JPH0391623A - Ice heat accumulation type cooling device - Google Patents

Ice heat accumulation type cooling device

Info

Publication number
JPH0391623A
JPH0391623A JP1228744A JP22874489A JPH0391623A JP H0391623 A JPH0391623 A JP H0391623A JP 1228744 A JP1228744 A JP 1228744A JP 22874489 A JP22874489 A JP 22874489A JP H0391623 A JPH0391623 A JP H0391623A
Authority
JP
Japan
Prior art keywords
heat storage
water
air
heat
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228744A
Other languages
Japanese (ja)
Other versions
JP2521541B2 (en
Inventor
Hideo Kameyama
秀雄 亀山
Kiyouko Yamamoto
山本 協子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1228744A priority Critical patent/JP2521541B2/en
Publication of JPH0391623A publication Critical patent/JPH0391623A/en
Application granted granted Critical
Publication of JP2521541B2 publication Critical patent/JP2521541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To attain an efficient cooling through a direct heat exchanging between ice and air by a method wherein absorptive type high molecular heat accumulation member is arranged within a heat accumulation tank in such a way as sucked air may be contacted with it and discharged out of an air discharging port and then an air blowing means is provided. CONSTITUTION:An air discharging means 2 is connected through a valve in such a way as an inside part of a heat accumulation tank 1 is reduced in its pressure. Along with this arrangement, air sucked from an air suction port 20 is contacted with an absorptive type high molecular heat accumulation member 11 and discharged out of an air discharging port 21. The absorptive type high molecular heat accumulation member 11 is arranged within the heat accumulating tank 1 and then an air blowing means 22 is arranged at the air discharging port 21. In this way, since heat accumulation and cooling with heat are directly carried out on the heat accumulation member 11, a heat loss is restricted as less as possible and at the same time a surface area of the thermal accumulation member 11 can be increased by using the water absorptive type high molecule, resulting in that a heat exchanging efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は氷蓄熱を利用した冷房装置に関し、更に詳しく
はフロンガスを冷媒とせず、水を媒体、排気手段を動力
とする新規な氷蓄熱式冷房装置に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a cooling device that uses ice heat storage, and more specifically, a novel ice heat storage type that does not use fluorocarbon gas as a refrigerant, uses water as a medium, and uses exhaust means as a power source. It relates to a cooling device.

(従来の技術〉 近年、製鉄やアル逅ニウム製造業等の電力多消費型産業
の省エネルギー化や、電気エネルギー依浮皮の低い産業
への構造的移行に伴い、夏季の最大電力消費量に占める
、冷房等の使用による電力消費量の割合が増加してきて
いる。これにしたがって、電力需要の昼夜間格差や期間
格差が拡大した結果、要求される最大電力の値は年毎に
高まる一方で、発電設備に対する年平均の負荷率は低下
する傾向にある。
(Conventional technology) In recent years, with the energy conservation of power-intensive industries such as steel and aluminum manufacturing, and the structural shift to industries with low electric energy dependence, The proportion of electricity consumption due to the use of air conditioners, etc. is increasing.As a result, the day-night and period-of-day disparities in electricity demand have widened, and as a result, the maximum amount of electricity required is increasing every year, while The annual average load factor on equipment is on a downward trend.

そこで、各電力会社は負荷率の向上を0指して、電力又
はエネルギー貯蔵技術の開発を行うことにより、電力需
要の夜間及び春・秋期へのシフトを達成しようと努力し
ている。
Therefore, each electric power company is striving to achieve a shift in power demand to nighttime and spring/autumn periods by developing power or energy storage technology, with the aim of improving the load factor.

我が国においては特に夏期向けの冷房設備に対する電力
需要が大きいことから、蓄熱式空調システムの開発が特
に期待されている。しかしながら、従来の蓄熱式空調シ
ステムは、水の温度差を利用する方式が主流であり、大
容量の蓄熱槽のスペースの確保が困難であるという欠点
が普及の障害となっていた。
In Japan, there is a high demand for electricity for cooling equipment, especially during the summer, so there are high expectations for the development of regenerative air conditioning systems. However, the mainstream of conventional heat storage air conditioning systems is a method that utilizes the temperature difference of water, and the disadvantage of difficulty in securing space for a large-capacity heat storage tank has been an impediment to its widespread use.

上記の欠点を解決する方法として、水−氷の潜熱を利用
して蓄熱密度を上げる方法が提案され、実用化の段階に
入ろうとしている(“氷蓄熱の最新動向”雑誌「省エネ
ルギー」特集号、41巻、磁7、(1987年)(財)
省エネルギーセンター発行)。
As a method to solve the above-mentioned drawbacks, a method of increasing heat storage density using the latent heat of water-ice has been proposed, and is about to enter the stage of practical application ("Latest trends in ice heat storage" magazine "Energy Saving" special issue, Volume 41, Magi 7, (1987) (Foundation)
(Published by Energy Conservation Center).

因みに、これまでに開発された蓄熱槽の氷製造法は、何
れも冷媒を用いた冷凍方式又はヒートバイブ方式であり
、製氷・解凍用の熱交換器と蓄熱槽の相互関係がシステ
ム構成上の要点となっている。
Incidentally, the ice production methods using heat storage tanks that have been developed so far are either freezing methods using refrigerants or heat vibration methods, and the interaction between the heat exchanger for ice making and thawing and the heat storage tank is dependent on the system configuration. This is the main point.

この場合の製氷方法は、熱交換面に氷を成長させそのま
ま貯蔵するスタティックタイプと、熱交換面から連続又
は間欠的に氷を剥がして貯蔵槽全体に分散した状態で貯
蔵するダイナミックタイプに二分される。
Ice making methods in this case are divided into two types: static type, in which ice is grown on the heat exchange surface and stored as is, and dynamic type, in which ice is continuously or intermittently peeled off from the heat exchange surface and stored in a state dispersed throughout the storage tank. Ru.

しかしながら、上記の製氷・解凍方式には、■製氷・解
凍時の伝熱性をいかに向上させることができるか、■伝
熱速度を低下させずにいかに水充填率を上げることがで
きるかという問題がある。
However, the above ice making and thawing methods have the following problems: 1. How to improve heat transfer during ice making and thawing; 2. How to increase the water filling rate without reducing the heat transfer rate. be.

ダイナミックタイプは上記■の点に対する1つの回答を
与えているが、ブライン(二次冷媒)や水の輸送動力に
問題がある。
The dynamic type provides one answer to the above point (2), but there are problems with the transport power of brine (secondary refrigerant) and water.

更に、何れの場合にも、冷凛機にはフロンガス系の冷媒
が使われており、今後進むと思われるフロンガス規制に
対応することができないという欠点がある。
Furthermore, in either case, the refrigerant refrigerant uses a chlorofluorocarbon gas-based refrigerant, and has the disadvantage that it will not be able to comply with the fluorocarbon gas regulations that are expected to be implemented in the future.

一方、1974年米国農務省の研究所が約1゜000倍
という吸水力を有するポリマーを発表し、その吸水力が
注目を集めて以来、種々の高吸水性高分子が開発され、
おむつ・衛生用品を中心にその需要は急速に伸びてきて
いる。
On the other hand, in 1974, a research institute of the United States Department of Agriculture announced a polymer with a water absorption capacity of approximately 1°000 times, and since that water absorption capacity has attracted attention, various superabsorbent polymers have been developed.
Demand is rapidly increasing, especially for diapers and sanitary products.

高吸水性高分子は、材質により自重の数〜数十倍、時に
は数百倍の水を吸水してゲル状となり、固体としての形
状を保つ、しかも、十分多量に吸水したゲル中の大部分
の水は通常の水とほぼ同じ自由水であり、水の蒸発、凝
縮、及び凝固は通常の水に近い条件で起こると考えられ
ている(高吸水性ポリマー」共立出版 1987)。
Depending on the material, superabsorbent polymers absorb several to several tens of times, sometimes hundreds of times, their own weight in water and become gel-like, maintaining their solid form. Water is free water, almost the same as normal water, and it is thought that evaporation, condensation, and coagulation of water occur under conditions close to those of normal water (Super Water Absorbent Polymers, Kyoritsu Shuppan, 1987).

(発明が解決しようとする課題) そこで、本発明者等は、水を吸収してゲル状となった吸
水性高分子蓄熱体をシート状に形成せしめて、多数の該
蓄熱体を密に蓄熱槽内に配置し、該蓄熱槽内を排気手段
で減圧せしめることにより蓄熱体中の水分を一部蒸発さ
せ、その時の蒸発潜熱により蓄熱体中の水を氷の形で蓄
熱することができると共に、蓄熱槽内に外部空気を取り
入れることによって蓄熱体中の氷と直接的に熱交換を行
わせ、冷房を行うことができることを見出し本発明に到
達した。
(Problem to be Solved by the Invention) Therefore, the present inventors formed a water-absorbing polymer heat storage body that absorbs water and became gel-like into a sheet shape, and densely stored heat in a large number of the heat storage bodies. The water in the heat storage body is partially evaporated by placing it in a tank and reducing the pressure inside the heat storage tank with an exhaust means, and the water in the heat storage body can be stored in the form of ice using the latent heat of evaporation at that time. They discovered that by introducing outside air into the heat storage tank, heat exchange can be performed directly with the ice in the heat storage body, thereby achieving the present invention.

従って、本発明の第1の目的はフロンガス系冷媒を使用
せずに製氷することができ、氷と空気との直接的熱交換
により効率良く冷房を行うことのできる氷蓄熱式冷房装
置を提供することにある。
Therefore, the first object of the present invention is to provide an ice storage type cooling device that can make ice without using a fluorocarbon gas refrigerant and can perform cooling efficiently through direct heat exchange between ice and air. There is a particular thing.

本発明の第2の目的は、1日の内の消費電力を平均化す
ることができると共に、使用する電力コスト全体を低減
化することのできる氷蓄熱式冷房装置を提供することに
ある。
A second object of the present invention is to provide an ice storage type cooling device that can average power consumption over a day and reduce the overall cost of power used.

(課題を解決するための手段) 本発明の上記の諸目的は、少なくとも、吸水性高分子蓄
熱体を内蔵すると共に開閉手段を有する空気吸込口並び
に空気排出口を設けた蓄熱槽及び排気手段とからなる氷
蓄熱式冷房装置であって、前記蓄熱槽内を減圧せしめる
如くバルブを介して前記排気手段を接続すると共に、前
記空気吸込口から吸込まれた空気が吸水性高分子蓄熱体
と接触して空気排出口から排出される如く該吸水性高分
子蓄熱体を前記蓄熱槽内に配し、前記空気排出口に送風
手段を設けたことを特徴とする氷蓄熱式冷房装置によっ
て達成された。
(Means for Solving the Problems) The above-mentioned objects of the present invention are at least provided with a heat storage tank containing a water-absorbing polymer heat storage body and provided with an air inlet and an air outlet having an opening/closing means, and an exhaust means. An ice storage type cooling device comprising: the exhaust means is connected via a valve so as to reduce the pressure inside the heat storage tank, and the air sucked from the air suction port comes into contact with the water-absorbing polymer heat storage body. The present invention has been achieved by an ice storage type cooling device characterized in that the water-absorbing polymer heat storage body is disposed in the heat storage tank so that the water is discharged from the air discharge port, and a blowing means is provided at the air discharge port.

以下本発明の冷房装置の原理を図に基づいて詳述する。The principle of the cooling device of the present invention will be explained in detail below based on the drawings.

第1図は、本発明の氷蓄熱式冷房装置の概念図である。FIG. 1 is a conceptual diagram of the ice storage type cooling device of the present invention.

図中、符号(1)は蓄熱槽、符号(2)は排気手段、符
号(11)は吸水性高分子蓄熱体、符号(20)及び(
21)は開閉手段を有する空気吸込口及び空気排出口で
ある。
In the figure, code (1) is a heat storage tank, code (2) is an exhaust means, code (11) is a water-absorbing polymer heat storage body, code (20) and (
21) is an air suction port and an air discharge port having opening/closing means.

本発明の氷蓄熱式冷房装置は、少なくとも上記の各部か
らなり、該各部の位置関係は以下の通りである。
The ice storage type cooling device of the present invention consists of at least the above-mentioned parts, and the positional relationship of the parts is as follows.

排気手段(2)は、蓄熱槽(1)内を減圧にして吸水性
高分子中の水を蒸発せしめ、蒸発潜熱の放出に伴う氷の
生成を促進するためのものであり、バルブを介して接続
する。上記排気手段は、吸込圧力が約lmmHg、排気
圧力が760mmHHの能力を持つ真空ポンプその他の
排気ポンプ、圧縮器、エジェクター等の公知の手段の中
から適宜選択することができる。その接続箇所及び接続
方法は蓄熱槽(1)の内部を効率良く減圧することがで
きる限り任意である。
The exhaust means (2) is for reducing the pressure inside the heat storage tank (1) to evaporate the water in the water-absorbing polymer and to promote the formation of ice as the latent heat of vaporization is released. Connecting. The evacuation means can be appropriately selected from known means such as a vacuum pump or other evacuation pump, compressor, ejector, etc., each having a suction pressure of about 1 mmHg and an evacuation pressure of 760 mmHH. The connection point and connection method are arbitrary as long as the inside of the heat storage tank (1) can be efficiently reduced in pressure.

第1図の冷房装置の場合は、吸水性蓄熱体(11)の前
後から同時に吸引できるように吸引管を2分岐して接続
している。これに対し、後述する第2図の冷房装置の場
合は、蓄熱槽(1)の上部と下部に吸水性高分子蓄熱体
をバイパスする通路(45)及び(46)を設け、該上
部の通路(45)に排気手段を接続している。
In the case of the air conditioner shown in FIG. 1, the suction pipe is branched into two and connected so that suction can be drawn from the front and back of the water-absorbing heat storage body (11) at the same time. On the other hand, in the case of the cooling device shown in FIG. 2, which will be described later, passages (45) and (46) are provided in the upper and lower parts of the heat storage tank (1) to bypass the water-absorbing polymer heat storage body, and the upper passages are (45) is connected to exhaust means.

吸水性高分子蓄熱体(11L空気吸込口(20)及び空
気排出口(21)は、空気吸込口(20)から吸い込ま
れた空気が吸水性高分子蓄熱体(11)と接触して熱交
換を行い空気排出口(21)から排出されるよ、うに配
置する。
Water-absorbing polymer heat storage body (11L) The air inlet (20) and air outlet (21) exchange heat when the air sucked in from the air inlet (20) comes into contact with the water-absorbing polymer heat storage body (11). and arrange it so that the air is discharged from the air outlet (21).

空気吸込口(20)及び排出口(21)には、減圧時に
蓄熱槽(1)を完全に閉鎖できるように開閉手段(30
)及び(31)を設ける必要がある。又、空気吸込口(
20)には外部のほこり等が蓄熱槽(1)内に入らない
ように、或いは脱煙や除菌を目的としてフィルター(2
3)を設けることが好ましい、空気吸込口(20)に設
けるフィルター(23)及び排出口(21)に設ける送
風手段(22)は公知のものの中から適宜選択して使用
することができる。
The air suction port (20) and the discharge port (21) are provided with opening/closing means (30) so that the heat storage tank (1) can be completely closed when the pressure is reduced.
) and (31) must be provided. Also, the air intake port (
A filter (20) is installed in the heat storage tank (1) to prevent dust from entering the heat storage tank (1), or for the purpose of removing smoke and sterilization.
The filter (23) provided at the air suction port (20) and the blowing means (22) provided at the air outlet (21), which are preferably provided in step 3), can be appropriately selected from known ones and used.

蓄熱槽(1)は、蓄熱槽(1)内部に蓄熱した冷熱が壁
を通して直接外部空気と熱交換することのないように断
熱材を用いることが好ましいが、第2図の場合の如く、
バイパスを設けて蓄熱体を浮かせた構造とする場合には
断熱材の使用を省略することもできる。
It is preferable to use a heat insulating material for the heat storage tank (1) so that the cold heat stored inside the heat storage tank (1) does not directly exchange heat with the outside air through the wall, but as in the case of Fig. 2,
When a bypass is provided and the heat storage body is floated, the use of a heat insulating material can be omitted.

本発明の氷蓄熱式冷房装置を槽底する吸水性高分子蓄熱
体(11)は、水を吸水してゲル状になる吸水性高分子
を所望の形状に形成せしめたものである。吸水性高分子
蓄熱体(11)に使用する吸水性高分子は、デンプン系
、セルロース系、合成ポリマー系(例えばポリアクIJ
ル酸塩系、ポリビニルアルコール系、ポリアクリルアミ
ド系、ポリオキシエチレン系等)の公知の材料の中から
適宜選択して使用することができ、その形状は粉末状(
球状・無定形)、シート状又は繊維状(短繊維・長繊維
・不織布)等の何れの形状であっても良い。
The water-absorbing polymer heat storage body (11) forming the bottom of the ice storage type cooling device of the present invention is formed by forming a water-absorbing polymer into a desired shape, which absorbs water and becomes gel-like. The water-absorbing polymer used for the water-absorbing polymer heat storage body (11) is starch-based, cellulose-based, or synthetic polymer-based (for example, polyac IJ).
It can be used by appropriately selecting from known materials such as sulfate-based, polyvinyl alcohol-based, polyacrylamide-based, polyoxyethylene-based, etc.), and its shape is powder (
It may be in any shape such as spherical/amorphous), sheet-like, or fibrous (short fiber, long fiber, nonwoven fabric).

吸水性高分子蓄熱体(11)は、氷蓄熱及び外部空気と
の熱交換が効率良く行なえるように工夫することが好ま
しく、例えば、吸水性高分子蓄熱体(11)を薄いシー
ト状に形成すれば蒸発面積を大きくすることができる上
、多数のシート状の吸水性高分子蓄熱体(11)を蓄熱
槽(1)の中央部を仕切るように密に配置すれば、空気
吸込口(20)から吸い込まれた空気は各々の吸水性高
分子蓄熱体(11)の隙間を通過するので熱交換効率を
大きくすることができる。又、粉末状吸水性高分子を棚
状に構築せしめ、吸水性高分子蓄熱体(11)を蓄熱槽
(1)の側面から取り出し可能に挿入することもできる
。このようにすれば蓄熱体(11)の点検が容易である
The water-absorbing polymer heat storage body (11) is preferably devised so that it can efficiently store ice heat and exchange heat with the outside air. For example, the water-absorbing polymer heat storage body (11) is formed into a thin sheet. In addition, if a large number of sheet-shaped water-absorbing polymer heat storage bodies (11) are densely arranged to partition the center of the heat storage tank (1), the evaporation area can be increased. ) passes through the gaps between the respective water-absorbing polymer heat storage bodies (11), thereby increasing the heat exchange efficiency. Alternatively, the water-absorbing polymer powder can be constructed in the form of a shelf, and the water-absorbing polymer heat storage body (11) can be inserted into the heat storage tank (1) so as to be removable from the side surface thereof. In this way, the heat storage body (11) can be easily inspected.

空気吸込口(20)を蓄熱槽(1)の下部側に設け、空
気排出口(21)を蓄熱槽(1)の上部側に設ければ、
蓄熱槽(11)内の上部に空気が澱むことがなく、空気
が一様に吸水性高分子蓄熱体(11)の各隙間を通過す
ることになるので熱交換効率が良く好ましい。
If the air inlet (20) is provided on the lower side of the heat storage tank (1) and the air outlet (21) is provided on the upper side of the heat storage tank (1),
Air does not accumulate in the upper part of the heat storage tank (11), and the air uniformly passes through each gap in the water-absorbing polymer heat storage body (11), which is preferable because the heat exchange efficiency is good.

又、全蓄熱槽を通じて熱伝導性の良い均熱材を用いて吸
水性高分子を支持するように工夫すれば、製氷時及び解
氷時に槽内の温度均一性が保たれ、均一な製氷及び解凍
ができるので冷房装置としての効率を一層良好なものと
することができる。
In addition, if the water-absorbing polymer is supported throughout the entire heat storage tank using a heat-uniforming material with good thermal conductivity, the temperature inside the tank will be maintained evenly during ice making and ice thawing, and uniform ice making and ice production will be achieved. Since it can be thawed, the efficiency of the cooling device can be further improved.

具体的には、例えば粉末状吸水性高分子の受は皿として
、銅やアルミニウムの板や綱を使用したり、フィルム状
吸水性高分子を銅やアルミニウムの薄膜や板等と貼り合
わせて使用する方法を挙げることができる。
Specifically, for example, a plate or rope made of copper or aluminum may be used as a tray to hold the powdered water-absorbing polymer, or a film-like water-absorbing polymer may be laminated with a thin film or plate of copper or aluminum. Here are some ways to do it.

本発明の氷蓄熱式冷房装置は、少なくとも以上の構成か
らなるが、更に排気手段(2)で排気される水蒸気圧を
低減し、排気手段の負荷を少なくすると共に必要に応じ
て水の一部を再び蓄熱槽(1)に戻すようにするために
凝縮器を接続することができる。
The ice storage type cooling device of the present invention has at least the above configuration, but further reduces the pressure of water vapor exhausted by the exhaust means (2), reduces the load on the exhaust means, and removes some of the water as necessary. A condenser can be connected in order to return the heat to the heat storage tank (1).

第2図は本発明の氷蓄熱式冷房装置に凝縮器を接続した
場合の概念図である。
FIG. 2 is a conceptual diagram when a condenser is connected to the ice storage type cooling device of the present invention.

図中、符号(3)は蓄熱槽(1)から排出される水蒸気
を液化し放熱するための凝縮器である。
In the figure, reference numeral (3) is a condenser for liquefying water vapor discharged from the heat storage tank (1) and dissipating heat.

排気手段の運転による蓄熱の開始にあたってはまず、蓄
熱槽(1)及び凝縮器(3)内の空気を略完全に排気し
、蓄熱槽(1)及び凝縮器(3)内の気体は実質的に全
て水蒸気のみとなるようにした後、切り換え弁を介して
、蓄熱槽(1)からの排気は全て凝縮器(3)へ導かれ
るようにする。
When starting heat storage by operating the exhaust means, first, the air in the heat storage tank (1) and condenser (3) is almost completely exhausted, and the gas in the heat storage tank (1) and condenser (3) is substantially removed. After all the exhaust gas from the heat storage tank (1) is made to be only water vapor, it is led to the condenser (3) via the switching valve.

凝縮器は空冷式又は水冷式で十分であり、公知の方法に
よって空気又は水を流すことにより一定温度に保たれる
ため、凝縮器内の圧力は、凝縮器温度の水蒸気圧(例え
ば30’Cならば31.8mmHg)に保たれる。この
ため該排気手段の2次側圧力は1気圧の約1/20に保
たれることになり、蓄熱動力を2次側圧力が1気圧の場
合に比べて低くすることができる。
An air-cooled or water-cooled condenser is sufficient, and since the temperature is maintained at a constant temperature by flowing air or water by known methods, the pressure inside the condenser is equal to the water vapor pressure at the condenser temperature (e.g. 30'C). Then, it is maintained at 31.8 mmHg). Therefore, the pressure on the secondary side of the exhaust means is maintained at approximately 1/20 of 1 atm, and the heat storage power can be lowered compared to when the pressure on the secondary side is 1 atm.

凝縮器(3〉と蓄熱槽(1)とをバルブ(25)を介し
て接続した場合には、必要に応じて凝縮器(3)内の水
を蓄熱体(11)に戻すことにより、水を冷房装置内で
循環させることができる。
When the condenser (3) and the heat storage tank (1) are connected via the valve (25), the water in the condenser (3) can be returned to the heat storage body (11) as needed. can be circulated within the cooling system.

符号(41)〜(43)は、吸水性高分子蓄熱体をバイ
パスする通路(45)及び(46)の上流側及び下流側
に設けた開閉手段であり、蓄熱運転時には開いた状態に
して蓄熱槽(1)内を一様に減圧せしめるようにし、冷
房運転時には、通常は閉じた状態にして空気吸込口(2
0)から吸い込まれた外気が全て吸水性高分子蓄熱体(
11)の各隙間を通過するようにする。又、空気排出口
(21)から排出される冷気の温度及び湿度調節を行い
たい場合には、開閉手段(41)〜(43)の開度を調
節することにより外気の一部をバイパスさせて吸水性高
分子蓄熱体(11)を通過した冷気と混合して温度及び
湿度調節をすることができる。
Symbols (41) to (43) are opening/closing means provided on the upstream and downstream sides of passages (45) and (46) that bypass the water-absorbing polymer heat storage body, and are kept open during heat storage operation to store heat. The pressure inside the tank (1) is uniformly reduced, and during cooling operation, the air intake port (2) is normally closed and closed.
All the outside air sucked in from the water-absorbing polymer heat storage body (
11) so as to pass through each gap. In addition, when it is desired to adjust the temperature and humidity of the cold air discharged from the air outlet (21), a part of the outside air can be bypassed by adjusting the opening degree of the opening/closing means (41) to (43). The temperature and humidity can be adjusted by mixing with the cold air that has passed through the water-absorbing polymer heat storage body (11).

(作用〉 本発明の氷蓄熱式冷房装置は、以下に詳述する如く、氷
の形として冷蓄熱を行い、蓄熱された氷で冷房を行うも
のである。
(Function) As described in detail below, the ice storage type cooling device of the present invention stores cold heat in the form of ice and performs cooling with the stored ice.

1)冷蓄熱 第1図において、空気吸込口(20)及び空気排出口(
21)の開閉手段−(30)及び(31)を閉じ、排気
手段(2)を始動して蓄熱槽(1)内を減圧する(第2
図の場合には開閉手段(40)〜(43)を開とする)
、仮に、元本の温度が30℃であるとすると蓄熱槽内の
水蒸気圧は31.8mmHgである。このため排気手段
による排気を始めると同時に蓄熱体(11)の中から水
分が蒸発し始め、この時の蒸発潜熱により水の温度は下
がり始める。空気が完全に排気された場合には蓄熱体(
11)上の圧力はその蓄熱体温度の水蒸気圧に等しくな
る。蓄熱槽(1)内の水蒸気圧が4.58mmHgとな
った時には水の温度はO℃迄下がり、過冷却の現象が無
い場合には蒸発潜熱は全て製氷に使われて吸水性高分子
蓄熱体(11)に残った水分が氷として蓄熱される。
1) In Figure 1, the air inlet (20) and the air outlet (
21) opening/closing means - (30) and (31) are closed, and the exhaust means (2) is started to reduce the pressure inside the heat storage tank (1) (second
In the case shown in the figure, the opening/closing means (40) to (43) are open)
Assuming that the temperature of the original material is 30° C., the water vapor pressure in the heat storage tank is 31.8 mmHg. Therefore, as soon as exhaustion by the exhaust means starts, water starts to evaporate from the heat storage body (11), and the temperature of the water starts to drop due to the latent heat of evaporation at this time. When the air is completely evacuated, the heat storage body (
11) The pressure above will be equal to the water vapor pressure at the temperature of the heat reservoir. When the water vapor pressure in the heat storage tank (1) reaches 4.58 mmHg, the water temperature drops to 0°C, and if there is no supercooling phenomenon, all the latent heat of vaporization is used to make ice and the water absorbent polymer heat storage (11) The remaining moisture is stored as ice.

以上の作用は、吸水性高分子蓄熱体(11)中の元本の
温度が30°Cの場合であるが、実際には、吸水性高分
子蓄熱体(11)の氷が完全に融けないうちに蓄熱操作
を開始するので蓄熱は0℃付近から開始されることにな
る。
The above action occurs when the temperature of the base material in the water-absorbing polymer heat storage body (11) is 30°C, but in reality, the ice in the water-absorbing polymer heat storage body (11) does not completely melt. Since the heat storage operation will start soon, heat storage will start from around 0°C.

上記の氷蓄熱を夜間電力を利用してしかも凝縮器を設け
て2次側圧力を低く押さえて行えば、安価に冷蓄熱を行
うことができる。
If the above-mentioned ice heat storage is performed using nighttime electricity and by providing a condenser to keep the secondary side pressure low, cold heat storage can be performed at low cost.

2)冷房 第1図において、空気吸込口(20)及び空気排出口(
21)の開閉手段(30)及び(31)を解放し、送風
手段(22)を始動する。空気吸込口(20)から吸引
された空気は吸水性高分子蓄熱体(11)の隙間を通過
しつつ、氷の形で蓄熱された吸水性高分子蓄熱体(11
)と直接熱交換して冷風となり空気排出口(21)より
放出される。これと同時に入口空気中に含まれていた水
蒸気の一部は蓄熱体上に凝縮して空気中の含水量も低下
する。第2図の場合には、開閉手段(40)〜(43)
の開度を調節することにより、吸水性高分子蓄熱体(1
1)を通過した冷気と該開閉手段(40)〜(43)を
バイパスした外気とを混合して空気排出口(21)より
温度及び湿度を調節した冷気を排出することができる。
2) In the cooling diagram 1, the air inlet (20) and air outlet (
21), the opening/closing means (30) and (31) are released, and the blowing means (22) is started. The air sucked from the air suction port (20) passes through the gap in the water-absorbing polymer heat storage body (11), and the water-absorbing polymer heat storage body (11) stores heat in the form of ice.
) and becomes cold air which is released from the air outlet (21). At the same time, part of the water vapor contained in the inlet air is condensed onto the heat storage element, and the water content in the air is also reduced. In the case of Fig. 2, the opening/closing means (40) to (43)
By adjusting the opening degree of the water-absorbing polymer heat storage body (1
The cold air that has passed through 1) and the outside air that has bypassed the opening/closing means (40) to (43) can be mixed, and the cold air whose temperature and humidity have been adjusted can be discharged from the air outlet (21).

この時の電力負荷は送風器のみであるから、少ない電力
消費量で冷房することができる。
Since the power load at this time is only the blower, cooling can be achieved with less power consumption.

3)水の循環 第2図において、蓄熱槽(1)及び凝縮器(3)中の空
気が略完全に排出された段階で、排気手段(2)の切り
換え弁を凝縮器(3)側に切り換える。蒸発した水分は
凝縮器(3)に送られ、ここで熱を外部に放出して液化
する。′a縮器(3)に溜まった水は必要に応じて、冷
房運転を停止した後に、バルブ(25)を開けて吸水性
高分子蓄熱体(11)に戻す。
3) Water circulation In Figure 2, when the air in the heat storage tank (1) and condenser (3) is almost completely exhausted, turn the switching valve of the exhaust means (2) to the condenser (3) side. Switch. The evaporated water is sent to the condenser (3), where it emits heat to the outside and liquefies it. If necessary, the water accumulated in the compressor (3) is returned to the water-absorbing polymer heat storage body (11) by opening the valve (25) after stopping the cooling operation.

(発明の効果) 以上詳述した如く、本発明の氷蓄熱式冷房装置は、蓄熱
、冷房共に、熱の出入りは蓄熱体上で直接行われるため
熱損失が最小に押さえられる上、吸水性高分子の使用に
より蓄熱体の表面積を大きくすることができるので熱交
換効率が良好である。
(Effects of the Invention) As described in detail above, the ice storage type cooling device of the present invention is capable of minimizing heat loss because both heat storage and cooling are carried out directly on the heat storage body, and has high water absorption. Since the surface area of the heat storage body can be increased by using molecules, the heat exchange efficiency is good.

又、吸水性高分子は無公害物質であるので、フロンガス
系冷媒を用いる冷凍機のように環境に悪影響をもたらす
ことがない。
Furthermore, since the water-absorbing polymer is a non-polluting substance, it does not have an adverse effect on the environment unlike refrigerators that use fluorocarbon gas-based refrigerants.

更に、冷蓄熱を電気料金の安い夜間電力を用いて行い、
冷房を電力消費量の少ない送風手段のみで行うことがで
きるので省エネルギーに寄与することができる。
Furthermore, cold heat storage is performed using low-cost nighttime electricity,
Cooling can be performed using only air blowing means with low power consumption, contributing to energy savings.

(実施例) 以下、本発明の氷蓄熱式冷房装置を実施例に基づいて更
に詳述するが、本発明はこれによって限定されるもので
はない。
(Example) Hereinafter, the ice storage type cooling device of the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

参考例 第3図に示したガラス製の装置を用い、試料管(パイレ
ックス製)内に純水を10g入れた。
Reference Example Using the glass device shown in FIG. 3, 10 g of pure water was placed in a sample tube (manufactured by Pyrex).

次に脱脂綿(8)を試料管のまわりに約15mmの厚さ
で巻き、その外側をアルミ箔(5)及びビニル袋(6)
で巻いて水浴中(7)に入れ外部をO″Cに保った。排
気量100m11分の真空ポンプ(12)で排気し、排
気経路途中に置いた液体窒素トラップ(9)でゲル中か
ら蒸発する水を捕捉した。この時の試料(1〉の上部(
2)、底部(3)、及び断熱材外側(4)の温度、及び
排気に伴う水蒸気圧の経時変化を測定した。排気による
水の蒸発量は液体窒素トラップ(9)に捉えられた水の
重量測定により求めた。この重量は試料重量の減少量と
実験誤差範囲内で等しい。
Next, wrap absorbent cotton (8) around the sample tube to a thickness of about 15 mm, and wrap the outside with aluminum foil (5) and a plastic bag (6).
The gel was rolled up and placed in a water bath (7) to maintain the outside at O''C. It was evacuated using a vacuum pump (12) with a displacement of 100 m and 11 minutes, and the liquid nitrogen was evaporated from the gel using a liquid nitrogen trap (9) placed in the middle of the exhaust route. At this time, the upper part of the sample (1) was captured.
2), the temperature of the bottom (3) and the outside of the insulation material (4), and the temporal change in water vapor pressure due to exhaust gas were measured. The amount of water evaporated by the exhaust gas was determined by measuring the weight of the water trapped in the liquid nitrogen trap (9). This weight is equal to the decrease in sample weight within experimental error.

第4図に温度及び圧力の経時変化を示した。排気は12
0分間行い、この間の水の蒸発量は1゜24gであった
。初期に過冷却の現象がみられるが、およそ110分で
全体が凍ることが判明した。
Figure 4 shows changes in temperature and pressure over time. Exhaust is 12
This was carried out for 0 minutes, and the amount of water evaporated during this period was 1.24 g. Although the phenomenon of supercooling was seen at the beginning, it was found that the entire body froze in about 110 minutes.

実施例1゜ 試料管中に、更に吸水性高分子(三井東圧■製:M−1
00)を1.5g入れ、厚み約12mmの試料(1)を
形成させた他は全く参考例と同様にしたところ、第4図
に示した如く略同様の結果が得られ、これにより吸水性
高分子中に吸収された水が自由水として取り扱えること
が実証された。
Example 1゜A water-absorbing polymer (manufactured by Mitsui Toatsu ■: M-1) was added to the sample tube.
00) was added to form a sample (1) with a thickness of approximately 12 mm, the same procedure as in the reference example was performed, and almost the same results were obtained as shown in Figure 4. It was demonstrated that water absorbed into polymers can be treated as free water.

次に、水の蒸発速度が試料温度における蒸気圧に比例す
ると仮定して次の様にして蒸発の速度定数を求めた。
Next, assuming that the evaporation rate of water is proportional to the vapor pressure at the sample temperature, the evaporation rate constant was determined as follows.

dt(分)時間の排気により蒸発する水の重量をdw(
g)、温度Tの水蒸気圧をP(T)、蒸発速度定数をk
ffi (g/ (mmHg・分))とすると −dw=kl−P (T)  ・dt・・ (1)(1
)の右辺を全排気時間にわたって積分するとその値は排
気時間中の水の全蒸発量に等しくなる。
The weight of water evaporated due to exhaustion in dt (minutes) time is dw(
g), water vapor pressure at temperature T is P(T), evaporation rate constant is k
If ffi (g/ (mmHg・min)), then -dw=kl-P (T)・dt・・(1)(1
) is integrated over the entire evacuation time, the value is equal to the total amount of water evaporated during the evacuation time.

試料重量と蒸発速度定数の関係は第5図に示した通りで
ある。ここでP (T)は試料の上部温度における蒸気
圧の値を用いた。第5図の結果から、水の蒸発速度は水
の蒸発面積及び蒸発部の蒸気圧に比例すると考えて良い
ことが判る。
The relationship between sample weight and evaporation rate constant is as shown in FIG. Here, P (T) is the vapor pressure value at the upper temperature of the sample. From the results shown in FIG. 5, it can be seen that the evaporation rate of water can be considered to be proportional to the evaporation area of water and the vapor pressure of the evaporation section.

このことから、蓄熱体の表面積が大きく水の蒸発面積の
大きい本発明の冷房装置においては、冷蓄熱効率が極め
て大きくなることが明らかである。
From this, it is clear that in the cooling device of the present invention in which the heat storage body has a large surface area and a large water evaporation area, the cold heat storage efficiency is extremely high.

又、該蓄熱体の大きな表面積が、冷房時の熱交換効率を
良好なものとすることも明らかである。
It is also clear that the large surface area of the heat storage body improves the heat exchange efficiency during cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の氷蓄熱式冷房装置の概念図である。 第2図は凝縮器を有する本発明の氷蓄熱式冷房装置の他
の概念図である。 第3図は本発明の氷蓄熱式冷房装置の氷蓄熱の原理を確
認するために行った実験装置の概略図である。 第4図は、蓄熱槽を減圧した場合の温度及び圧力の経時
変化を示した図である。 第5図は、試料重量と蒸発速度定数の関係を示した図で
ある。 第1図及び第2図において、峠は冷房運転時の空気の流
れ、→は蓄熱運転時の水蒸気の流れを示1・・・・・・
蓄熱槽 2・・・・・・排気手段 3・・・・・・凝縮器 11・・・・・吸水性高分子蓄熱体 20・・・・・空気吸込口 21・・番・・空気排出口 22・・・・・送風手段 23・ ・ ・ ・ ・フィルター 25・・・・・バルブ 30.31、及び40〜43・・・・開閉手段45.4
6・・・バイパス通路
FIG. 1 is a conceptual diagram of the ice storage type cooling device of the present invention. FIG. 2 is another conceptual diagram of the ice storage type cooling device of the present invention having a condenser. FIG. 3 is a schematic diagram of an experimental device used to confirm the principle of ice heat storage in the ice heat storage type cooling device of the present invention. FIG. 4 is a diagram showing changes in temperature and pressure over time when the heat storage tank is depressurized. FIG. 5 is a diagram showing the relationship between sample weight and evaporation rate constant. In Figures 1 and 2, the pass indicates the flow of air during cooling operation, and → indicates the flow of water vapor during heat storage operation.1...
Heat storage tank 2...Exhaust means 3...Condenser 11...Water-absorbing polymer heat storage body 20...Air inlet 21...Air outlet 22...Blower means 23...Filter 25...Valve 30.31, and 40-43...Opening/closing means 45.4
6...Bypass passage

Claims (1)

【特許請求の範囲】 1)少なくとも、吸水性高分子蓄熱体(11)を内蔵す
ると共に開閉手段を有する空気吸込口(20)並びに空
気排出口(21)を設けた蓄熱槽(1)及び排気手段(
2)とからなる氷蓄熱式冷房装置であって、前記蓄熱槽
(1)内を減圧せしめる如くバルブを介して前記排気手
段(2)を接続すると共に、前記空気吸込口(20)か
ら吸込まれた空気が吸水性高分子蓄熱体(11)と接触
して空気排出口(21)から排出される如く該吸水性高
分子蓄熱体(11)を前記蓄熱槽(1)内に配し、前記
空気排出口(21)に送風手段(22)を設けたことを
特徴とする氷蓄熱式冷房装置。 2)粉状の吸水性高分子蓄熱体(11)を少なくとも蓄
熱槽(1)の中央部を仕切る如く複数の棚状に配置せし
めた、請求項1に記載の氷蓄熱式冷房装置。 3)シート状に形成せしめた吸水性高分子蓄熱体(11
)を複数枚、少なくとも蓄熱槽(1)の中央部を仕切る
如く密に配置せしめた、請求項1に記載の氷蓄熱式冷房
装置。 4)吸水性高分子蓄熱体の温度均一性を確保するように
、伝熱性の均熱材を併用する請求項1〜3に記載の氷蓄
熱式冷房装置。 5)排気手段(2)の排気側に切り換え弁を介して凝縮
器(3)を連結した請求項1乃至4の何れかに記載の氷
蓄熱式冷房装置。
[Claims] 1) A heat storage tank (1) containing at least a water-absorbing polymer heat storage body (11) and provided with an air inlet (20) and an air outlet (21) having opening/closing means, and an exhaust. means(
2), wherein the heat storage tank (1) is connected to the exhaust means (2) via a valve so as to reduce the pressure inside the heat storage tank (1), and the air is sucked in from the air suction port (20). The water-absorbing polymer heat storage body (11) is arranged in the heat storage tank (1) so that the air comes into contact with the water-absorbing polymer heat storage body (11) and is discharged from the air outlet (21); An ice storage type cooling device characterized in that an air blowing means (22) is provided at an air outlet (21). 2) The ice storage type cooling device according to claim 1, wherein the powdery water-absorbing polymer heat storage body (11) is arranged in a plurality of shelves so as to partition at least the center portion of the heat storage tank (1). 3) Water-absorbing polymer heat storage body formed into a sheet shape (11
2. The ice storage type cooling device according to claim 1, wherein a plurality of ice storage tanks (1) are densely arranged so as to partition at least a central portion of the heat storage tank (1). 4) The ice storage type cooling device according to any one of claims 1 to 3, wherein a heat conductive heat equalizing material is used in combination to ensure temperature uniformity of the water-absorbing polymer heat storage body. 5) The ice storage type cooling device according to any one of claims 1 to 4, wherein the condenser (3) is connected to the exhaust side of the exhaust means (2) via a switching valve.
JP1228744A 1989-09-04 1989-09-04 Ice and animal heat type air conditioner Expired - Fee Related JP2521541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228744A JP2521541B2 (en) 1989-09-04 1989-09-04 Ice and animal heat type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228744A JP2521541B2 (en) 1989-09-04 1989-09-04 Ice and animal heat type air conditioner

Publications (2)

Publication Number Publication Date
JPH0391623A true JPH0391623A (en) 1991-04-17
JP2521541B2 JP2521541B2 (en) 1996-08-07

Family

ID=16881148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228744A Expired - Fee Related JP2521541B2 (en) 1989-09-04 1989-09-04 Ice and animal heat type air conditioner

Country Status (1)

Country Link
JP (1) JP2521541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586703B2 (en) 2012-03-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Cooling device for use in space environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586703B2 (en) 2012-03-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Cooling device for use in space environment

Also Published As

Publication number Publication date
JP2521541B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US6324860B1 (en) Dehumidifying air-conditioning system
JPS62175562A (en) Adsorption type refrigerator
CN100347499C (en) Double-effect energy-storage method by solution dehumidifying with electric-driven refrigerating compressor
US20240167253A1 (en) Refrigerator Integrated With An Atmospheric Water Harvesting Unit, And Methods Of Using Thereof
JPH0626673A (en) Gas cooling device
JP3508549B2 (en) Heat storage device
CN211953106U (en) Cooling system
JPH0391623A (en) Ice heat accumulation type cooling device
CN116839121A (en) Novel heat pipe air conditioning system with normal and emergency refrigeration functions
CN215892893U (en) Refrigerating system and container
CN214746788U (en) Energy-saving circulating system of freeze dryer
CN205579924U (en) A condensation water treatment facilities for air conditioner and air conditioner thereof
CN115060017A (en) Control method of refrigeration equipment, refrigeration equipment and storage medium
AU2021476189A1 (en) Multi-stage adsorber device and uses thereof for chilling and/or atmospheric water harvesting
CN107228529A (en) A kind of family expenses ex situ freeze dryer
CN109780641B (en) No new trend formula buried pipe solution dehumidification system
CN206944614U (en) A kind of family expenses ex situ freeze dryer
CN219640503U (en) Dehumidification mechanism and refrigerator
JP2002061961A (en) Solar cogeneration integrated system
JPH0415478A (en) Thawing and cold-keeping apparatus using heat pump
CN219624311U (en) Dehumidification mechanism and refrigerator
CN217876223U (en) Solution dehumidification evaporation water cooler and solution dehumidification air conditioner
CN219640636U (en) Heat pump dehumidification dryer
EP4235060A2 (en) Thermal transfer device and storage systems including same
CN217383694U (en) System for be used for improving closed drying-machine dehumidification volume

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees