JP2521541B2 - Ice and animal heat type air conditioner - Google Patents

Ice and animal heat type air conditioner

Info

Publication number
JP2521541B2
JP2521541B2 JP1228744A JP22874489A JP2521541B2 JP 2521541 B2 JP2521541 B2 JP 2521541B2 JP 1228744 A JP1228744 A JP 1228744A JP 22874489 A JP22874489 A JP 22874489A JP 2521541 B2 JP2521541 B2 JP 2521541B2
Authority
JP
Japan
Prior art keywords
heat storage
water
ice
air
absorbent polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1228744A
Other languages
Japanese (ja)
Other versions
JPH0391623A (en
Inventor
秀雄 亀山
協子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP1228744A priority Critical patent/JP2521541B2/en
Publication of JPH0391623A publication Critical patent/JPH0391623A/en
Application granted granted Critical
Publication of JP2521541B2 publication Critical patent/JP2521541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は氷蓄熱を利用した冷房装置に関し、更に詳し
くはフロンガスを冷媒とせず、水を媒体、排気手段を動
力とする新規な氷蓄熱式冷房装置に関する。
Description: TECHNICAL FIELD The present invention relates to a cooling device using ice heat storage, and more specifically, to a novel ice heat storage system that uses water as a medium and exhaust means as a power source without using CFC gas as a refrigerant. The present invention relates to a cooling device.

《従来の技術》 近年、製鉄やアルミニウム製造業等の電力多消費型産
業の省エネルギー化や、電気エネルギー依存度の低い産
業への構造的移行に伴い、夏季の最大電力消費量に占め
る、冷房等の使用による電力消費量の割合が増加してき
ている。これにしたがって、電力需要の昼夜間格差や期
間格差が拡大した結果、要求される最大電力の値は年毎
に高まる一方で、発電設備に対する年平均の負荷率は低
下する傾向にある。
《Prior art》 In recent years, due to the energy saving of electric power consuming industries such as steel manufacturing and aluminum manufacturing, and structural shift to industries with low dependence on electric energy, cooling, etc., which accounts for the maximum power consumption in summer The percentage of power consumption due to the use of is increasing. As a result, the day-night gap and the period gap of the power demand increase, and as a result, the required maximum power value increases every year, while the annual average load factor on the power generation equipment tends to decrease.

そこで、各電力会社は負荷率の向上を目指して、電力
又はエネルギー貯蔵技術の開発を行うことにより、電力
需要の夜間及び春・秋期へのシフトを達成しようと努力
している。
Therefore, each electric power company is striving to achieve the shift of the electric power demand to the nighttime and the spring / autumn season by developing the electric power or energy storage technology aiming at the improvement of the load factor.

我が国においては特に夏期向けの冷房設備に対する電
力需要が大きいことから、蓄熱式空調システムの開発が
特に期待されている。しかしながら、従来の蓄熱式空調
システムは、水の温度差を利用する方式が主流であり、
大容量の蓄熱槽のスペースの確保が困難であるという欠
点が普及の障害となっていた。
In Japan, there is a great demand for electric power for the cooling equipment especially for the summer season, so that development of a heat storage type air conditioning system is particularly expected. However, in the conventional heat storage type air conditioning system, the method that utilizes the temperature difference of water is the mainstream,
The drawback that it is difficult to secure a space for a large-capacity heat storage tank has been an obstacle to its widespread use.

上記の欠点を解決する方法として、水−氷の潜熱を利
用して蓄熱密度を上げる方法が提案され、実用化の段階
に入ろうとしている(“氷蓄熱の最新動向”雑誌「省エ
ネルギー」特集号、41巻、No.7、(1987年)(財)省エ
ネルギーセンター発行)。
As a method of solving the above-mentioned drawbacks, a method of increasing the heat storage density by utilizing latent heat of water-ice has been proposed and is about to enter the stage of practical use ("Latest trend of ice heat storage" magazine "Energy saving" special issue, Volume 41, No.7, (1987) Energy Conservation Center).

因みに、これまでに開発された蓄熱槽の氷製造法は、
何れも冷媒を用いた冷凍方式又はヒートパイプ方式であ
り、製氷・解凍用の熱交換器と蓄熱槽の相互関係がシス
テム構成上の要点となっている。
By the way, the ice production method of the heat storage tank that has been developed so far is
Both are refrigeration methods or heat pipe methods using a refrigerant, and the mutual relationship between the heat exchanger for ice making / thawing and the heat storage tank is a key point in the system configuration.

この場合の製氷方法は、熱交換面に氷を成長させその
まま貯蔵するスタティックタイプと、熱交換面から連続
又は間欠的に氷を剥がして貯蔵槽全体に分散した状態で
貯蔵するダイナミックタイプに二分される。
The ice making method in this case is divided into a static type in which ice is grown on the heat exchange surface and stored as it is, and a dynamic type in which the ice is continuously or intermittently peeled off from the heat exchange surface and stored in a state of being dispersed in the entire storage tank. It

しかしながら、上記の製氷・解凍方式には、製氷・
解凍時の伝熱性をいかに向上させることができるか、
伝熱速度を低下させずにいかに氷充填率を上げることが
できるかという問題がある。ダイナミックタイプは上記
の点に対する1つの回答を与えているが、ブライン
(二次冷媒)や水の輸送動力に問題がある。
However, the above ice making and thawing methods
How can we improve heat transfer during thawing?
There is a problem of how to increase the ice filling rate without lowering the heat transfer rate. The dynamic type gives one answer to the above point, but there is a problem in the transportation power of brine (secondary refrigerant) or water.

更に、何れの場合にも、冷凍機にはフロンガス系の冷
媒が使われており、今後進むと思われるフロンガス規制
に対応することができないという欠点がある。
Further, in any case, there is a drawback that the refrigerator uses a CFC-based refrigerant and cannot comply with the CFC regulation which is expected to proceed in the future.

一方、1974年米国農務省の研究所が約1,000倍という
吸水力を有するポリマーを発表し、その吸水力が注目を
集めて以来、種々の高吸水性高分子が開発され、おむつ
・衛生用品を中心にその需要は急速に伸びてきている。
On the other hand, in 1974, the U.S. Department of Agriculture announced a polymer with a water absorption capacity of about 1,000 times, and since the water absorption power attracted attention, various super absorbent polymers have been developed to produce diapers and sanitary products. Demand for them is growing rapidly, mainly.

高吸水性高分子は、材質により自重の数〜数十倍、時
には数百倍の水を吸水してゲル状となり、固体としての
形状を保つ。しかも、十分多量に吸水したゲル中の大部
分の水は通常の水とほぼ同じ自由水であり、水の蒸発、
凝縮、及び凝固は通常の水に近い条件で起こると考えら
れている(高吸水性ポリマー」共立出版 1987)。
Depending on the material, the superabsorbent polymer absorbs several to several tens times its own weight, and sometimes several hundred times the amount of water to become a gel, and maintains its shape as a solid. Moreover, most of the water in the gel, which absorbed a sufficiently large amount of water, is almost the same free water as normal water, so the water evaporates,
Condensation and coagulation are believed to occur under conditions close to normal water (superabsorbent polymer, Kyoritsu Shuppan 1987).

《発明が解決しようとする課題》 そこで、本発明者等は、水を吸収してゲル状となった
吸水性高分子蓄熱体をシート状に形成せしめて、多数の
該蓄熱体を密に蓄熱槽内に配置し、該蓄熱槽内を排気手
段で減圧せしめることにより蓄熱体中の水分を一部蒸発
させ、その時の蒸発潜熱により蓄熱体中の水を氷の形で
蓄熱することができると共に、蓄熱槽内に外部空気を取
り入れることによって蓄熱体中の氷と直接的に熱交換を
行わせ、冷房を行うことができることを見出し本発明に
到達した。
<< Problems to be Solved by the Invention >> Therefore, the present inventors have formed a sheet of a water-absorbent polymer heat storage material that has absorbed water to form a gel, and densely stores a large number of the heat storage bodies. The heat storage tank is placed in a tank, and the water inside the heat storage body is partially evaporated by depressurizing the inside of the heat storage tank by exhaust means, and the evaporation latent heat at that time can store the water in the heat storage body in the form of ice. The present inventors have found that it is possible to perform heat exchange directly with the ice in the heat storage body by taking in external air into the heat storage tank, thereby achieving cooling.

従って、本発明の第1の目的はフロンガス系冷媒を使
用せずに製氷することができ、氷と空気との直接的熱交
換により効率良く冷房を行うことのできる氷蓄熱式冷房
装置を提供することにある。
Therefore, the first object of the present invention is to provide an ice heat storage type cooling device which can make ice without using a CFC gas type refrigerant and can perform cooling efficiently by direct heat exchange between ice and air. Especially.

本発明の第2の目的は、1日の内の消費電力を平均化
することができると共に、使用する電力コスト全体を低
減化することのできる氷蓄熱式冷房装置を提供すること
にある。
A second object of the present invention is to provide an ice heat storage type cooling device capable of averaging the power consumption within one day and reducing the overall power cost to be used.

《課題を解決するための手段》 本発明の上記の諸目的は、少なくとも、吸水性高分子
蓄熱体を内蔵すると共に開閉手段を有する空気吸込口並
びに空気排出口を設けた蓄熱槽及び排気手段とからなる
氷蓄熱式冷房装置であって、前記蓄熱槽内を減圧せしめ
る如くバルブを介して前記排気手段を接続すると共に、
前記空気吸込口から吸込まれた空気が吸水性高分子蓄熱
体と接触して空気排出口から排出される如く該吸水性高
分子蓄熱体を前記蓄熱槽内に配し、前記空気排出口に送
風手段を設けたことを特徴とする氷蓄熱式冷房装置によ
って達成された。
<< Means for Solving the Problems >> The above-mentioned objects of the present invention are, at least, a heat storage tank and an exhaust means provided with an air intake port and an air discharge port which have a water-absorbing polymer heat storage body and have an opening / closing means. An ice heat storage type cooling device consisting of, wherein the exhaust means is connected via a valve so as to reduce the pressure in the heat storage tank,
The water-absorbent polymer heat storage material is arranged in the heat storage tank so that the air sucked from the air suction opening comes into contact with the water-absorbent polymer heat storage material and is discharged from the air discharge opening, and the air is blown to the air discharge opening. This is achieved by an ice storage type cooling device characterized by the provision of means.

以下本発明の冷房装置の原理を図に基づいて詳述す
る。
Hereinafter, the principle of the cooling device of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の氷蓄熱式冷房装置の概念図であ
る。
FIG. 1 is a conceptual diagram of an ice heat storage type cooling device of the present invention.

図中、符号(1)は蓄熱槽、符号(2)は排気手段、
符号(11)は吸水性高分子蓄熱体、符号(20)及び(2
1)は開閉手段を有する空気吸込口及び空気排出口であ
る。
In the figure, reference numeral (1) is a heat storage tank, reference numeral (2) is an exhaust means,
Reference numeral (11) is a water absorbent polymer heat storage material, reference numerals (20) and (2
1) is an air inlet and an air outlet with opening and closing means.

本発明の氷蓄熱式冷房装置は、少なくとも上記の各部
からなり、該各部の位置関係は以下の通りである。
The ice heat storage type cooling device of the present invention comprises at least the above-mentioned respective parts, and the positional relationship of the respective parts is as follows.

排気手段(2)は、蓄熱槽(1)内を減圧にして吸水
性高分子中の水を蒸発せしめ、蒸発潜熱の放出に伴う氷
の生成を促進するためのものであり、バルブを介して接
続する。上記排気手段は、吸込圧力が約1mmHg、排気圧
力が760mmHgの能力を持つ真空ポンプその他の排気ポン
プ、圧縮器、エジェクター等の公知の手段の中から適宜
選択することができる。その接続箇所及び接続方法は蓄
熱槽(1)の内部を効率良く減圧することができる限り
任意である。
The exhaust means (2) is for reducing the pressure in the heat storage tank (1) to evaporate the water in the water-absorbent polymer and to promote the generation of ice due to the release of latent heat of vaporization, and through a valve. Connecting. The evacuation means can be appropriately selected from known means such as a vacuum pump having a suction pressure of about 1 mmHg and an exhaust pressure of 760 mmHg, other exhaust pumps, compressors, ejectors and the like. The connection point and connection method are arbitrary as long as the pressure inside the heat storage tank (1) can be efficiently reduced.

第1図の冷房装置の場合は、吸水性蓄熱体(11)の前
後から同時に吸引できるように吸引管を2分岐して接続
している。これに対し、後述する第2図の冷房装置の場
合は、蓄熱槽(1)の上部と下部に吸水性高分子蓄熱体
をバイパスする通路(45)及び(46)を設け、該上部の
通路(45)に排気手段を接続している。
In the case of the cooling device shown in FIG. 1, the suction pipes are connected in two branches so that the water absorbent heat storage body (11) can be simultaneously sucked from the front and the back. On the other hand, in the case of the cooling device shown in FIG. 2, which will be described later, passages (45) and (46) for bypassing the water-absorbing polymer heat storage body are provided in the upper and lower portions of the heat storage tank (1), and the upper passage An exhaust means is connected to (45).

吸水性高分子蓄熱体(11)、空気吸込口(20)及び空
気排出口(21)は、空気吸込口(20)から吸い込まれた
空気が吸水性高分子蓄熱体(11)と接触して熱交換を行
い空気排出口(21)から排出されるように配置する。
The water-absorbent polymer heat storage body (11), the air suction port (20) and the air discharge port (21) contact the air sucked from the air suction port (20) with the water-absorbent polymer heat storage body (11). Arrange so that heat is exchanged and the air is discharged from the air discharge port (21).

空気吸込口(20)及び排出口(21)には、減圧時に蓄
熱槽(1)を完全に閉鎖できるように開閉手段(30)及
び(31)を設ける必要がある。又、空気吸込口(20)に
は外部のほこり等が蓄熱槽(1)内に入らないように、
或いは脱煙や除菌を目的としてフィルター(23)を設け
ることが好ましい。空気吸込口(20)に設けるフィルタ
ー(23)及び排出口(21)に設ける送風手段(22)は公
知のものの中から適宜選択して使用することができる。
It is necessary to provide opening / closing means (30) and (31) at the air intake port (20) and the exhaust port (21) so that the heat storage tank (1) can be completely closed when the pressure is reduced. Also, make sure that the air suction port (20) does not allow external dust to enter the heat storage tank (1).
Alternatively, it is preferable to provide a filter (23) for the purpose of removing smoke and removing bacteria. The filter (23) provided in the air suction port (20) and the air blowing means (22) provided in the discharge port (21) can be appropriately selected from known ones and used.

蓄熱槽(1)は、蓄熱槽(1)内部に蓄熱した冷熱が
壁を通して直接外部空気と熱交換することのないように
断熱材を用いることが好ましいが、第2図の場合の如
く、バイパスを設けて蓄熱体を浮かせた構造とする場合
には断熱材の使用を省略することもできる。
The heat storage tank (1) preferably uses a heat insulating material so that the cold heat stored in the heat storage tank (1) does not directly exchange heat with the outside air through the wall, but as in the case of FIG. In the case of providing the structure in which the heat storage body is floated, the use of the heat insulating material can be omitted.

本発明の氷蓄熱式冷房装置を構成する吸水性高分子蓄
熱体(11)は、水を吸水してゲル状になる吸水性高分子
を所望の形状に形成せしめたものである。吸水性高分子
蓄熱体(11)に使用する吸水性高分子は、デンプン系、
セルロース系、合成ポリマー系(例えばポリアクリル酸
塩系、ポリビニルアルコール系、ポリアクリルアミド
系、ポリオキシエチレン系等)の公知の材料の中から適
宜選択して使用することができ、その形状は粉末状(球
状・無定形)、シート状又は繊維状(短繊維・長繊維・
不織布)等の何れの形状であっても良い。
The water absorbent polymer heat storage body (11) constituting the ice heat storage type cooling device of the present invention is formed by forming water absorbent polymer into a desired shape by absorbing water. The water-absorbent polymer used in the water-absorbent polymer heat storage material (11) is starch-based,
It can be appropriately selected and used from known materials such as cellulose-based and synthetic polymer-based (for example, polyacrylic acid salt-based, polyvinyl alcohol-based, polyacrylamide-based, polyoxyethylene-based, etc.), and its shape is powder. (Spherical / amorphous), sheet-like or fibrous (short fiber / long fiber /
Any shape such as non-woven fabric) may be used.

吸水性高分子蓄熱体(11)は、氷蓄熱及び外部空気と
の熱交換が効率良く行なえるように工夫することが好ま
しく、例えば、吸水性高分子蓄熱体(11)を薄いシート
状に形成すれば蒸発面積を大きくすることができる上、
多数のシート状の吸水性高分子蓄熱体(11)を蓄熱槽
(1)の中央部を仕切るように密に配置すれば、空気吸
込口(20)から吸い込まれた空気は各々の吸水性高分子
蓄熱体(11)の隙間を通過するので熱交換効率を大きく
することができる。又、粉末状吸水性高分子を棚状に構
築せしめ、吸水性高分子蓄熱体(11)を蓄熱槽(1)の
側面から取り出し可能に挿入することもできる。このよ
うにすれば蓄熱体(11)の点検が容易である。
It is preferable that the water absorbent polymer heat storage body (11) be devised so that ice heat storage and heat exchange with external air can be efficiently performed. For example, the water absorbent polymer heat storage body (11) is formed in a thin sheet shape. If you do so, you can increase the evaporation area,
If a large number of sheet-shaped water absorbent polymer heat storage bodies (11) are densely arranged so as to partition the central part of the heat storage tank (1), the air sucked from the air suction port (20) will have a high water absorption capacity. Since it passes through the gap of the molecular heat storage body (11), the heat exchange efficiency can be increased. Further, the powdery water-absorbent polymer can be constructed in a shelf shape, and the water-absorbent polymer heat storage body (11) can be inserted removably from the side surface of the heat storage tank (1). This makes it easy to inspect the heat storage body (11).

空気吸込口(20)を蓄熱槽(1)の下部側に設け、空
気排出口(21)を蓄熱槽(1)の上部側に設ければ、蓄
熱槽(11)内の上部に空気が澱むことがなく、空気が一
様に吸水性高分子蓄熱体(11)の各隙間を通過すること
になるので熱交換効率が良く好ましい。
If the air suction port (20) is provided on the lower side of the heat storage tank (1) and the air discharge port (21) is provided on the upper side of the heat storage tank (1), air will settle in the upper part of the heat storage tank (11). Since the air will pass through each gap of the water absorbent polymer heat storage body (11) uniformly without heat, the heat exchange efficiency is good and preferable.

又、全蓄熱槽を通じて熱伝導性の良い均熱材を用いて
吸水性高分子を支持するように工夫すれば、製氷時及び
解氷時に槽内の温度均一性が保たれ、均一な製氷及び解
凍ができるので冷房装置としての効率を一層良好なもの
とすることができる。具体的には、例えば粉末状吸水性
高分子の受け皿として、銅やアルミニウムの板や網を使
用したり、フィルム状吸水性高分子を銅やアルミニウム
の薄膜や板等と貼り合わせて使用する方法を挙げること
ができる。
Moreover, if the water absorbing polymer is supported by using a soaking material with good thermal conductivity throughout the entire heat storage tank, the temperature uniformity in the tank is maintained during ice making and thawing, and uniform ice making and Since it can be thawed, the efficiency as a cooling device can be further improved. Specifically, for example, as a saucer for powdered water-absorbent polymer, a plate or net of copper or aluminum is used, or a film-shaped water-absorbent polymer is used by laminating it with a thin film or plate of copper or aluminum. Can be mentioned.

本発明の氷蓄熱式冷房装置は、少なくとも以上の構成
からなるが、更に排気手段(2)で排気される水蒸気圧
を低減し、排気手段の負荷を少なくすると共に必要に応
じて水の一部を再び蓄熱槽(1)に戻すようにするため
に凝縮器を接続することができる。
The ice storage type air conditioner of the present invention has at least the above-mentioned configuration, but further reduces the pressure of water vapor exhausted by the exhaust means (2) to reduce the load of the exhaust means and, if necessary, a part of water. A condenser can be connected in order to bring the water back into the heat storage tank (1).

第2図は本発明の氷蓄熱式冷房装置に凝縮器を接続し
た場合の概念図である。
FIG. 2 is a conceptual diagram when a condenser is connected to the ice heat storage type cooling device of the present invention.

図中、符号(3)は蓄熱槽(1)から排出される水蒸
気を液化し放熱するための凝縮器である。排気手段の運
転による蓄熱の開始にあたってはまず、蓄熱槽(1)及
び凝縮器(3)内の空気を略完全に排気し、蓄熱槽
(1)及び凝縮器(3)内の気体は実質的に全て水蒸気
のみとなるようにした後、切り換え弁を介して、蓄熱槽
(1)からの排気は全て凝縮器(3)へ導かれるように
する。凝縮器は空冷式又は水冷式で十分であり、公知の
方法によって空気又は水を流すことにより一定温度に保
たれるため、凝縮器内の圧力は、凝縮器温度の水蒸気圧
(例えば30℃ならば31.8mmHg)に保たれる。このため該
排気手段の2次側圧力は1気圧の約1/20に保たれること
になり、蓄熱動力を2次側圧力が1気圧の場合に比べて
低くすることができる。
In the figure, reference numeral (3) is a condenser for liquefying and radiating heat of the steam discharged from the heat storage tank (1). In starting heat storage by operating the exhaust means, first, the air in the heat storage tank (1) and the condenser (3) is almost completely exhausted, and the gas in the heat storage tank (1) and the condenser (3) is substantially discharged. After all of the steam is made to contain only steam, all the exhaust gas from the heat storage tank (1) is guided to the condenser (3) through the switching valve. The condenser may be air-cooled or water-cooled, and is kept at a constant temperature by flowing air or water by a known method, so that the pressure inside the condenser is the steam pressure at the condenser temperature (for example, 30 ° C.). If it is 31.8 mmHg). Therefore, the secondary pressure of the exhaust means is maintained at about 1/20 of 1 atm, and the heat storage power can be made lower than that when the secondary pressure is 1 atm.

凝縮器(3)と蓄熱槽(1)とをバルブ(25)を介し
て接続した場合には、必要に応じて凝縮器(3)内の水
を蓄熱体(11)に戻すことにより、水を冷房装置内で循
環させることができる。
When the condenser (3) and the heat storage tank (1) are connected via the valve (25), the water in the condenser (3) is returned to the heat storage body (11) as necessary, thereby Can be circulated in the cooling device.

符号(41)〜(43)は、吸水性高分子蓄熱体をバイパ
スする通路(45)及び(46)の上流側及び下流側に設け
た開閉手段であり、蓄熱運転時には開いた状態にして蓄
熱槽(1)内を一様に減圧せしめるようにし、冷房運転
時には、通常は閉じた状態にして空気吸込口(20)から
吸い込まれた外気が全て吸水性高分子蓄熱体(11)の各
隙間を通過するようにする。又、空気排出口(21)から
排出される冷気の温度及び湿度調節を行いたい場合に
は、開閉手段(41)〜(43)の開度を調節することによ
り外気の一部をバイパスさせて吸水性高分子蓄熱体(1
1)を通過した冷気と混合して温度及び湿度調節をする
ことができる。
Reference numerals (41) to (43) are opening / closing means provided on the upstream side and the downstream side of the passages (45) and (46) bypassing the water absorbent polymer heat storage body, and are opened in heat storage operation to store heat. The inside of the tank (1) is uniformly decompressed, and during the cooling operation, the outside air sucked from the air suction port (20) is normally closed and all the outside air is absorbed in each gap of the water absorbent polymer heat storage body (11). To pass through. Also, if you want to adjust the temperature and humidity of the cool air discharged from the air discharge port (21), you can bypass the outside air by adjusting the opening of the opening / closing means (41) to (43). Water absorbent polymer heat storage (1
The temperature and humidity can be adjusted by mixing with the cold air that has passed through 1).

《作用》 本発明の氷蓄熱式冷房装置は、以下に詳述する如く、
氷の形として冷蓄熱を行い、蓄熱された氷で冷房を行う
ものである。
<< Operation >> The ice storage type cooling device of the present invention, as described in detail below,
Cold heat is stored in the form of ice, and the stored ice is used for cooling.

1)冷蓄熱 第1図において、空気吸込口(20)及び空気排出口
(21)の開閉手段(30)及び(31)を閉じ、排気手段
(2)を始動して蓄熱槽(1)内を減圧する(第2図の
場合には開閉手段(40)〜(43)を開とする)。仮に、
元水の温度が30℃であるとすると蓄熱槽内の水蒸気圧は
31.8mmHgである。このため排気手段による排気を始める
と同時に蓄熱体(11)の中から水分が蒸発し始め、この
時の蒸発潜熱により水の温度は下がり始める。空気が完
全に排気された場合には蓄熱体(11)上の圧力はその蓄
熱体温度の水蒸気圧に等しくなる。蓄熱槽(1)内の水
蒸気圧が4.58mmHgとなった時には水の温度は0℃迄下が
り、過冷却の現象が無い場合には蒸発潜熱は全て製氷に
使われて吸水性高分子蓄熱体(11)に残った水分が氷と
して蓄熱される。
1) Cold heat storage In FIG. 1, the opening / closing means (30) and (31) of the air inlet (20) and the air outlet (21) are closed, the exhaust means (2) is started, and the heat storage tank (1) is stored. (The opening / closing means (40) to (43) are opened in the case of FIG. 2). what if,
If the source water temperature is 30 ° C, the water vapor pressure in the heat storage tank is
It is 31.8 mmHg. Therefore, at the same time when the exhaust means starts exhausting, moisture starts to evaporate from the heat storage body (11), and the temperature of the water starts to drop due to the latent heat of vaporization at this time. When the air is completely exhausted, the pressure on the heat storage body (11) becomes equal to the steam pressure at the temperature of the heat storage body. When the water vapor pressure in the heat storage tank (1) reaches 4.58 mmHg, the temperature of the water drops to 0 ° C. When there is no phenomenon of supercooling, the latent heat of evaporation is used for ice making The water remaining in 11) is stored as ice.

以上の作用は、吸水性高分子蓄熱体(11)中の元水の
温度が30℃の場合であるが、実際には、吸水性高分子蓄
熱体(11)の氷が完全に融けないうちに蓄熱操作を開始
するので蓄熱は0℃付近から開始されることになる。
The above operation is performed when the temperature of the original water in the water absorbent polymer heat storage material (11) is 30 ° C, but in reality, before the ice of the water absorbent polymer heat storage material (11) is completely melted. Since the heat storage operation is started at 1, heat storage will be started from around 0 ° C.

上記の氷蓄熱を夜間電力を利用してしかも凝縮器を設
けて2次側圧力を低く押さえて行えば、安価に冷蓄熱を
行うことができる。
Cold storage can be performed at low cost by performing the above ice heat storage by using night-time electric power and further by providing a condenser and keeping the secondary side pressure low.

2)冷房 第1図において、空気吸込口(20)及び空気排出口
(21)の開閉手段(30)及び(31)を解放し、送風手段
(22)を始動する。空気吸込口(20)から吸引された空
気は吸水性高分子蓄熱体(11)の隙間を通過しつつ、氷
の形で蓄熱された吸水性高分子蓄熱体(11)と直接熱交
換して冷風となり空気排出口(21)より放出される。こ
れと同時に入口空気中に含まれていた水蒸気の一部は蓄
熱体上に凝縮して空気中の含水量も低下する。第2図の
場合には、開閉手段(40)〜(43)の開度を調節するこ
とにより、吸水性高分子蓄熱体(11)を通過した冷気と
該開閉手段(40)〜(43)をバイパスした外気とを混合
して空気排出口(21)より温度及び湿度を調節した冷気
を排出することができる。
2) Cooling In FIG. 1, the opening / closing means (30) and (31) of the air inlet (20) and the air outlet (21) are released, and the air blower (22) is started. The air sucked from the air suction port (20) directly exchanges heat with the water absorbent polymer heat storage body (11) stored in the form of ice while passing through the gap of the water absorbent polymer heat storage body (11). It becomes cold air and is discharged from the air outlet (21). At the same time, a part of the water vapor contained in the inlet air is condensed on the heat storage body and the water content in the air is also reduced. In the case of FIG. 2, by adjusting the openings of the opening / closing means (40) to (43), the cold air that has passed through the water absorbent polymer heat storage body (11) and the opening / closing means (40) to (43). It is possible to mix cold air whose temperature and humidity have been adjusted through the air discharge port (21) by mixing it with the outside air that bypassed.

この時の電力負荷は送風器のみであるから、少ない電
力消費量で冷房することができる。
Since the power load at this time is only the blower, the cooling can be performed with a small amount of power consumption.

3)水の循環 第2図において、蓄熱槽(1)及び凝縮器(3)中の
空気が略完全に排出された段階で、排気手段(2)の切
り換え弁を凝縮器(3)側に切り換える。蒸発した水分
は凝縮器(3)に送られ、ここで熱を外部に放出して液
化する。凝縮器(3)に溜まった水は必要に応じて、冷
房運転を停止した後に、バルブ(25)を開けて吸水性高
分子蓄熱体(11)に戻す。
3) Water circulation In FIG. 2, when the air in the heat storage tank (1) and the condenser (3) is almost completely discharged, the switching valve of the exhaust means (2) is moved to the condenser (3) side. Switch. The evaporated water is sent to the condenser (3), where heat is released to the outside and liquefied. If necessary, the water accumulated in the condenser (3) is returned to the water absorbent polymer heat storage body (11) by opening the valve (25) after stopping the cooling operation.

《発明の効果》 以上詳述した如く、本発明の氷蓄熱式冷房装置は、蓄
熱、冷房共に、熱の出入りは蓄熱体上で直接行われるた
め熱損失が最小に押さえられる上、吸水性高分子の使用
により蓄熱体の表面積を大きくすることができるので熱
交換効率が良好である。
<Effects of the Invention> As described in detail above, in the ice heat storage type cooling device of the present invention, heat storage and cooling are performed directly on and off the heat storage body, so heat loss is suppressed to a minimum and water absorption is high. Since the surface area of the heat storage body can be increased by using the molecule, the heat exchange efficiency is good.

又、吸水性高分子は無公害物質であるので、フロンガ
ス系冷媒を用いる冷凍機のように環境に悪影響をもたら
すことがない。
Further, since the water-absorbing polymer is a non-polluting substance, it does not have an adverse effect on the environment unlike a refrigerator using a CFC-based refrigerant.

更に、冷蓄熱を電気料金の安い夜間電力を用いて行
い、冷房を電力消費量の少ない送風手段のみで行うこと
ができるので省エネルギーに寄与することができる。
Further, cold heat can be stored by using nighttime electric power, which has a low electricity rate, and cooling can be performed only by a blowing unit that consumes less electric power, which can contribute to energy saving.

《実施例》 以下、本発明の氷蓄熱式冷房装置を実施例に基づいて
更に詳述するが、本発明はこれによって限定されるもの
ではない。
«Examples» Hereinafter, the ice storage type cooling device of the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

参考例 第3図に示したガラス製の装置を用い、試料管(パイ
レックス製)内に純水を10g入れた。
Reference Example Using the glass apparatus shown in FIG. 3, 10 g of pure water was placed in a sample tube (made by Pyrex).

次に脱脂綿(8)を試料管のまわりに約15mmの厚さで
巻き、その外側をアルミ箔(5)及びビニル袋(6)で
巻いて氷浴中(7)に入れ外部を0℃に保った。排気量
100ml/分の真空ポンプ(12)で排気し、排気経路途中に
置いた液体窒素トラップ(9)でゲル中から蒸発する水
を捕捉した。この時の試料(1)の上部(2)、底部
(3)、及び断熱材外側(4)の温度、及び排気に伴う
水蒸気圧の経時変化を測定した。排気による水の蒸発量
は液体窒素トラップ(9)に捉えられた水の重量測定に
より求めた。この重量は試料重量の減少量と実験誤差範
囲内で等しい。
Next, wrap cotton wool (8) around the sample tube in a thickness of about 15 mm, wrap the outside with aluminum foil (5) and vinyl bag (6), put in an ice bath (7), and set the outside to 0 ° C. I kept it. Displacement
It was evacuated with a vacuum pump (12) of 100 ml / min, and water evaporated from the gel was captured with a liquid nitrogen trap (9) placed in the middle of the exhaust path. At this time, the temperature of the upper part (2) of the sample (1), the bottom part (3), and the outside of the heat insulating material (4) and the time-dependent change of water vapor pressure due to exhaust were measured. The amount of water evaporated by the exhaust gas was determined by measuring the weight of the water captured in the liquid nitrogen trap (9). This weight is equal to the reduction of the sample weight within the experimental error range.

第4図に温度及び圧力の経時変化を示した。排気は12
0分間行い、この間の水の蒸発量は1.24gであった。初期
に過冷却の現象がみられるが、およそ110分で全体が凍
ることが判明した。
FIG. 4 shows changes in temperature and pressure with time. Exhaust 12
The operation was performed for 0 minutes, and the evaporation amount of water during this period was 1.24 g. Although the phenomenon of supercooling was observed in the early stage, it was found that the whole was frozen in about 110 minutes.

実施例1. 試料管中に、更に吸水性高分子(三井東圧(株)製:M
−100)を1.5g入れ、厚み約12mmの試料(1)を形成さ
せた他は全く参考例と同様にしたところ、第4図に示し
た如く略同様の結果が得られ、これにより吸水性高分子
中に吸収された水が自由水として取り扱えることが実証
された。
Example 1. A water absorbent polymer (Mitsui Toatsu Co., Ltd .: M
-100) was added in an amount of 1.5 g to form a sample (1) having a thickness of about 12 mm, and substantially the same results were obtained as shown in FIG. It was demonstrated that the water absorbed in the polymer can be treated as free water.

次に、水の蒸発速度が試料温度における蒸気圧に比例
すると仮定して次の様にして蒸発の速度定数を求めた。
Next, assuming that the evaporation rate of water is proportional to the vapor pressure at the sample temperature, the evaporation rate constant was determined as follows.

dt(分)時間の排気により蒸発する水の重量をdw
(g)、温度Tの水蒸気圧をP(T)、蒸発速度定数を
kl(g/(mmHg・分))とすると −dw=kl・P(T)・dt ・・(1) (1)の右辺を全排気時間にわたって積分するとその値
は排気時間中の水の全蒸発量に等しくなる。
dw is the weight of the water that evaporates by exhausting for dt (minutes) hours
(G), the vapor pressure at temperature T is P (T), and the evaporation rate constant is
kl (g / (mmHg · min)) −dw = kl · P (T) · dt ··· (1) If the right side of (1) is integrated over the entire exhaust time, the value is the total water during the exhaust time. It becomes equal to the amount of evaporation.

試料重量と蒸発速度定数の関係は第5図に示した通り
である。ここでP(T)は試料の上部温度における蒸気
圧の値を用いた。第5図の結果から、水の蒸発速度は水
の蒸発面積及び蒸発部の蒸発圧に比例すると考えて良い
ことが判る。
The relationship between the sample weight and the evaporation rate constant is as shown in FIG. Here, the value of vapor pressure at the upper temperature of the sample was used as P (T). From the results of FIG. 5, it can be understood that the evaporation rate of water can be considered to be proportional to the evaporation area of water and the evaporation pressure of the evaporation section.

このことから、蓄熱体の表面積が大きく水の蒸発面積
の大きい本発明の冷房装置においては、冷蓄熱効率が極
めて大きくなることが明らかである。又、該蓄熱体の大
きな表面積が、冷房時の熱交換効率を良好なものとする
ことも明らかである。
From this, it is clear that in the cooling device of the present invention in which the surface area of the heat storage body is large and the evaporation area of water is large, the cold heat storage efficiency becomes extremely large. It is also clear that the large surface area of the heat storage material improves the heat exchange efficiency during cooling.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の氷蓄熱式冷房装置の概念図である。 第2図は凝縮器を有する本発明の氷蓄熱式冷房装置の他
の概念図である。 第3図は本発明の氷蓄熱式冷房装置の氷蓄熱の原理を確
認するために行った実験装置の概略図である。 第4図は、蓄熱槽を減圧した場合の温度及び圧力の経時
変化を示した図である。 第5図は、試料重量と蒸発速度定数の関係を示した図で
ある。 第1図及び第2図において、は冷房運転時の空気の流
れ、→は蓄熱運転時の水蒸気の流れを示す。 1……蓄熱槽 2……排気手段 3……凝縮器 11……吸水性高分子蓄熱体 20……空気吸込口 21……空気排出口 22……送風手段 23……フィルター 25……バルブ 30、31、及び40〜43……開閉手段 45、46……バイパス通路
FIG. 1 is a conceptual diagram of an ice heat storage type cooling device of the present invention. FIG. 2 is another conceptual diagram of the ice heat storage type cooling device of the present invention having a condenser. FIG. 3 is a schematic diagram of an experimental device that was carried out to confirm the principle of ice heat storage of the ice heat storage type cooling device of the present invention. FIG. 4 is a diagram showing changes with time in temperature and pressure when the heat storage tank is depressurized. FIG. 5 is a diagram showing the relationship between the sample weight and the evaporation rate constant. 1 and 2, indicates the flow of air during the cooling operation, and → indicates the flow of water vapor during the heat storage operation. 1 ... Heat storage tank 2 ... Exhaust means 3 ... Condenser 11 ... Water absorbing polymer heat storage body 20 ... Air inlet 21 ... Air outlet 22 ... Air blower 23 ... Filter 25 ... Valve 30 , 31, and 40 to 43 …… Opening / closing means 45, 46 …… Bypass passage

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも、吸水性高分子蓄熱体(11)を
内蔵すると共に開閉手段を有する空気吸込口(20)並び
に空気排出口(21)を設けた蓄熱槽(1)及び排気手段
(2)とからなる氷蓄熱式冷房装置であって、前記蓄熱
槽(1)内を減圧せしめる如くバルブを介して前記排気
手段(2)を接続すると共に、前記空気吸込口(20)か
ら吸込まれた空気が吸水性高分子蓄熱体(11)と接触し
て空気排出口(21)から排出される如く該吸水性高分子
蓄熱体(11)を前記蓄熱槽(1)内に配し、前記空気排
出口(21)に送風手段(22)を設けたことを特徴とする
氷蓄熱式冷房装置。
1. A heat storage tank (1) and an exhaust means (2) provided with an air inlet (20) and an air outlet (21) at least containing a water-absorbing polymer heat storage body (11) and having opening and closing means. ) And an ice heat storage type cooling device, which is connected to the exhaust means (2) through a valve so as to reduce the pressure in the heat storage tank (1) and is sucked from the air suction port (20). The water-absorbent polymer heat storage material (11) is arranged in the heat storage tank (1) so that the air comes into contact with the water-absorbent polymer heat storage material (11) and is discharged from the air discharge port (21). An ice storage type air conditioner having a blower means (22) provided at an outlet (21).
【請求項2】粉状の吸水性高分子蓄熱体(11)を少なく
とも蓄熱槽(1)の中央部を仕切る如く複数の棚状に配
置せしめた、請求項1に記載の氷蓄熱式冷房装置。
2. The ice heat storage type cooling device according to claim 1, wherein the powdery water-absorbent polymer heat storage material (11) is arranged in a plurality of shelves so as to partition at least the central portion of the heat storage tank (1). .
【請求項3】シート状に形成せしめた吸水性高分子蓄熱
体(11)を複数枚、少なくとも蓄熱槽(1)の中央部を
仕切る如く密に配置せしめた、請求項1に記載の氷蓄熱
式冷房装置。
3. The ice heat storage system according to claim 1, wherein a plurality of water-absorbent polymer heat storage bodies (11) formed in a sheet shape are densely arranged so as to partition at least the central portion of the heat storage tank (1). Air conditioner.
【請求項4】吸水性高分子蓄熱体の温度均一性を確保す
るように、伝熱性の均熱材を併用する請求項1〜3いず
れかに記載の氷蓄熱式冷房装置。
4. The ice-storage type air conditioner according to claim 1, wherein a heat transfer heat equalizing material is also used so as to ensure temperature uniformity of the water absorbent polymer heat storage body.
【請求項5】排気手段(2)の排気側に切り換え弁を介
して凝縮器(3)を連結した請求項1乃至4の何れかに
記載の氷蓄熱式冷房装置。
5. The ice heat storage type cooling device according to claim 1, wherein a condenser (3) is connected to the exhaust side of the exhaust means (2) through a switching valve.
JP1228744A 1989-09-04 1989-09-04 Ice and animal heat type air conditioner Expired - Fee Related JP2521541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228744A JP2521541B2 (en) 1989-09-04 1989-09-04 Ice and animal heat type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228744A JP2521541B2 (en) 1989-09-04 1989-09-04 Ice and animal heat type air conditioner

Publications (2)

Publication Number Publication Date
JPH0391623A JPH0391623A (en) 1991-04-17
JP2521541B2 true JP2521541B2 (en) 1996-08-07

Family

ID=16881148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228744A Expired - Fee Related JP2521541B2 (en) 1989-09-04 1989-09-04 Ice and animal heat type air conditioner

Country Status (1)

Country Link
JP (1) JP2521541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586703B2 (en) 2012-03-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Cooling device for use in space environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586703B2 (en) 2012-03-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Cooling device for use in space environment

Also Published As

Publication number Publication date
JPH0391623A (en) 1991-04-17

Similar Documents

Publication Publication Date Title
US6324860B1 (en) Dehumidifying air-conditioning system
CN106705334A (en) Energy recovery double-cold-source high-enthalpy-difference energy storage fresh air handling unit and control method thereof
WO2015027570A1 (en) Compound integrated heat pump apparatus for heat source tower
CN100347499C (en) Double-effect energy-storage method by solution dehumidifying with electric-driven refrigerating compressor
CN112254236B (en) Indirect evaporative cooling cold water system combining mechanical refrigeration and switching method
CN102519097A (en) TBAB (tetra-n-butyl-ammonium bromide) phase change cool-storing/cool-carrying air-conditioning system with independent temperature and humidity treatment
KR20140123384A (en) Two stage heat pump cooling and heating apparatus using air heat source
JPH10500764A (en) Figure 8 circulating air conditioner for air energy-Application of differential cold valley tube
CN204987335U (en) Refrigerated water type computer lab air conditioner of fluorine pump dual cycle nature cold source cold -storage system
CN212618630U (en) Refrigerating system
JP2521541B2 (en) Ice and animal heat type air conditioner
CN206269310U (en) The energy recovery type big enthalpy difference accumulation of energy Fresh air handling units of double low-temperature receivers
CN116839121A (en) Novel heat pipe air conditioning system with normal and emergency refrigeration functions
CN108800355A (en) A kind of air conditioning method and system
CN215892893U (en) Refrigerating system and container
CN214746788U (en) Energy-saving circulating system of freeze dryer
JPH02187581A (en) In-tube ice making unit and in-tube ice making method
CN208075369U (en) A kind of air-conditioning refrigerator combined system of central refrigerating fission cooling
CN206944614U (en) A kind of family expenses ex situ freeze dryer
JP2002061961A (en) Solar cogeneration integrated system
JPS6367633B2 (en)
JPH0415478A (en) Thawing and cold-keeping apparatus using heat pump
CN216868861U (en) Refrigerating system of freeze dryer
JPH0674497A (en) Ice hat accumulating device
CN115371455B (en) Heat insulation structure and heat insulation method for liquid nitrogen heat exchange equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees