JPH039307A - Method for connecting optical fiber including metallic pipe - Google Patents

Method for connecting optical fiber including metallic pipe

Info

Publication number
JPH039307A
JPH039307A JP1142254A JP14225489A JPH039307A JP H039307 A JPH039307 A JP H039307A JP 1142254 A JP1142254 A JP 1142254A JP 14225489 A JP14225489 A JP 14225489A JP H039307 A JPH039307 A JP H039307A
Authority
JP
Japan
Prior art keywords
optical fiber
tube
metal
welding
metal cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1142254A
Other languages
Japanese (ja)
Inventor
Yasunobu Miyazaki
康信 宮崎
Toru Saito
斉藤 亨
Nobuo Araki
荒木 信男
Shimizu Yokoi
清水 横井
Mitsuo Kurihara
栗原 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP1142254A priority Critical patent/JPH039307A/en
Publication of JPH039307A publication Critical patent/JPH039307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To preclude thermal deformation such as the burning of the jacket of an optical fiber by using a plasma arc and laser luminous flux with low energy density, and repeating spot welding and forming a continuous airtight weld zone. CONSTITUTION:When optical fiber including metallic jacket pipes 2 and 4 where optical fibers 1 and 3 are inserted while gaps are formed with the internal walls of the metallic jacket pipes are connected by a welding method through a metallic connecting pipe 5, the plasma arc and laser luminous flux with low energy density are used and spot welding is repeated as shown by 7 - 16 to form the cintinuous airtight weld zone. In this case, the welding is carried out, spot by spot, in a short time, so the weld zone is cooled speedily in a half time to hold the mean temperature of the weld one invariably low and the optical fibers are held at a distance from the weld zone, so that the value of heat conducted to the optical fiber surfaces is extremely small. Consequently, the thermal damage of the jackets which are not tolerant to heat so much can be evaded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は金属製被覆管内に光ファイバが挿通された状
態での光ファイバ入り金属管(すなわち、光フアイバ心
線、光フアイバコードまたは光フアイバケーブル)の接
続方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a metal tube containing an optical fiber (i.e., an optical fiber core, an optical fiber cord, or an optical fiber cord) in which the optical fiber is inserted into the metal cladding tube. (cable) connection method.

この発明における光ファイバとは、コアとクラッド層か
らなるファイバ素線、このファイバ素線に合成樹脂、金
属、セラミックなどでコーチインクしたもの、ならびに
こわらの卯心のもの、多心のもの、より線のもの、およ
びテープ状のものをいう。また、被覆管とは銅、銅、ア
ルミニウム、チタンその他の金属製被覆管をいう。
In this invention, the optical fiber includes a fiber wire consisting of a core and a cladding layer, a fiber coated with synthetic resin, metal, ceramic, etc., a stiff Ushin fiber, a multi-core fiber, Refers to stranded wires and tape-shaped wires. In addition, the cladding tube refers to a cladding tube made of copper, copper, aluminum, titanium, or other metals.

[従来の技術] 架空、海底、地下などに延線される光ファイバは、過度
の張力を防止したり、耐環境性を持たゼるために金属管
なとて被覆して用いられることかある。たとえば、近年
広く用いられるようになった光通仏用ケーブルには、光
ファイバか強度的に弱いことから、金属製被覆管に挿通
された光ファイバか要求され、るようになってきている
[Prior art] Optical fibers that are extended over the air, under the sea, underground, etc. are sometimes coated with metal tubes to prevent excessive tension and to provide environmental resistance. . For example, optical fiber cables that have become widely used in recent years require optical fibers that are inserted through metal cladding tubes, since optical fibers are weak in strength.

また、海底光ケーブルのように長距離間に延線されるも
のでは、光ファイバ入り金属製被覆管同士が接続される
。このような接続では、接続部において、被覆管同士の
間に接続管あるいは接続筒を介して被覆管を接続する。
In addition, in cables that are extended over long distances, such as submarine optical cables, metal cladding tubes containing optical fibers are connected to each other. In such a connection, the cladding tubes are connected through a connecting tube or a connecting tube between the cladding tubes at the connecting portion.

たとえば、光ファイバ入り金属製被覆管同士の接続方法
として実開昭59−33015号公報で開示された接続
部では、接続筒と光フアイバケーブルのシースどの接続
部を溶6または溶接により一体化”Y8際、光ファイバ
を接続r1)及び光フアイバケーブルのシ・−スのそi
l、、i’ tLにまたがる保護バイブ内に挿通してい
る。
For example, in the connection section disclosed in Japanese Utility Model Application Publication No. 59-33015 as a method for connecting metal clad tubes containing optical fibers, the connection section between the connection tube and the sheath of the optical fiber cable is integrated by melting or welding. At Y8, connect the optical fiber (r1) and the sheath of the optical fiber cable.
It is inserted into a protective vibrator that spans l, , i' tL.

[発明か解決しようとする課題] しかし従来の光ファイバ入り金属製被覆管の接続方法に
は次のような課題かあった。
[Problems to be Solved by the Invention] However, the conventional method for connecting metal clad tubes containing optical fibers has the following problems.

すなわち、光ファイバの挿通さおだ金属製板■(管の内
径が十分大きく、光ファイバと被覆管内壁との間に十分
な距離かと才する場伯には、接続部−トの光ファイバに
保護管をかふせることによ)て、溶接時の熱から光ファ
イバを絶縁することは容易であった。
In other words, if the inner diameter of the tube is sufficiently large and there is sufficient distance between the optical fiber and the inner wall of the cladding tube, the optical fiber should be inserted into the optical fiber at the connection point. It was easy to insulate the optical fiber from the heat during welding by covering the protective tube.

ど4:ろか金属製被覆管が細径になり、内径か小さくな
るにつわて溶接時の熱から光ファイバを遮断することは
容易でなくなり、溶接入熱をある程度抑えて溶接しても
連続で溶接すると、光ファイバの被覆が焼損′1−るな
とその熱的劣化を避けることができなかった。
D4: As metal cladding tubes become smaller in diameter and the inner diameter becomes smaller, it becomes difficult to isolate the optical fiber from the heat during welding, and even if welding is continued by suppressing the welding heat input to a certain extent, welding will continue. When welding, it was impossible to avoid burnout and thermal deterioration of the optical fiber coating.

また被覆管が厚肉になると一度に溶融ずべき金属量が多
くなり、溶接には大量の入熱が必要となって、溶接部の
冷却が間に合わなくなり内部の光ファイバを焼損してい
た。逆に肉厚が極めて薄くなっても溶融金属が溶は落ち
て内部の光ファイバに熱的損傷を与えていた。
Furthermore, when the cladding tube becomes thicker, the amount of metal that must be melted at once increases, and welding requires a large amount of heat input, which prevents the welding part from being cooled in time and burns out the optical fiber inside. On the other hand, even if the wall thickness was extremely thin, the molten metal would drip off and cause thermal damage to the internal optical fibers.

そこでこの発明はプラズマアーク、低エネルギー密度の
レーザ光束など比較的低いエネルギー密度の熱源をもっ
て簡便かつ効果的に溶接時の熱量を規制する溶接方法を
提供し、もって光ファイバ入り金属製被覆管の接続方法
を提供するものである。
Therefore, the present invention provides a welding method that simply and effectively regulates the amount of heat during welding using a heat source with a relatively low energy density such as a plasma arc or a laser beam with a low energy density, and thereby connects metal clad tubes containing optical fibers. The present invention provides a method.

ここでいう低エネルギー密度のレーザ光束とは、プラズ
マアークど同程度のエネルギー密度を有するレーザ光束
で、具体的には101′watt/cm2未満のエネル
ギー密度のレーザ光束である。
The low energy density laser beam herein refers to a laser beam having an energy density comparable to that of a plasma arc, specifically, a laser beam having an energy density of less than 101'watt/cm2.

[課題を解決するための手段] 本発明は上記事情に鑑みてなされたものであり、その要
旨とするところ以下のとおりである。
[Means for Solving the Problems] The present invention has been made in view of the above circumstances, and its gist is as follows.

1、光ファイバが金属製被覆管の内壁との間に隙間をも
って挿通された光ファイバ入り金属製被覆管同士を金属
製接続管を介して溶融溶接方法により接続する方法にお
いて、プラズマアーク、低エネルギー密度のレーザ光束
を用い、点状の溶接を縁り返して連続した気密性のある
溶接部を形成することによって溶接時の熱量を規制し、
光ファイバ入り金属製被覆管同士を金属製接続管を介し
て接続する方法。
1. In the method of connecting optical fiber-containing metal cladding tubes, in which the optical fiber is inserted with a gap between the inner wall of the metal cladding tube and the inner wall of the metal cladding tube, by fusion welding via a metal connecting tube, plasma arc, low energy Using a dense laser beam, we control the amount of heat during welding by turning dotted welds around to form a continuous, airtight weld.
A method of connecting metal cladding tubes containing optical fibers to each other via a metal connecting tube.

2、また、金属製被覆管と金属製接続管との周方向の溶
接を行うには、金属製被覆管または金属製接続管の一方
、または金属製被覆管および金属製接続管の双方を回転
治具に装清して金属製被覆管と接続管の周方向の接続部
を金属製被覆管管軸まわりに微小角ずつ回転させ、プラ
ズマアーク、低エネルギー密度のレーザ光束を用い、点
状の溶接を縁り返して連続した気密性のある溶接部を形
成する方法。
2. Also, in order to weld the metal cladding tube and the metal connecting tube in the circumferential direction, one of the metal cladding tube or the metal connecting tube, or both the metal cladding tube and the metal connecting tube, must be rotated. The circumferential connection between the metal cladding tube and the connecting tube is rotated by small angles around the axis of the metal cladding tube, and a point-shaped A method of reversing a weld to form a continuous, airtight weld.

3、溶接時の熱から光ファイバを効果的に遮断するには
、金属シJ被覆管中の光ファイバを金属製被覆管の管軸
にほぼ一致させて、少なくとも接続部の管壁には挫触し
ないように保持した状態で、前記1または2に記載した
接続方法。
3. In order to effectively isolate the optical fiber from the heat during welding, the optical fiber in the metal cladding tube should be aligned approximately with the tube axis of the metal cladding tube, so that at least the tube wall at the connection part is not damaged. The connection method described in 1 or 2 above, while being held so as not to touch it.

4.また被覆管が厚肉の場合には予め薄肉またはフレア
状に、逆に肉厚が極めて薄く溶融金属が溶は落ちる場合
には接続部となる金属製被覆管の端部を予め厚肉に加工
しておいて前記1ないし3のいずれかに記載した接続方
法。
4. In addition, if the cladding tube is thick, it can be made thinner or flared in advance, and conversely, if the wall thickness is extremely thin and molten metal will drip off, the end of the metal cladding tube that will be the connection part can be made thicker in advance. The connection method described in any one of 1 to 3 above.

以下において前記要旨に基づいた接続方法を手順を追っ
て説明する。
Below, a connection method based on the above-mentioned summary will be explained step by step.

第1図は光ファイバの金属被覆管を接続している割形ス
リーブ5のスリット部6を溶接する手順を示したもので
ある。光ファイバ1,3の両端部は割形スリーブ5をス
リット6を開いて金属製被N管2または4の外周にかぶ
せ、光ファイバ1゜3の端部を露出させた状態で既に融
着されている。この後割形スリーブ5をずらせて金属製
被覆管2.4の間にはさみ、スリット6を溶接すること
になる。
FIG. 1 shows the procedure for welding the slit portion 6 of the split sleeve 5 connecting the metal cladding tube of the optical fiber. Both ends of the optical fibers 1 and 3 are already fused together by opening the slit 6 of the split sleeve 5 and covering the outer periphery of the metal tube 2 or 4 with the ends of the optical fibers 1 and 3 exposed. ing. After this, the split sleeve 5 is shifted and sandwiched between the metal cladding tubes 2.4, and the slits 6 are welded.

この時溶接はプラズマアーク、低エネルギー密度のレー
ザ光束を用い、適当な時間間隔をおいて短時間ずつ作用
させることによりて、小さな領域毎に分割して行う。こ
の時、隣合フた溶接点を互いに重なり合うように形成1
−ることによって全体として気密性のある溶接線を形成
する。以下このような溶接方法を重複点溶接と叶ふ。
At this time, welding is performed by using a plasma arc or a laser beam with low energy density, and by applying the action for short periods at appropriate time intervals, the welding is divided into small areas. At this time, form 1 the adjacent lid welding points so that they overlap each other.
- to form an airtight weld line as a whole. The following welding method is called overlap point welding.

スリット6を溶接するには、先ず割形スリーブ5を回転
して溶接線となるスリット6が光ファイバ1および3に
接触しない配置をとる。スリット6が熱変形によって開
かないように溶接は点7.16を先に、冷却時間を縮め
る意味で3番目の溶接点には点12を選ぶのがよい。
To weld the slit 6, first, the split sleeve 5 is rotated so that the slit 6, which forms the welding line, does not come into contact with the optical fibers 1 and 3. It is preferable to weld points 7 and 16 first to prevent the slit 6 from opening due to thermal deformation, and to select point 12 as the third weld point in order to shorten the cooling time.

7B2図は管の円周方向の溶接線18.19を溶接する
手順を示すものである。溶接線18.19の溶接は管を
回転治具の割形チャック20.2]に挟んで行う。例え
ば溶接線18を形成するには、回転治具か矢印33の方
向に回転するから、先ず初めに第2図の溶接点32を狙
って例えばパルスYAGレーザを短時間照射する。そし
て溶接点22,23.24・・・・31.32と順次重
複点溶接を行う。溶接順序は溶接点22の次に溶接点3
2を選ぶ等冷却が促進される順序を選択するとよい。
Figure 7B2 shows the procedure for welding the circumferential weld lines 18 and 19 of the tube. Welding at welding lines 18 and 19 is performed by sandwiching the pipe between split chucks 20.2 of a rotating jig. For example, to form the welding line 18, since the rotating jig is rotated in the direction of the arrow 33, first, for example, a pulsed YAG laser is irradiated for a short period of time, aiming at the welding point 32 in FIG. Then, overlapping point welding is performed sequentially at welding points 22, 23, 24, . . . 31, 32. The welding order is welding point 22, then welding point 3.
It is recommended to select an order that promotes cooling, such as selecting item 2.

第3図は金属製被覆管2に挿入した光ファイバ1と、金
属製被覆管4に挿入した光ファイバ3を光ファイバの融
着部41で接続した後、予め金属製被覆管2または4上
にずらしてあったスリーブ42の溶接線43を形成する
方法を示す図である。溶接線43を形成するには、スリ
ーブ42を回転治具の割形チャック20.21  (第
2図)で挟み、照射方向44からYAGレーザ光束を溶
接線43上に照射して重複点溶接を行う。この場合光フ
ァイバの線条軸を金属製被覆管の中央、管軸にほぼ一致
させるため、光ファイバの外周を同心円状に取り巻く光
フアイバ支持具45.46を予め光ファイバ1.3とと
もに金属製被覆管2.4の中に装填しておく。この支持
具45.46によって、例えば溶接線43を溶接する場
合少なくとも光ファイバ1か金属製被覆管2の管壁に溶
接線43の直下で接触しないように光ファイバを保持す
ることが出来る。
FIG. 3 shows that after the optical fiber 1 inserted into the metal cladding tube 2 and the optical fiber 3 inserted into the metal cladding tube 4 are connected at the fusion part 41 of the optical fibers, FIG. 4 is a diagram showing a method of forming a weld line 43 of a sleeve 42 that has been shifted. To form the weld line 43, the sleeve 42 is held between split chucks 20.21 (Fig. 2) of a rotating jig, and a YAG laser beam is irradiated onto the weld line 43 from the irradiation direction 44 to perform overlap point welding. conduct. In this case, in order to make the filament axis of the optical fiber approximately coincide with the center of the metal cladding tube and the tube axis, optical fiber supports 45 and 46 surrounding the outer periphery of the optical fiber concentrically are prepared in advance together with the optical fiber 1.3 made of metal. Load it into the cladding tube 2.4. By means of the supports 45 and 46, for example, when welding the weld line 43, it is possible to hold the optical fiber so that it does not come into contact with at least the optical fiber 1 or the tube wall of the metal cladding tube 2 immediately below the weld line 43.

第4図は接合部の溶融金属量を小さくして溶接に必要な
入熱下限を下げる方法を示したものである。融着部41
で接続された光ファイバ1および3が、管端がフレア状
に起こされた金属製被覆管51.52の管軸にほぼ一致
するように光フアイバ支持具45.46によって保持さ
れている。割形スリーブ53も両端かフレア状に加工さ
れており、光ファイバの融着部41か形成された後、金
属製被覆管51または52の上からずらして融着部41
を覆うようにはめ込まれている。
FIG. 4 shows a method for lowering the lower limit of heat input required for welding by reducing the amount of molten metal in the joint. Fusion part 41
The optical fibers 1 and 3 connected by the optical fibers 1 and 3 are held by the optical fiber support 45.46 so that the tube ends thereof substantially coincide with the tube axes of the metal cladding tubes 51.52, which are flared. The split sleeve 53 is also processed into a flared shape at both ends, and after the optical fiber fused portion 41 is formed, it is shifted from above the metal cladding tube 51 or 52 and the fused portion 41 is formed.
It is fitted to cover the

溶接線54をYAGレーザ等で重複点溶接するとき、金
属製被覆管51および割形スリーブ53のフレア状端部
の接触面積が小さいため、溶接に要する入熱量が少なく
てすむ。また、溶接線の上部が溝状に成形されているこ
とから熱効率か良くなり、溶接入熱量の下限を下げるこ
とが出来、溶接部直下の空気の温度上昇を低く抑える事
が出来る。さらにフレア状にしたために溶接部と光ファ
イバとの距離が大きくなるため、溶接入熱の光ファイバ
に与える影響を軽派てきる。
When welding the welding line 54 at overlapping points using a YAG laser or the like, the contact area between the metal cladding tube 51 and the flared ends of the split sleeve 53 is small, so the amount of heat input required for welding is small. In addition, since the upper part of the weld line is formed into a groove shape, thermal efficiency is improved, the lower limit of welding heat input can be lowered, and the temperature rise of the air directly below the weld can be suppressed to a low level. Furthermore, since the flare shape increases the distance between the welding part and the optical fiber, the effect of welding heat input on the optical fiber is reduced.

第5図は融着部41で接続された光ファイバ1゜3が厚
肉金属製被覆管61.62の管軸にほぼ一致するように
、光フアイバ支持具45.46によって保持さ第1″′
〔いる状況を示1.・ている。Jf)肉スリ・−ブ53
(J両管端部を加工ざ才1、薄肉鍔65.66を形成し
て才、3つ、融着部41を覆り下いる。溶接線64をプ
ラズマアーク、YAG lノーサ等て重複点溶接する場
合、俤肉鍔65か溶融金属となって金属製被覆管61ど
厚肉ス1ノープロJを接合する。薄肉鍔65がない場合
は溶接に必要な入熱が多大になり、金属製被覆’f’(
・61内部の空気を加熱1〕光フアイバ1の表面を焼損
1−る。
FIG. 5 shows that the optical fiber 1.3 connected at the fusion splice 41 is held by the optical fiber support 45.46 so that it approximately coincides with the tube axis of the thick-walled metal cladding tube 61.62. ′
[Show the situation 1. ·ing. Jf) Meat sleeve 53
(Process the ends of both J pipes by forming the thin-walled collars 65 and 66 and covering the fused part 41. Weld the welding line 64 with a plasma arc, YAG lance, etc. at the overlapping point. When welding, the thick-walled flange 65 becomes molten metal and joins the thick-walled snow pro J such as the metal cladding tube 61.If there is no thin-walled flange 65, the heat input required for welding will be large, and the metal Covering 'f' (
・The air inside 61 is heated 1] and the surface of the optical fiber 1 is burned out.

[作用] 従来の接続方法イビ用いて光ファイバが管内に二挿逆さ
ねた金属製被覆管を連続的に溶接すると、管内の空気温
度は局部的にではあるが数!00℃+、二近し、耐熱温
度が約200℃以下である光ファイバの外被けはは゛例
外なく瞬時に焼損する。変色する程度であっても被覆は
劣化Lノ、光ファイバの強度を著しく下げる。
[Function] When an optical fiber is inserted into the tube twice and an inverted metal cladding tube is continuously welded using the conventional connection method IBI, the air temperature inside the tube decreases by several degrees, albeit locally. The outer sheath of an optical fiber, which has a heat resistance temperature of approximately 200°C or less, burns out instantly without exception. Even if the coating only causes discoloration, the coating deteriorates and significantly reduces the strength of the optical fiber.

第3図において従来技術を適用した例を示す。FIG. 3 shows an example to which the prior art is applied.

外q7o、4φのつ1ノタンコ・−ディングガラス光フ
ァイバ1をスデンlノス(SUS304)製で外径0.
8φ、内径°0,5φ(肉J!XO,I5t )の金属
製被覆管2に神通し、外径1.1φ、内径0.8φく肉
J!J O,+51− )の5US304製スリーフ4
2を1妾合線43て゛周溶1妄)トろ力1人において、
スリーブ4ソを回転治具の割形ナヤック20.21  
(第2図)に挾んでミニパルスプラズマアークを、照射
方向44が金属製被覆管2と45゛の角度り・な4−よ
うに連続照射して接合線43を回転前核する。この場合
、ミニパルスプラズマはピーク電流5.0Δ、ベース電
流〇へ、平均電流0.8A、パルス周波数l叶Z、パル
ス幅率15%、アーク電肝約30V ’7竹は5秒間′
T′1回転させた。
A one-piece glass optical fiber 1 with an outer diameter of 7° and a diameter of 4φ is made of stainless steel (SUS304) and has an outer diameter of 0.
The metal cladding tube 2 has a diameter of 8φ and an inner diameter of 0.5φ (thickness J! J O, +51-) 5US304 sleeve 4
2 to 1 concubine line 43 and 1 concubine to 1 person,
Split type Nayak 20.21 of rotating jig with 4 sleeves
(FIG. 2), a mini-pulse plasma arc is continuously irradiated so that the irradiation direction 44 is at an angle of 45 degrees with the metal cladding tube 2, so that the joining line 43 is pre-rotated. In this case, the mini-pulse plasma has a peak current of 5.0Δ, a base current of 〇, an average current of 0.8A, a pulse frequency of 1, a pulse width ratio of 15%, and an arc of about 30V.
Rotated T'1.

第11図は上記溶接条イ′1での溶松線直下の管壁の温
度変化を示す温度−時間曲線である。1横軸45秒目を
含む5秒間で、室温からピークまでの曲線が溶接作業期
間である。溶接部偵トは1000℃を越える高温に曝さ
れ、この時光ファイバは9n+m前後にわたって被覆が
焼損し”C光ファイバのガラス部が露出し、この領域に
隣接する両側数mmは熱で変色し・ た。
FIG. 11 is a temperature-time curve showing the temperature change of the pipe wall directly below the molten wire in the welding strip A'1. The curve from room temperature to the peak in 5 seconds including the 45th second on the horizontal axis is the welding work period. The weld area was exposed to high temperatures exceeding 1000°C, and at this time, the coating of the optical fiber was burned out over approximately 9n+m, and the glass portion of the optical fiber was exposed, and several mm on both sides adjacent to this area were discolored by the heat. Ta.

本発明の接続方法では、1点j′つ短時間で溶核オるか
ら、休止時間内に溶接部は速やかに冷却ざ、tlて溶接
部の平均温度は常C低く保た第1る−1−1光フアイバ
を溶接部がら距離をおいて保持することにより、光フア
イバ表面に伝導する熱間はきわめて小さくなり、熱に弱
い被覆の熱的損傷を避けることが出来る。
In the connection method of the present invention, since the melt melts at one point in a short time, the weld zone cools down quickly during the downtime, and the average temperature of the weld zone is always kept low by C. By holding the 1-1 optical fiber at a distance from the weld, the amount of heat conducted to the surface of the optical fiber becomes extremely small, thereby avoiding thermal damage to the heat-sensitive coating.

溶接部と光ファイバの隔離には気体層が最良との結果を
得ている。突合せ溶接の場合、YAGレーサが付き合わ
せ部から漏洩するのを遮蔽したり、プラズマアーク溶接
部が溶は落ちるのを防止するために、金属製被覆管2の
内面で溶接線直下に密着する、管状で薄肉の裏当材を利
用できる。
The results show that a gas layer is the best way to isolate the weld and the optical fiber. In the case of butt welding, in order to shield the YAG laser from leaking from the abutting part and to prevent the plasma arc welding part from dropping, the inner surface of the metal cladding tube 2 is placed in close contact directly below the weld line. Tubular, thin-walled backing material can be used.

[実施例] (実施例1) 第6図ではスリーブ42を金属製被覆性・1または2に
かぶセ、光ファイバ1を支持具45および48て、光フ
ァーrバ2を支持具46および47で管軸に沿って保持
し・、融着部41で光ファイバを接続した後スリーブ4
2をかぶせCいる。光ファイバを焼損ゼずに′接合線4
3をY A Gレーザで重複点溶接する手順を以下に示
す。
[Example] (Example 1) In FIG. 6, a sleeve 42 is placed over the metal coating 1 or 2, the optical fiber 1 is placed on the supports 45 and 48, and the optical fiber 2 is placed on the supports 46 and 47. After holding the tube along the axis and connecting the optical fiber at the fusion part 41, the sleeve 4
Cover 2 with C. Splicing wire 4 without burning out the optical fiber
The procedure for overlapping point welding of No. 3 using a YAG laser is shown below.

光ファイバはクラッド外径125g1l+の石英カラス
ファイバにウレタン樹脂で被覆を施し、夕1仔40゜μ
mとしたものである。この被覆相II)看は約200 
”C以−にで熱焼損を受ける。
The optical fiber is a quartz glass fiber with a cladding outer diameter of 125g1l+ coated with urethane resin, and a cladding diameter of 40゜μ.
m. This coating phase II) has a diameter of about 200
``Thermal burnout occurs below C.

金属製被覆管はスデンlノス鋼(SUS31’!4)で
木管2.4の外径は1.5φ、内径は160φ(肉NO
,25t)、スリ・〜ブ42の外径は2.0φ、内径は
1.5φ(肉厚0 、25 t、)である。
The metal cladding tube is made of stainless steel (SUS31'!4), and the outer diameter of the wood pipe 2.4 is 1.5φ, and the inner diameter is 160φ (no.
, 25t), the outer diameter of the sleeve 42 is 2.0φ, and the inner diameter is 1.5φ (thickness 0.25t).

光フアイバ支持具45,46,47.48にはビニール
管を用いたが、耐熱テープ(カラスファイバ製)、耐熱
樹脂管など破壊しても光ファイバを傷っりるような破片
のでないものが望ましい。
Vinyl tubes were used for the optical fiber supports 45, 46, 47, and 48, but they should be made of heat-resistant tape (made of glass fiber), heat-resistant resin tubes, or other materials that do not leave fragments that would damage the optical fibers even if they are broken. desirable.

溶接にはYへG1ノーザ(最高出力300+vat、t
)を連続発振モードで使用した。シールドガスはAt−
で消量20リットル/分、溶接はシールドボックス中で
行った。YAG lノーザ照射時間は02秒/溶接点、
発振出力125ワツトでフォーカスは溶接部表面J、す
1mmJ−H,照射平均エネルギー密度は8.3X10
’watt、/cm’である。1照射位置は第7図のB
の位置か最適であるが、こねより±0.5mn+(±5
01Jm)のA、Cの間であれば溶接可能である。溶接
点は1周て30点あり、点溶接と点溶接との間の間隔は
10秒である。
G1 noser to Y for welding (maximum output 300+VAT, t
) was used in continuous oscillation mode. The shielding gas is At-
Welding was carried out in a shield box at a consumption of 20 liters/min. YAG l laser irradiation time is 02 seconds/welding point,
The oscillation output is 125 watts, the focus is on the weld surface J, 1 mm J-H, and the irradiation average energy density is 8.3 x 10
'watt,/cm'. 1. The irradiation position is B in Figure 7.
The optimum position is ±0.5mm+(±5mm) from the kneading position.
Welding is possible between A and C of 01Jm). There are 30 welding points in one round, and the interval between spot welds is 10 seconds.

第8図は点溶接を1回した時のYAGレーザ照射位置直
下、管内壁の温度測定結果を示す温度−時間曲線である
。1回点溶接した時、最高到達温度675℃から200
℃までの冷却時間は1.3秒(ガス冷却の場合1.1秒
)、200℃から100℃までの冷却時間は9.0秒(
カス冷却の場合4.4秒)である。この条件のもとて1
0秒間の時間間隔をもって重複点溶接を行ったところ、
光ファイバの変色、変質はなく溶接可能てあった。
FIG. 8 is a temperature-time curve showing the temperature measurement results of the inner wall of the pipe immediately below the YAG laser irradiation position when spot welding is performed once. When spot welding once, the maximum temperature reached from 675℃ to 200℃
The cooling time to ℃ is 1.3 seconds (1.1 seconds for gas cooling), and the cooling time from 200℃ to 100℃ is 9.0 seconds (
(4.4 seconds in the case of dregs cooling). Source of this condition 1
When double point welding was performed with a time interval of 0 seconds,
There was no discoloration or deterioration of the optical fiber and it was possible to weld it.

なお、接合線43における管2とスリーブ42のクリア
ランスは25μm以下が好適で、溶接前に締め付けるな
どして、クリアランスなしの状態が最適である。
Note that the clearance between the pipe 2 and the sleeve 42 at the joining line 43 is preferably 25 μm or less, and it is best to tighten the sleeve before welding so that there is no clearance.

照射位置直下の光ファイバ1を絶縁管(熱電対用アルミ
ナ管)で覆った場合は、光ファイバへの熱伝達が大きく
なり、光フアイバ表面が変色した。空気層が最も断熱効
果が大きかった。
When the optical fiber 1 directly below the irradiation position was covered with an insulating tube (alumina tube for thermocouple), heat transfer to the optical fiber increased and the surface of the optical fiber became discolored. The air layer had the greatest insulating effect.

(実施例2) 1溶接点当りの入熱が小さいパルスYAGによる実hh
例: 第3図はステンレス(SUS304)製の外径1.2φ
、内径0.8φ(肉厚0.2t)の金属製被覆管(本管
)2および4に外径0.4φのウレタン被覆の石英系光
ファイバ1,3を挿通し、管2,4を5US304製の
外径1.4φ、内径1.2φ(肉B0.1t)のスリー
ブ42で接続する方法を示す。光フアイバ支持具45.
46は耐熱ガラステープを使用した。
(Example 2) Actual hh using pulsed YAG with small heat input per welding point
Example: Figure 3 shows a stainless steel (SUS304) outer diameter of 1.2φ.
, urethane-coated quartz optical fibers 1 and 3 with an outer diameter of 0.4φ are inserted into metal clad tubes (main pipes) 2 and 4 with an inner diameter of 0.8φ (wall thickness of 0.2t), and the tubes 2 and 4 are A method of connecting with a sleeve 42 made of 5US304 and having an outer diameter of 1.4φ and an inner diameter of 1.2φ (thickness B0.1t) is shown. Optical fiber support 45.
No. 46 used heat-resistant glass tape.

スリーブ42を回転治具の割形チャック20.21(第
2図)で挟み、溶接線44を20分割で重複点溶接でき
るよう回転速度を調節した上、照射方向44が本管と4
5°の角度をなすように位置決めをする。焦点を管表面
に合わせてジャストフォーカスとし、レーザ出力2ジュ
ール/パルス、パルレス中畠(照射時間) 3.5m5
ec 、パルスからパルスまでの時間間隔を0.2秒と
して溶接を行った。焦点距離は50r+++nとした。
The sleeve 42 was held between split chucks 20 and 21 (Fig. 2) of the rotating jig, and the rotation speed was adjusted so that the welding line 44 could be welded at 20 overlapping points, and the irradiation direction 44 was set so that the main pipe and 4
Position them so that they form an angle of 5°. Just focus on the tube surface, laser output 2 joules/pulse, Palless Nakabata (irradiation time) 3.5m5
ec, welding was performed with a pulse-to-pulse time interval of 0.2 seconds. The focal length was 50r+++n.

この時平均°エネルギー密度は8.0X 103wat
t/cm2であった。
At this time, the average ° energy density is 8.0X 103 watts
It was t/cm2.

管接続後に光ファイバの焼損、変色はなかった。この溶
接方法によると、1溶接線を4〜5秒で仕上げることが
出来た。
There was no burnout or discoloration of the optical fiber after the tube was connected. According to this welding method, one weld line could be finished in 4 to 5 seconds.

(実施例3) 第9図は光ファイバ3を挿通した厚肉軟鋼管62にスリ
ーブ63をかぶせ、光ファイバに熱的影響を与えずに両
者を溶接により接続する方法を示している。
(Third Embodiment) FIG. 9 shows a method in which a sleeve 63 is placed over a thick-walled mild steel pipe 62 into which an optical fiber 3 is inserted, and the two are connected by welding without thermally affecting the optical fiber.

金属製被覆管は本管スリーブとも炭素含有量0.08%
の軟鋼管で、本管の外径は8φ、内径は2φ(肉厚3t
)、厚肉スリーブ63の外径は14φ、内径は8.1φ
で長さ1mである。スリーブ63の両端には薄肉鍔66
が加工成形してあり、鍔の突き出しは1 +nm、肉厚
は0.35mmである。
The carbon content of both the metal cladding and the main sleeve is 0.08%.
The main pipe has an outer diameter of 8φ and an inner diameter of 2φ (thickness 3t).
), the outer diameter of the thick sleeve 63 is 14φ, and the inner diameter is 8.1φ
The length is 1m. A thin flange 66 is provided at both ends of the sleeve 63.
The protrusion of the collar is 1 + nm, and the wall thickness is 0.35 mm.

光ファイバ3は外径0.4φの石英系でウレタン被覆の
下に外径0.125φの光フアイバ心線がある。第5図
のように光フアイバ支持具46として、光ファイバ3の
外周にはガラスファイバ製耐熱テープが巻いてあり、光
ファイバを木管62の管軸に沿って保持している。
The optical fiber 3 is a quartz-based optical fiber having an outer diameter of 0.4φ and has an optical fiber core wire having an outer diameter of 0.125φ under a urethane coating. As shown in FIG. 5, a glass fiber heat-resistant tape is wrapped around the outer periphery of the optical fiber 3 as an optical fiber support 46 to hold the optical fiber along the tube axis of the wood pipe 62.

溶接はへC−プラズマを使用し、プラズマの照射方向4
4の本管との角度を45°に保ち、プラズマの狙いを鍔
66の角端部とした。回転治具の割形チャックに挟んだ
スリーブ63を回転方向33て18゛ずつ回転してプラ
ズマアークで点溶接し、1周20点て重複点溶接する。
Welding uses C-plasma, plasma irradiation direction 4
The angle with the main pipe of 4 was maintained at 45°, and the plasma was aimed at the corner end of the flange 66. The sleeve 63 held between the split chucks of the rotating jig is rotated by 18 degrees in the rotational direction 33 and spot welded using a plasma arc, and overlapping spot welding is performed at 20 points per circumference.

溶接はa、b、c、d、e。Welding is a, b, c, d, e.

f、g、hのように順次行い、連続した溶接線を形成し
て溶接を完了する。
Perform steps f, g, and h sequentially to form a continuous weld line and complete welding.

プラズマアークのシールドガスはArカスで流量を5リ
ットル/分とした。溶接電流はピーク電流67A1ベー
ス電流9A、平均38Aでアーク電圧は約30Vであっ
た。1溶接点の溶接時間(プラズマアーク照射時間)は
0.5秒である。
The shielding gas for the plasma arc was Ar gas at a flow rate of 5 liters/min. The welding current was a peak current of 67 A, a base current of 9 A, an average of 38 A, and an arc voltage of about 30 V. The welding time (plasma arc irradiation time) for one welding point is 0.5 seconds.

第1O図は溶接点直下の管内、管軸上の空気温度を測定
したもので、測定中に9回の点溶接を時間間隔約12秒
で行った。1回の点溶接で管内の温度は20℃前後上昇
することが分かる。この時の平均エネルギー密度は3.
6 X 10’ watt/cm2である。
Figure 1O shows the measurement of the air temperature in the pipe directly below the welding point and on the pipe axis, and during the measurement nine spot welds were performed at a time interval of about 12 seconds. It can be seen that the temperature inside the pipe increases by around 20°C after one spot welding. The average energy density at this time is 3.
6 x 10' watt/cm2.

この事実をもとにして点溶接間の時間間隔を1分に取り
、その間シールドガスを流し続けて冷却速度を早めて重
複点溶接した。管内の光ファイバへの熱的影響はなかっ
た。溶接部の引張り試験による破断荷重は690kgf
てあり、280Rの[l1ロブ゛試験で溶接部に欠陥は
なかった。
Based on this fact, the time interval between spot welds was set to 1 minute, shielding gas was continued to flow during that time to accelerate the cooling rate, and overlapping spot welding was performed. There was no thermal effect on the optical fiber inside the tube. The breaking load in the tensile test of the welded part was 690 kgf.
There was no defect in the welded part in the 280R [11 Robo test].

[発明の効果] 本発明は、管と管を溶接で接続する場合、管内に光ファ
イバを挿通しであるなど、管内の温度制限か厳しい条件
を満足するように点溶接の溶接金属を−・部分重ねなが
ら連続溶接線とする重複点溶接方法てあり、1溶接点の
入熱を溶接に必要なたけに抑えるため照射時間または入
熱四、を調節する。これにより、溶接部の温度上昇を光
ファイバが熱的に損傷しないように制限できる。また溶
接点と溶接点の時間間隔を幾らでも延ばすことが出来る
から、十分な時間をおいて次の点の溶接をすれば溶接熱
が蓄積して管内が過熱することが防止でき、光ファイバ
の品質劣化がなくなる。
[Effects of the Invention] When connecting pipes by welding, the present invention can spot-weld weld metal to meet strict conditions such as temperature restrictions inside the pipes, such as when inserting an optical fiber into the pipes. There is an overlapping point welding method that creates a continuous weld line while partially overlapping the welding points, and the irradiation time or heat input is adjusted to suppress the heat input at one welding point to the amount necessary for welding. This makes it possible to limit the temperature rise in the welded portion so that the optical fiber is not thermally damaged. In addition, since the time interval between welding points can be extended as much as possible, allowing enough time before welding the next point prevents welding heat from accumulating and overheating the inside of the pipe. No more quality deterioration.

また光ファイバが金属製被覆管の内壁に接触することに
よって溶接時に熱影響を受けないように、内壁の全周か
ら最も距離の大きい管軸に沿って光ファ゛イバを保持す
るように光フアイバ支持具を使用するから、光ファイバ
が溶接熱によって焼損、変質、変色等の変化を受けるこ
とかない。
In addition, in order to prevent the optical fiber from being affected by heat during welding due to contact with the inner wall of the metal cladding tube, the optical fiber is held along the tube axis that is the longest distance from the entire circumference of the inner wall. Since the support is used, the optical fiber will not be subject to changes such as burnout, deterioration, or discoloration due to welding heat.

金属製被覆管壁と光ファイバの断熱には空気層等のガス
体を用いるのが最も効果的である。伝導による熱伝達を
容易にする媒体(金属、セラミック、ガラス等)を管状
に介在させると光ファイバへの熱影響はそれたけ大きく
なるか、肉厚を十分小さくして光ファイバに接触しない
ようにすわば、レーザ光の突合せ目からの漏洩、溶接金
属の垂れ落ち等を防ぐことができ、光ファイバの焼損が
なくなる。
The most effective way to insulate the metal cladding wall and the optical fiber is to use a gas such as an air layer. If a medium (metal, ceramic, glass, etc.) that facilitates heat transfer by conduction is interposed in the form of a tube, the thermal effect on the optical fiber will be that much greater, or the wall thickness must be made sufficiently small so that it does not come into contact with the optical fiber. In other words, it is possible to prevent leakage of laser light from the joint, dripping of weld metal, etc., and eliminate burnout of the optical fiber.

溶接時の入熱量を少なくするには、溶接部の溶融金属量
を少なくすればいいから、肉厚が大の場合は接合部の端
部を減肉し、薄肉の場合には管端なフレア状に起こして
溶接部を突出させて熱効率を上げさせると少入熱での溶
接か可能になり、管内の光ファイバの熱損傷をなくすこ
とが出来る。
To reduce the amount of heat input during welding, it is necessary to reduce the amount of molten metal in the weld, so if the wall is thick, reduce the thickness at the end of the joint, and if the wall is thin, flare the pipe end. If the welded part is raised in the shape and the welded part protrudes to increase thermal efficiency, welding can be performed with less heat input, and thermal damage to the optical fiber inside the tube can be eliminated.

尚、第5図で厚肉スリーブ63の両端をテーパー状に加
工して先端の薄肉の部分を鍔65.66と同等の役割を
させることもできる。
Incidentally, it is also possible to process both ends of the thick sleeve 63 into a tapered shape as shown in FIG. 5, so that the thin portion at the tip serves the same role as the collars 65 and 66.

又、溶接部の肉厚が極めて薄く、しかも溶接入熱の下限
を下げら九ずに溶接部か溶は落ちる場合には、接合端を
なめつけ溶接や、折り曲げなどで肉厚を増加させて重複
点溶接を行うことにより、光ファイバを焼損することな
く管を接合できる。
In addition, if the wall thickness of the weld is extremely thin and the weld is still melting even after lowering the lower limit of welding heat input, increase the wall thickness by tanning the joint end, welding it, or bending it. By performing overlap point welding, the tubes can be joined without burning out the optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバ挿通金属製被覆管のスリーブによる
接続方法の斜視図、第2図は光フアイバ挿通金属製被覆
管を回転治具で接続する方法の斜視図、第3図は光ファ
イバを管中央に支持したスリーブと金属製被覆管の接続
方法の断面図、第4図は金属製被覆管の管端をフレア状
にした方法の断面図、第5図は厚肉金属製被覆管の接続
方法を示す断面図、第6図はYAGレーザによる接続方
法の断面図、第7図はYAGレーザ光の狙い位置を示す
側面図、?;8図、第1O図および第】1図は管内の温
度変化を示す時間−温度曲線図、第9図(a)および(
b)は厚肉金属製被覆管の接続方法を示す斜視図および
側面図である。 1・・・光ファイバ、2・・・金属製被覆管、3・・・
光ファイバ、4・・・金属製被覆管、5・・・割形スリ
ーブ、6・・・スリット、7〜16・・・溶接点、18
.19・・・溶接線(周方向)、20.21・・・ヂャ
ック(回転治具)、22〜32・・・溶接点、33・・
・治具回転方向を示す矢印、41・・・光ファイバの融
着部、42・・・スリーブ、43・・・接合線、44・
・・照射方向、45〜48−・・光フアイバ支持具、5
1.52−・・金属製被覆管(フレア端)、53・・・
割形スリーブ(フレア端)、54−・・接合線(スリー
ブ)、61.62・・・厚肉の金属製被覆管、63・・
・厚肉のスリーブ、64・・・接合線(厚肉管)、65
.66・・・薄肉鍔、a〜h・・・溶接点
Figure 1 is a perspective view of a method for connecting metal cladding tubes through which optical fibers are inserted using sleeves, Figure 2 is a perspective view of how metal cladding tubes through which optical fibers are inserted are connected using a rotating jig, and Figure 3 is a perspective view of how optical fibers are connected to metal cladding tubes using a rotating jig. A cross-sectional view of a method of connecting a sleeve supported at the center of the tube and a metal cladding tube. Figure 4 is a cross-sectional view of a method of flaring the tube end of a metal cladding tube. Figure 5 is a cross-sectional view of a method of connecting a metal cladding tube to a sleeve supported at the center of the tube. 6 is a sectional view showing the connection method using a YAG laser, and FIG. 7 is a side view showing the target position of the YAG laser beam. Figure 8, Figure 1O and Figure 1 are time-temperature curve diagrams showing temperature changes inside the tube, Figure 9 (a) and (
b) is a perspective view and a side view showing a method of connecting thick-walled metal cladding tubes. 1... Optical fiber, 2... Metal cladding tube, 3...
Optical fiber, 4... Metal cladding tube, 5... Split sleeve, 6... Slit, 7-16... Welding point, 18
.. 19... Welding line (circumferential direction), 20.21... Jack (rotating jig), 22-32... Welding point, 33...
・Arrow indicating jig rotation direction, 41...Fusion part of optical fiber, 42...Sleeve, 43...Joining line, 44...
...Irradiation direction, 45-48-...Optical fiber support, 5
1.52--Metal cladding tube (flare end), 53...
Split sleeve (flare end), 54--joining line (sleeve), 61.62--thick metal cladding tube, 63--
・Thick-walled sleeve, 64...Join line (thick-walled pipe), 65
.. 66... Thin tsuba, a~h... Welding points

Claims (1)

【特許請求の範囲】 1、光ファイバが金属製被覆管の内壁との間に隙間をも
って挿通された光ファイバ入り金属製被覆管同士を金属
製接続管を介して溶融溶接方法により接続する方法にお
いて、プラズマアーク、低エネルギー密度のレーザ光束
を用い、点状の溶接を繰り返して連続した気密性のある
溶接部を形成することによって光ファイバ入り金属製被
覆管同士を金属製接続管を介して接続することを特徴と
する、光ファイバ入り金属製被覆管の接続方法。 2、金属製被覆管と金属製接続管との周方向の溶接を行
うために金属製被覆管または金属製接続管の一方または
金属製被覆管および金属製接続管の双方を回転治具に装
着して金属製被覆管と金属製接続管との周方向の接続部
を金属製被覆管および金属製接続管の管軸まわりに回転
させることを特徴とする、請求項1に記載の光ファイバ
入り金属製被覆管の接続方法。 3、金属製被覆管中の光ファイバを金属製被覆管の管軸
にほぼ一致させて、少なくとも接続部の管壁には接触し
ないように保持することを特徴とする、請求項1または
2に記載の光ファイバ入り金属製被覆管の接続方法。 4、接続部となる金属製被覆管の端部を金属製被覆管の
肉厚に応じて薄肉、フレア状または厚肉に加工して接続
することを特徴とする、請求項1〜3のいずれか1項に
記載の光ファイバ入り金属製被覆管の接続方法。
[Scope of Claims] 1. In a method of connecting optical fiber-containing metal cladding tubes in which the optical fiber is inserted with a gap between the inner wall of the metal cladding tube and the inner wall of the metal cladding tube by a fusion welding method via a metal connecting tube. , a plasma arc, and a low-energy-density laser beam are used to repeatedly perform spot welding to form a continuous, airtight weld to connect optical fiber-containing metal cladding tubes to each other via a metal connecting tube. A method for connecting a metal cladding tube containing an optical fiber, characterized by: 2. In order to weld the metal cladding tube and the metal connecting tube in the circumferential direction, attach one of the metal cladding tube or the metal connecting tube, or both the metal cladding tube and the metal connecting tube to a rotating jig. The optical fiber-containing device according to claim 1, wherein the circumferential connecting portion between the metal cladding tube and the metal connecting tube is rotated around the tube axes of the metal cladding tube and the metal connecting tube. How to connect metal cladding. 3. According to claim 1 or 2, the optical fiber in the metal cladding tube is held so as to substantially match the tube axis of the metal cladding tube so as not to come into contact with the tube wall at least at the connecting portion. The method for connecting the metal cladding containing optical fiber described above. 4. Any one of claims 1 to 3, characterized in that the end of the metal cladding tube serving as the connection portion is processed into a thin, flared, or thick wall shape depending on the wall thickness of the metal cladding tube for connection. A method for connecting an optical fiber-containing metal cladding tube according to item 1.
JP1142254A 1989-06-06 1989-06-06 Method for connecting optical fiber including metallic pipe Pending JPH039307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142254A JPH039307A (en) 1989-06-06 1989-06-06 Method for connecting optical fiber including metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142254A JPH039307A (en) 1989-06-06 1989-06-06 Method for connecting optical fiber including metallic pipe

Publications (1)

Publication Number Publication Date
JPH039307A true JPH039307A (en) 1991-01-17

Family

ID=15311042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142254A Pending JPH039307A (en) 1989-06-06 1989-06-06 Method for connecting optical fiber including metallic pipe

Country Status (1)

Country Link
JP (1) JPH039307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206126A (en) * 2005-01-31 2006-08-10 Ichikawa Kosan Kk Liquid container
JP2010042434A (en) * 2008-08-18 2010-02-25 Nissan Motor Co Ltd Welding method
JP2012125837A (en) * 2010-11-26 2012-07-05 Mitsubishi Heavy Ind Ltd Method for manufacturing panel structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144538A (en) * 1974-10-15 1976-04-16 Fujikura Ltd Dopaipuno setsuzokuhohoo
JPS5293644A (en) * 1976-02-03 1977-08-06 Kubota Ltd Method of plasma arc welding
JPS6156792A (en) * 1984-08-27 1986-03-22 Sumitomo Light Metal Ind Ltd Manufacture of extreme thin wall welded tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144538A (en) * 1974-10-15 1976-04-16 Fujikura Ltd Dopaipuno setsuzokuhohoo
JPS5293644A (en) * 1976-02-03 1977-08-06 Kubota Ltd Method of plasma arc welding
JPS6156792A (en) * 1984-08-27 1986-03-22 Sumitomo Light Metal Ind Ltd Manufacture of extreme thin wall welded tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206126A (en) * 2005-01-31 2006-08-10 Ichikawa Kosan Kk Liquid container
JP2010042434A (en) * 2008-08-18 2010-02-25 Nissan Motor Co Ltd Welding method
JP2012125837A (en) * 2010-11-26 2012-07-05 Mitsubishi Heavy Ind Ltd Method for manufacturing panel structure
US8485415B2 (en) 2010-11-26 2013-07-16 Mitsubishi Heavy Industries, Ltd. Method for manufacturing panel structure

Similar Documents

Publication Publication Date Title
JPH02200388A (en) Laser connection device
JPH03174106A (en) Juncture of optical fiber with sealed metallic pipe and method for connecting the fiber
CN110421238A (en) A kind of welding procedure of high intensity cylinder butt welding
JPH039307A (en) Method for connecting optical fiber including metallic pipe
EP0238171B1 (en) Laser welding head for sleeve-to-tube welding
JP2002523247A (en) Method for treating a component or component device with an electromagnetic beam and a device for fusing, for example brazing
JP3387797B2 (en) Cylindrical member welding method and cylindrical body
RU2665393C2 (en) Method of thermoplastic pipes welding
RU2108178C1 (en) Method for welding tubes of clad band
JP2839394B2 (en) Metal tube joining method
JPH0199789A (en) Manufacture of welded pipe
JP3694365B2 (en) Induction heating diffusion bonding method
JPH03146911A (en) Method for connecting metallic jacket tube of optical fiber cord or cable
JP2001269782A (en) Method of cladding or method of incleasing welding speed and device therefor
JPH01138511A (en) Juncture of optical fiber-containing metallic tube
RU2443521C1 (en) Method of low temperature soldering of thin-wall cylindrical titanium and steel parts
JP3625917B2 (en) Linear welded parts
JPH01154107A (en) Method for connecting metallic tube containing optical fiber
RU2037721C1 (en) Method of joining of metal pipes provided with thermoplastic lining
JPS60216986A (en) Welding method of thin steel sheets by laser beam
JPH01118809A (en) Juncture of optical fiber-containing metallic tube
JPH06155059A (en) Welding method in automatic pipe-making machine
JPH07290261A (en) Welding method in automatic tube making machine
JPH0663741A (en) Method for joining pipes
SU1647282A1 (en) Process of manufacture of high-temperature thermocouple