present invention, the advantages of the Si○2 film are utilized, and the second vacillation film is used to compensate for the disadvantages of the Si○2 and to
Amorphous silicon-based insulating film (hereinafter a-SiX) (X is H, F, N,
The present invention provides a semiconductor device which solves the above-mentioned problems by providing an atomic composition of at least one of O and C).

以下図面を参照して説明する.第1図(a)(b)及び
(c)は本発明の一実施例構造を示す平面図及び断面図
で、第1図(a)はa−SiX膜の形或前の平面図、(
b)はa−SiX膜形成後の平面図、(c)は同(a)
図A−A’断面図である.第1図においては、バイボー
ラ型のパワートランジスタの例を示し、1はシリコン半
導体基板、2はベース拡散領域、3はエミッタ拡散領域
、4はP−N接合(J)を覆うシリコン酸化物(SiO
2)、B及びEはベース及びエミッタ電極(AM)、5
はa−SiX膜である. エミッター電極Eの広い部分及びベース電極Bの広い部
分に一般にはAfl線がボンデイングされてて使用され
る.第1図(a)の部分4には一般には8102等の薄
いパッシベーション膜が施されている.このバッシペー
ション膜は薄いので、その表面にイオン性の汚れが付着
すると膜とSiの界面に電子あるいは正孔が誘起され、
半導体の特性を悪くしてしまう。そこでa−SiX膜5
を厚く一つけて表面にイオン性の汚れがついても膜とシ
リコンの界面に誘起される電子あるいは正孔を極端に少
なくして、半導゛チップの組立以降の工程を簡単な汚染
対策のみで行う様にすることができる.具体的には次の
様になる。第1図に示したセルが多数あるウェファ−の
状態でアモルファスシリコン系絶縁層を全面に100〜
300℃程度の温度で数ミクロン形成させる。アモルフ
ァスシリコン系絶縁物は一般に知られている方法例えば
シランをマイクロ波CVD装置中でプラズマ化して形成
させることが出来る。全面にa−SiXを形戒後、通常
の写真技術とエッチング技術により前述のボンデイング
ランド上のa−SiXのみを除去する、第1図(b)及
び(C)はその平面図と断面を示す,a−SiXは厚い
のでこの上にイオン性の汚染が付着してもシリコン面上
に形成されているPN接合の特性は殆んど影響を受ける
ことがない。
This will be explained below with reference to the drawings. FIGS. 1(a), 1(b) and 1(c) are a plan view and a sectional view showing the structure of an embodiment of the present invention. FIG.
b) is a plan view after forming the a-SiX film, (c) is the same as (a)
It is a sectional view taken along the line A-A'. FIG. 1 shows an example of a bipolar type power transistor, where 1 is a silicon semiconductor substrate, 2 is a base diffusion region, 3 is an emitter diffusion region, and 4 is a silicon oxide (SiO
2), B and E are base and emitter electrodes (AM), 5
is an a-SiX film. Generally, Afl wires are bonded to the wide part of the emitter electrode E and the wide part of the base electrode B. Generally, a thin passivation film such as 8102 is applied to portion 4 in FIG. 1(a). This bacsipation film is thin, so when ionic dirt adheres to its surface, electrons or holes are induced at the interface between the film and Si.
It deteriorates the characteristics of semiconductors. Therefore, a-SiX film 5
Even if the surface is covered with ionic contaminants, the number of electrons or holes induced at the interface between the film and silicon can be extremely reduced, making it possible to perform processes after semiconductor chip assembly with only simple contamination countermeasures. You can do as you like. Specifically, it is as follows. A wafer with a large number of cells as shown in Figure 1 is coated with an amorphous silicon insulating layer on the entire surface.
A few microns are formed at a temperature of about 300°C. The amorphous silicon-based insulator can be formed by a generally known method, for example, by converting silane into plasma in a microwave CVD apparatus. After applying a-SiX to the entire surface, only the a-SiX on the bonding land mentioned above is removed using normal photography and etching techniques. Figures 1(b) and 1(c) show the plan view and cross section. , a-SiX is thick, so even if ionic contamination adheres thereon, the characteristics of the PN junction formed on the silicon surface are hardly affected.

実験によれば500V耐圧の半導体の場合、膜厚5μ程
度以上の絶縁物で保護されていれば問題はない.但しバ
ッシベーション膜4がSi表面のPN接合に対してよい
パッシベーション膜であることが一般には必要である. 実験によれば次のように構成することによりa−SiX
il[を形成できた。第2図は本発明に適用するa−S
iX形成のためのCVD装置の概略構或図である。図中
(6)は真空反応室、(7)はマイクロ波(2.45G
H7.)電源、(8)はマイクロ波発振器、(9)はマ
グネトロン、(10)は矩形導波管、(11)は石英窓
、(10″)は内部導波管、(12)はガス導入パイプ
、(13)は加熱手段を含む支持台、(14)はシリコ
ンウェハ、(l5)は真空回転ボンブ、(l6)はブー
スタボンブ、(17)は拡散ボンブである.上記の装置
により第一表の堆積条件の下にa−Si膜の堆積が行わ
れた。
Experiments have shown that in the case of a semiconductor with a withstand voltage of 500V, there is no problem as long as it is protected with an insulator with a thickness of about 5μ or more. However, it is generally necessary that the passivation film 4 is a good passivation film for the PN junction on the Si surface. According to experiments, a-SiX can be produced by the following configuration.
il[ could be formed. Figure 2 shows a-S applied to the present invention.
1 is a schematic diagram of a CVD apparatus for forming iX. In the figure, (6) is a vacuum reaction chamber, and (7) is a microwave (2.45G
H7. ) Power source, (8) is microwave oscillator, (9) is magnetron, (10) is rectangular waveguide, (11) is quartz window, (10″) is internal waveguide, (12) is gas introduction pipe , (13) is a support table including a heating means, (14) is a silicon wafer, (l5) is a vacuum rotary bomb, (l6) is a booster bomb, and (17) is a diffusion bomb. The a-Si film was deposited under the following deposition conditions.

く第一表〉 又、上記の条件の他、導入ガス中に水素(F{)、フッ
素(F)、窒素(N)、炭素(C)、酸素(O)等の1
つ又は複数を同時に導入することにより、光感度を持た
ない、絶縁物として更に優れたa−SiX膜(例a−S
 i H, a−S i FH、a−S i. NH%
a−S i CH, a−S i OH,a−Si○N
H)を得ることができる。
Table 1> In addition to the above conditions, hydrogen (F{), fluorine (F), nitrogen (N), carbon (C), oxygen (O), etc.
By introducing one or more at the same time, an a-SiX film that has no photosensitivity and is even better as an insulator (e.g. a-SiX
i H, a-S i FH, a-S i. NH%
a-S i CH, a-S i OH, a-Si○N
H) can be obtained.

以上は実施の1例であり、具体的な実施法は多数考える
ことが出来る。半導体バッシベーションの専門家であれ
ば第一表に示したアモルファスシリコン系絶縁物は半導
体のバッシベーション膜として極めてすぐれていること
を理解することが出来る。
The above is one example of implementation, and many specific implementation methods can be considered. Experts in semiconductor passivation will understand that the amorphous silicon-based insulators shown in Table 1 are extremely excellent as semiconductor passivation films.

以上のように本発明によれば低温処理により容易に第二
バシベーション膜が形成できるので製造工程が簡易であ
り、しかも耐湿特性等の耐環境面から第1パシベーショ
ン膜を保護できる等高信頼度半導体装置用としてその効
果は大きい.図中lはシリコン半導体基板、2はペース
領域3はエミッタ領域、4はシリコン酸化膜(SiOz
)、5はアモルファスシリコン系絶縁(a−SiX)膜
、Bばベース電極、Eはエミッタ電極、JはPN接合で
ある。
As described above, according to the present invention, the second passivation film can be easily formed by low-temperature treatment, so the manufacturing process is simple, and the first passivation film can be protected from environmental resistance such as moisture resistance, resulting in high reliability. This is highly effective for semiconductor devices. In the figure, l is a silicon semiconductor substrate, 2 is a space region 3 is an emitter region, and 4 is a silicon oxide film (SiOz
), 5 is an amorphous silicon-based insulating (a-SiX) film, B is a base electrode, E is an emitter electrode, and J is a PN junction.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1つ以上のPN接合が表面に露出している半
導体装置において、前記PN接合を覆うシリコン酸化物
と、前記シリコン酸化物の少なくとも一部に接する40
0℃以下の基板温度で形成したアモルファスシリコン系
絶縁物の第2層を備えたことを特徴とする半導体装置。
In a semiconductor device in which at least one or more PN junctions are exposed on the surface, a silicon oxide covering the PN junction and a silicon oxide layer contacting at least a portion of the silicon oxide
A semiconductor device comprising a second layer of an amorphous silicon-based insulator formed at a substrate temperature of 0° C. or lower.
JP23313589A 1989-09-08 1989-09-08 Semiconductor device Pending JPH0395929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23313589A JPH0395929A (en) 1989-09-08 1989-09-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23313589A JPH0395929A (en) 1989-09-08 1989-09-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0395929A true JPH0395929A (en) 1991-04-22

Family

ID=16950284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23313589A Pending JPH0395929A (en) 1989-09-08 1989-09-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0395929A (en)

Similar Documents

Publication Publication Date Title
JP3559971B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
US4889829A (en) Method for producing a semiconductor device having a silicon-on-insulator structure
US5807787A (en) Method for reducing surface leakage current on semiconductor intergrated circuits during polyimide passivation
EP0685890B1 (en) Semiconductor device having a MOS gate structure and a surface protective film and method of fabricating the same
JPS59119733A (en) Semiconductor device
USH665H (en) Resistive field shields for high voltage devices
US3906620A (en) Method of producing multi-layer structure
JPH04233230A (en) Interconnection method for silicon region isolated on semiconductor substrate
US4729009A (en) Gate dielectric including undoped amorphous silicon
JPH0350414B2 (en)
US6777354B2 (en) Semiconductor device and method of manufacturing the same
US20070096107A1 (en) Semiconductor devices with dielectric layers and methods of fabricating same
US3550256A (en) Control of surface inversion of p- and n-type silicon using dense dielectrics
US4224636A (en) Semiconductor device with thermally compensating SiO2 -silicate glass-SiC passivation layer
JPH04109623A (en) Semiconductor device with p-n junction
JPH0395929A (en) Semiconductor device
JP2001057426A (en) High voltage semiconductor device and method for fabrication
JPS5948960A (en) Manufacture of insulated gate type transistor
JPH08195486A (en) Diamond electron element
JPS5851523A (en) Semiconductor device
JPS62115868A (en) Manufacture of semiconductor device
JPS59150478A (en) Thin film circuit device
JPS6058651A (en) Semiconductor device
JPS60257165A (en) Manufacture of solid-state image pickup device
TW305060B (en) The method for eliminating void of metal interconnection