JPH039141B2 - - Google Patents

Info

Publication number
JPH039141B2
JPH039141B2 JP2213082A JP2213082A JPH039141B2 JP H039141 B2 JPH039141 B2 JP H039141B2 JP 2213082 A JP2213082 A JP 2213082A JP 2213082 A JP2213082 A JP 2213082A JP H039141 B2 JPH039141 B2 JP H039141B2
Authority
JP
Japan
Prior art keywords
polymer
weight
block copolymer
mixture
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2213082A
Other languages
Japanese (ja)
Other versions
JPS58141233A (en
Inventor
Toshinori Shiraki
Fusakazu Hayano
Hideo Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2213082A priority Critical patent/JPS58141233A/en
Publication of JPS58141233A publication Critical patent/JPS58141233A/en
Publication of JPH039141B2 publication Critical patent/JPH039141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、透明性や表面光沢などの外観特性及
び耐撃性に優れた熱可塑性重合体組成物に関し、
更に詳しくは、共役ジエンとビニル芳香族炭化水
素からなるブロツク共重合体から構成されるブロ
ツク共重合体混合物であつて、該混合物を構成す
るブロツク共重合体のビニル芳香族炭化水素含有
量が分子量の増加と共に、実質上連続的に変化す
るような組成分布を有するブロツク共重合体混合
物と熱可塑性樹脂からなる熱可塑性重合体組成物
に関する。 従来、スチレン系樹脂、オレフイン系樹脂等の
熱可塑性樹脂は押出成形、射出成形、中空成形、
真空成形などの成形が容易に実施できることから
食品包装容器、家庭用品、電気部品、工業用品な
どの素材として幅広い用途に使用されている。し
かしながら、これらの熱可塑性樹脂は用途によつ
ては耐衝撃性が不足で末端ユーザーの要望を充分
満足することが出来ない事態がしばしば生じてい
る。 例えば、ポリスチレンは軽量で安価であり、優
れた透明性と外観を有し、かつ加工性が良好であ
るため透明容器などに使用されてきたが、耐衝撃
性に欠けるところから成形離型時にクラツクや割
れが発生したり、成形品の使用時に落下等による
衝撃により破損したりするなどの欠陥があるため
その用途が著しく限定されている。このポリスチ
レンの耐衝撃性を改良することを目的として製造
されたゴム変性ポリスチレンにおいても、複雑な
形状や深絞り製品の成形時及び使用時において耐
衝撃性の不足から生じるクラツクの発生や破損な
どの問題が生じている。 また、一般に耐衝撃性スチレン系樹脂と呼ばれ
ている上記ゴム変性ポリスチレンや、アクリロニ
トリル−ブタジエン−スチレン共重合体、メチル
メタアクリレート−ブタジエン−スチレン共重合
体などにおいても、その難燃性、剛性等を改善す
る目的で難燃剤や無機充填剤等を配合した場合、
耐衝撃性が低下して樹脂本来の特性を充分発揮で
きない等の問題を生じている。 また、ポリエチレンやポリプロピレンなどのオ
レフイン系樹脂も、その原料単量体の安価なこ
と、良好な耐薬品性及び、電気的性質等の特徴を
有し、フイルム、一般プラスチツク成型品等に広
く利用されているが、比較的恒久的に使用される
成形品や取扱いの激しい物質運輸用容器の用途に
おいて破損などの問題を生じ、耐衝撃性の改善が
望まれている。 このようなスチレン系樹脂、オレフイン系樹脂
等の耐衝撃性を改善する方法として共役ジオレフ
インとビニル置換芳香族化合物からなるブロツク
共重合体を配合することが効果であることは既に
知られている。 例えば、特公昭44−7126号公報及び特公昭47−
43618号公報にはポリスチレンの耐衝撃性改良剤
として共役ジオレフイン−ビニル置換芳香族化合
物からなる線状ブロツク共重合体及び分岐放射状
ブロツク共重合体を使用することが記載されてい
る。また、特公昭52−21012号公報及び特開昭50
−133252号公報にはゴム変性ポリスチレンの耐衝
撃性をさらに向上させる目的で上記と類似のブロ
ツク共重合体を使用することが記載されている。
さらに特公昭42−19915号公報及び特公昭45−
4624号公報にはポリプロピレン及びポリエチレン
に線状ブロツク共重合体を配合してその特性を改
善する試みがなされている。 しかし、これらの文献に記載されているブロツ
ク共重合体と各種熱可塑性樹脂とからなる樹脂組
成物はある程度の耐衝撃性改良効果は期待できる
ものの、用途によつてはまだ不充分であり、より
効果的な耐衝撃性改良剤の開発が切望されてい
る。又、ブロツク共重合体を配合した樹脂組成物
は一般的に透明性や表面光沢などの外観特性が低
下する傾向がみられ、かかる外観特性の改良も要
望されている。 本発明者らはかかる現状に鑑み、外観特性及び
耐衝撃性に優れた樹脂組成物を開発すべく鋭意検
討し、本発明に到達した。 即ち、本発明は、 (a) 少なくとも1個のビニル芳香族炭化水素を主
体とする重合体ブロツクと少なくとも1個の共
役ジエンを主体とする重合体ブロツクを有する
ブロツク共重合から構成されるブロツク共重合
体混合物であつて、 (i) 該混合物の全体としてのビニル芳香族炭化
水素含有量が5〜95重量%、 (ii) 該混合物の全体としての数平均分子量が
10000〜1000000, (iii) 該混合物を構成するブロツク共重合体のビ
ニル芳香族炭化水素含有量が分子量の増加と
共に、実質上連続的に変化するような組成分
布を有し、しかも、該混合物中に含まれる低
分子量成分及び高分子量成分をそれぞれ5重
量%(ブロツク共重合体混合物全体に対する
割合)除いた残りの成分間において、ビニル
芳香族炭化水素含有量の少ない成分と多い成
分とのビニル芳香族炭化水素含有量の差が5
重量%以上、であるブロツク共重合体混合物
又は該ブロツク共重合体混合物の水添物 (b) 熱可塑性樹脂 から成る熱可塑性重合体組成物に関する。 本発明の特徴は、ブロツク重合体のビニル芳香
族炭化水素含有が芳香族の増加と共に、実質上連
続的に変化するような組成分布を有するブロツク
共重合体混合物を用いることにあり、ビニル芳香
族炭化水素含有量が実質上連続的に変化するよう
な組成物分布を有するため、ブロツク共重合体の
混合性が改良され、しかもビニル芳香族炭化水素
含有量の異なるブロツク共重合体の各々の作用効
果が相乗的に発揮されることから外観特性及び耐
衝撃性の優れた熱可塑性重合体組成物が得られ
る。以下、本発明を詳細に説明する。 本発明で使用する成分(a)のブロツク共重合体混
合物は、少なくとも1個、好ましくは2個以上の
ビニル芳香族炭化水素を主体とする重合体ブロツ
クと少なくとも1個の共役ジエンを主体とする重
合体ブロツクを有するブロツク共重合体から構成
される。ここで、ビニル芳香族炭化水素を主体と
する重合体ブロツクとは、ビニル芳香族炭化水素
を50重量%以上含有するビニル芳香族炭化水素と
共役ジエンとのランダム共重合体ブロツク及び/
又はビニル芳香族炭化水素単独重合体ブロツクを
示し、共役ジエンを主体とする重合体ブロツクと
は共役ジエンを50重量%を超える量で含有する共
役ジエンとビニル芳香族炭化水素とのランダム共
重合体ブロツク及び/又は共役ジエン単独重合体
ブロツクを示す。ランダム共重合体ブロツク中の
ビニル芳香族炭化水素は均一に分布していても、
又テーパー状に分布していてもよい。 本発明で使用するブロツク共重合体混合物を構
成するブロツク共重合体としては、ポリマー構造
が一般式、 (イ) (A−B)o (ロ) A(−B−A)o (ハ) B(−A−B)o (上式において、Aはビニル芳香族炭化水素を主
体とする重合体ブロツクであり、Bは共役ジエン
を主体とする重合体ブロツクである。Aブロツク
とBブロツクとの境介は必ずしも明瞭に区別され
る必要はない。nは1以上の整数である。) で表わされる線状ブロツク共重合体、あるいは一
般式、 (ニ) 〔(B−A)on+2――――X (ホ) 〔(A−B)on+2――――X (ヘ) 〔(B−A)oB〕n+2――――X (ト) 〔(A−B)oA〕n+2――――X (上式において、A,Bは前記と同じであり、X
は例えば四塩化ケイ素、四塩化スズなどのカツプ
リング剤の残基または多官能有機リチウム化合物
等の開始剤の残基を示す。m及びnは1以上の整
数である。) でわされるラジアルブロツク共重合体、あるいは
これらのポリマー構造の任意の混合物が使用でき
る。 本発明の最大の特徴は、ブロツク共重合体混合
物を構成するブロツク共重合体のビニル芳香族炭
化水素含有量が分子量の増加と共に、実質上連続
的に変化、即ち実質上連続的に増加及び/又は減
少するような組成分布を有するブロツク共重合体
混合物を成分(a)として使用する点にある。本発明
において、ブロツク共重合体のビニル芳香族炭化
水素含有量が分子量の増加と共に、実質上連続的
に増加及び/又は減少するとは、ブロツク共重合
体混合物を構成するブロツク共重合体の分子量の
変化に対するビニル芳香族炭化水素含有量の変化
に実質上な不連続点がないことを意味し、ビニル
芳香族炭化水素含有量が分子量の増加と共に単調
に連続的に増加又は減少しても、或いは連続的な
増加又は減少を繰り返しながら変化してもよい。
一般的には、ビニル芳香族炭化水素含有量が分子
量の増加と共に、実質的に単調に増加又は減少す
るブロツク共重合体混合物が好ましい。 ブロツク共重合体混合物の組成分布を把握する
方法には、ブロツク共重合体混合物を常法に従つ
て分子量分別し、得られた各フラクシヨンの分子
量とビニル芳香族炭化水素含有量を測定する方法
とか、GPCにより分子量分布と組成分布を同時
に測定する方法などがあるが、本発明のブロツク
共重合体混合物の組成分布を把握する方法はこれ
らに限定されるものではない。 本発明で使用するブロツク共重合体混合物は、
ブロツク共重合体混合物中の主成分を占めるブロ
ツク共重合体間において、ビニル芳香族炭化水素
含有量の少ない成分と多い成分とのビニル芳香族
炭化水素含有量の差が5重量%以上、好ましくは
10重量%以上、更に好ましくは15重量%以上の組
成の不均一性を有する混合物が好適である。ここ
でブロツク共重合体混合物中の主重合体を占める
ブロツク共重合体とは、該混合物中に含まれる低
分子量成分及び高分子量成分をそれぞれ一部除い
た残りの成分中のブロツク共重合体を意味し、数
値で例示するとすれば、低分子量成分及び高分子
量成分をそれぞれ5重量%(ブロツク共重合体混
合物全体に対する割合)、好ましくは10重量%、
更に好ましくは15重量%除いた残りの成分であ
る。 又、本発明で使用するブロツク共重合体混合物
は、ブロツク共重合体の少なくとも1個の重合体
ブロツクの分子量がブロツク共重合体間において
相互に異なるブロツク共重合体から構成される混
合物が好ましい。ブロツク共重合体間において分
子量が相互に異なる重合体ブロツクは、ビニル芳
香族炭化水素を主体とする重合体ブロツクでも共
役ジエンを主体とする重合体ブロツクのいずれで
もよいが、一般には共役ジエンを主体とする重合
体ブロツクを少なくとも1個相互に変化させたブ
ロツク共重合体からなる混合物が好ましい。 本発明で使用するブロツク共重合体混合物の全
体としてのビニル芳香族炭化水素含有量は5〜
95、好ましくは10〜90、更に好ましくは15〜85重
量%である。ビニル芳香族炭化水素含有量が60重
量%以下、好ましくは55重量%以下の場合は熱可
塑性弾性体としての特性を示し、ビニル芳香族炭
化水素含有量が60重量%を超える、好ましくは65
重量%以上の場合は熱可塑性樹脂としての特性を
示す。 本発明で使用するブロツク共重合体混合物の全
体として数平均分子量は10000〜1000000、好まし
くは30000〜500000である。この範囲より小さい
と耐衝撃性の改良効果が小さく、また逆にこの範
囲より大きいと成分(b)の熱可塑性樹脂との混練性
が低下する。 本発明で使用するブロツク共重合体混合物の製
造方法としては、特願昭55−122953号に記載され
た連続重合法による方法や、特願昭56−209112号
に記載された方法などがあげられるが、これらに
限定されるものではない。 本発明においてビニル芳香族炭化水素としては
スチレン、o−メチルスチレン、p−メチルスチ
レン、p−tert−ブチルスチレン、1,3−ジメ
チルスチレン、α−メチルスチレン、ビニルナフ
タレン、ビニルアントラセンなどがあるが、特に
一般的なものとしてはスチレンが挙げられる。こ
れらは1種のみならず2種以上混合して使用して
もよい。 本発明において、共役ジエンとは、1対の共役
二重結合有するジオレフインであり、たとえば
1,3−ブタジエン、2−メチル−1,3−ブタ
ジエン(イソプレン)、2,3−ジメチル−1,
3−ブタジエン、1,3−ペンタジエン、1,3
−ヘキサジエンなどであるが、特に一般的なもの
としては1,3−ブタジエン、イソプレンが挙げ
られる。これらは1種のみならず2種以上混合し
て使用してもよい。 本発明で使用するブロツク共重合体混合物は、
その基本的な特性、例えば耐衝撃性や外観特性の
改良効果などを損わない範囲内で水素添加、ハロ
ゲン化、ハロゲン化水素化、或いは化学反応によ
り水酸基、チオール基、ニトリル基、スルホン酸
基、カルボキシル基、アミノ基、エポキシ基等の
官能基の導入を行うなどの改質が行われていても
よい。 特に、本発明の成分(a)として前記ブロツク共重
合体混合物の水添物を用いる場合においては、前
記の特性に加えて耐候性や耐熱劣化性に優れた熱
可塑性重合体組成物が得られる。 前記ブロツク共重合体混合物を水添する方法と
しては、ニツケル、コバルト、鉄などの第族金
属の化合物と第族〜第族の金属を含有する有
機金属化合物を組合せた触媒や、ルテニウム、ロ
ジウム、パラジウムなどの化合物を触媒として水
添するなど公知の方法が利用できる。前記ブロツ
ク共重合体混合物の水添物としては、ブロツク共
重合体混合物中の共役ジエン化合物に基づく脂肪
族二重結合の少なくとも80%が水素添加されたも
のが好ましい。又ブロツク共重合体混合物中のビ
ニル芳香族化合物に基づく芳香族二重結合の水添
添加率は一般に20%以下にするのが好ましい。ブ
ロツク共重合体混合物の水添物の水素添加率は、
赤外分光光度計(IR)や核磁気共鳴装置
(NMR)等を用いた機器分析、ヨード滴定法等
による滴定分析などにより測定できる。尚、成分
(a)として前記ブロツク共重合体混合物を用いる場
合、水添前のブロツク共重合体混合物としては、
共役化合物に基づく1,2−結合(ビニル結合)
量が25〜65%、好ましくは35〜55%の範囲のミク
ロ構造を有するものを用いるのが好ましい。 次に、本発明において使用する成分(b)の熱可塑
性樹脂は、ポリスチレン系重合体、ポリフエニレ
ンエーテル系重合体、ポリエチレン系重合体、ポ
リプロピレン系重合体、ポリブテン系重合体、ポ
リ塩化ビニル系重合体、ポリ酢酸ビニル系重合
体、ポリアミド系重合体、熱可塑性ポリエステル
系重合体、ポリアクリレート系重合体、ポリフエ
ノキシ系重合体、ポリフエニレンスルフイド系重
合体、ポリカーボネート系重合体、ポリアセター
ル系重合体、ポリブタジエン系重合体、熱可塑性
ポリウレタン系重合体、ポリスルフオン等から選
ばれる少なくとも1種の熱可塑性樹脂である。 本発明において熱可塑性樹脂として使用される
ポリスチレン系重合体としては、ポリスチレン、
スチレン―α−メチルスチレン共重合体、ブタジ
エン−スチレンブロツク共重合体、耐衝撃性ゴム
変性スチレン重合体、アクリロニトリル−スチレ
ン共重合体、スチレン−メタクリル酸エステル共
重合体、スチレン−無水マレイン酸共重合体、ア
クリロニトリル−ブタジエン−スチレン共重合
体、アクリル酸エステル−ブタジエン−スチレン
共重合体、メタクリル酸エステル−ブタジエン−
スチレン共重合体、およびこれらポリスチレン系
重合体類の混合物をあげることができる。 ポリフエニレンエーテル系重合体としては、一
般式 (式中、R1,R2は炭素数1〜4の炭化水素基、
置換炭化水素基、またはハロゲン原子を表わし、
pは50〜500の重合度を表わす。) で表わされるポリフエニレンエーテル重合体又は
該重合体にビニル置換芳香族炭化水素をグラフト
重合せしめたグラフト化ポリフエニレンエーテル
共重合体である。代表的なものとしては、ポリ
(2,6−ジメチル−1,4−フエニレン)エー
テル、スチレングラフト化−ポリ(2,6−ジメ
チル−1,4−フエニレン)エーテルがあげられ
る。 ポリエチレン系重合体としては、エチレン単独
重合体、エチレンを50%以上含有するエチレンと
これと共重合可能な他の単量体との共重合体、た
とえば、エチレン・酢酸ビニル共重合体、エチレ
ン・塩化ビニル共重合体、エチレン・スチレン共
重合体、エチレン・アクリル酸エチル共重合体、
エチレン・プロピレン共重合体等、エチレンとア
クリル酸のナトリウム、カリウム等の金属塩との
共重合体であるエチレン・アクリル酸アイオノマ
ー、エチレンの単独重合体の任意の位置に他の原
子または原子団を置換もしくは付加されてなる、
たとえば塩素化ポリエチレン等が使用される。 ポリプロピレン系重合体としては、プロピレン
単独重合体、プロピレンを50%以上含有するプロ
ピレンとこれと共重合可能な他の単量体との共重
合体、たとえば、プロピレン・塩化ビニル共重合
体、プロピレン・スチレン共重合体、プロピレ
ン・アクリル酸エチル共重合体、プロピレン・酢
酸ビニル共重合体等、プロピレンの単独重合体の
任意の位置に他の原子または原子団を置換または
付加させてなる、たとえば塩素化ポリプロピレン
等が使用される。 ポリブテン系重合体としては、ブテン−1の単
独重合体、ブテン−1とこれと共重合可能な他の
単量体との共重合体、ブテン−1の単独重合体の
任意の位置に他の原子または原子団を置換もしく
は付加させてなるポリブテン系重合体がある。 塩化ビニル系重合体としては、ポリ塩化ビニ
ル、ポリ塩化ビニリデン、塩化ビニル又は塩化ビ
ニリデンを50%以上含有する塩化ビニルとこれと
共重合可能な他の単量体との共重合体、たとえ
ば、塩化ビニル・酢酸ビニル共重合体、塩化ビニ
ル・エチレン共重合体、塩化ビニル・プロピレン
共重合体、塩化ビニル・イソブチレン共重合体、
塩化ビニル・塩化ビニリデン共重合体、塩化ビニ
ル・スチレン・無水マレイン酸三元共重合体、塩
化ビニル・スチレン・アクリロニトリル共重合
体、塩化ビニル−塩化ビニリデン−酢酸ビニル三
元共重合体、塩化ビニル・アクリル酸エステル共
重合体、塩化ビニル・マレイン酸エステル共重合
体、塩化ビニル・メタクリル酸エステル共重合
体、塩化ビニル・アクリロニトリル共重合体等が
使用される。 ポリ酢酸ビニル系重合体としては、ポリ酢酸ビ
ニル、および酢酸ビニルの含有量が50重量%以上
である酢酸ビニルと他の共重合性モノマーとの共
重合体、例えば酢酸ビニルとエチレン、プロピレ
ン、塩化ビニル、アクリロニトリル、アクリル
酸、マレイン酸、フマル酸、クロトン酸、および
これらのカルボン酸のエステルとの共重合体、ポ
リ酢酸ビニル部分化物およびそのアセタール化
物、酢酸ビニル共重合体のケン化物およびそのア
セタール化物等が使用される。 ポリアミド系重合体としては、ジカルボン酸成
分としてテレフタル酸、イソフタル酸、アジピン
酸、セバシン酸、ビス(パラーカルボキシフエノ
キシ)アルカン等、ジアミン成分としてヘキサメ
チレンジアミン、パラーアミノシクロヘキシルメ
タン、メターキシレンジアミン、1,4−ビス
(3−アミノプロポキシ)シクロヘキサン、トラ
ンスヘキサヒドローパラーフエニレンジアミン
等、アミノカルボン酸成分としてα−ピロリド
ン、ω−アミノカプロン酸、ε−カプロラクタ
ム、11−アミノウンデカン酸、パラアミノ安息香
酸、4−アミノフエニル−4−カルボキシフエニ
ルエーテル等を用いて縮合反応させて得た重合体
および共重合体があげられる。 熱可塑性ポリエステル系重合体としては、ジカ
ルボン酸成分としてマレイン酸、無水マレイン
酸、フマル酸、メサコン酸、シトラコン酸、イタ
コン酸、塩素化マレイン酸、フタル酸、無水フタ
ル酸、イソフタル酸、3,6−エンドメチレンテ
トラヒドロ無水フタル酸、テトラヒドロフタル
酸、アジピン酸、セパシン酸、チオジグリコール
酸、テトラクロール無水フタル酸、3,6−エン
ドジクロロメチレンテトラクロロフタル酸等、グ
リコール成分としてエチレングリコール、ジエチ
レングリコール、1,2−プロピレングリコー
ル、ジプロピレングリコール、1,3−、又は
2,3−あるいは1,4−ブチレングリコール、
1,4−ブテンジオール、ビスフエノールジオキ
シエチルエーテル、ビスフエノールジオキシプロ
ピルルエーテル、ネオペンチルグリコール等を用
いて縮合反応させて得た重合体および共重合体等
が使用できる。 ポリアクリレート系重合体としては、アクリル
酸およびそのエステル、アクリルアミド、アクリ
ロニトリル、メタクリル酸およびそのエステル、
メタクリリル酸アミド、メタクリロニトリルの重
合体、および共重合体の他、これらのアクリル酸
系モノマーを50重量%以上含む他の共重合可能モ
ノマーとの共重合体があげられる。 ポリカーボネート系重合体としては、4,4′−
ジヒドロキシフエニルアルカン類、4,4′−ジヒ
ドロキシジフエニルエーテル、4,4′−ジヒドロ
キシジフエニルスルフイツド、4,4′−ジヒドロ
キシジフエニルスルホキサイド、4,4′−ジヒド
ロキシジフエニルスルホン、4,4′−ジヒドロキ
シ−3,3′5,5′−テトラクロロジフエニルアル
カン類等のジヒドロキシ化合物とホスゲン化合物
とホスゲンの反応によつて得られる重合体、ある
いは前記ジヒドロキシ化合物とジフエニルカーボ
ネートのエステル交換反応によつて得られる重合
体等があげられる。 ポリアセタール系重合体としては、ポリオキシ
メチレン、ポリオキシメチレン誘導体、ポリアセ
トアルデヒド、ポリイソブチルアルデヒド、ホル
ムアルデヒド−アセトアルデヒド共重合体、3,
3−ポリビス(クロルメチル)オキサシクロブタ
ンなどがあげられる。 ポリブタジエン系重合体としては、トランスポ
リブタジエン、1,2−ポリブタジエン、部分水
添1,2−ポリブタジエンの他に無水マレイン酸
変性液状ポリブタジエン、エポキシ化変性液状ポ
リブタジエン等の変性液状ポリブタジエン等が使
用できる。 熱可塑性ポリウレタン系重合体としては、ジイ
ソシアネート成分として炭素数3〜12のアルキレ
ンジイソシアネート、シクロヘキシレンジイソシ
アネート、フエニレンジイソシアネート、トリレ
ンジイソシアネート等、グリコール成分として炭
素数3〜12のアルキレンジオール、ブテンジオー
ル、ブチンジオール、シクロヘキシレンジオール
等を用いて重付加反応させて得られる重合体等が
あげられる。 本発明の熱可塑性重合体組成物に用いられる前
記熱可塑性樹脂のうち好適なものは、前記ポリス
チレン系重合体、ポリフエニレンエーテル系重合
体、ポリエチレン系重合体、ポリプロピレン系重
合体、ポリブテン系重合体もしくはこれらの任意
の混合物である。 本発明においては、成分(a)のブロツク共重合体
混合物と成分(b)の熱可塑性樹脂との組成比によ
り、樹脂状のものからゴム状ないし皮革状のもの
まで得られる。樹脂状の組成物を得る場合の組成
比としては、成分(a)のビニル重合体炭化水素の含
有量が60重量%〜95重量%、好ましくは65重量%
〜85重量%の場合には、成分(a)と成分(b)の重量比
が95/5〜5/95、好ましくは90/10〜10/90の
範囲が、また成分(a)のビニル芳香族炭化水素の含
有量が5重量%〜60重量%、好ましくは15重量%
〜55重量%の場合には、成分(a)と成分(b)の重量比
が2/98〜50/50好ましくは5/95〜40/60の範
囲が推奨される。成分(a)の配合量が上記範囲より
少ない耐衝撃性の改良効果が少なく、逆に多すぎ
る場合には剛性が低下する。又、ゴム状ないし皮
革状の組成物を得る場合の組成比としては、ビニ
ル芳香族炭化水素の分子量を5重量%〜60重量
%、好ましくは15重量%〜55重量%のビニル芳香
族混合物を成分(a)として用い、しかも成分(a)と成
分(b)の重量比が98/2〜50/50未満、好ましくは
95/5〜60/40の範囲が推奨される。成分(a)の配
合量が上記範囲未満の場合には、ゴム状ないし皮
革状の性質が失なわれて樹脂状の組成物となつて
しまう。 本発明の熱可塑性重合体組成物において成分(a)
のブロツク共重合体混合物と成分(b)の熱可塑性樹
脂との特に好適な組合せとしては、ビニル芳香族
炭化水素の含有量が15〜60重量%、好ましくは20
〜55重量%のブロツク共重合体混合物3〜50重量
部と前記ポリスチレン系重合体、ポリフエニレン
エーテル系重合体、ポリエチレン系重合体、ポリ
プロピレン系重合体、ポリブテン系重合体の一種
はこれらの任意の混合物97〜50重量部からなる熱
可塑性重合体組成物、ビニル芳香族炭化水素の含
有量が60〜95重量%、好ましくは65〜85重量%の
ブロツク共重合体混合物10〜90重量部、好ましく
は15〜85重量部と前記ポリスチレン系重合体、ポ
リフエニレンエーテル系重合体、ポリエチレン系
重合体、ポリプロピレン系重合体、ポリブテン系
重合体の一種又はこれらの任意の混合物90〜10重
合部、好ましくは85〜15重量部からなる熱可塑性
重合体組成物があげられる。前記の熱可塑性重合
体組成物においてポリスチレン系重合体がメタク
リル酸エステル含有量約35重量%以上のスチレン
−メタクリル酸エステル共重合体の場合、或いは
後者の熱可塑性重合体組成物においてポリスチレ
ン系重合体がポリスチレン、メタクリル酸エステ
ル含有量約35重量%未満のスチレン−メタクリル
酸エステル重合体、アクリロニトリル含有量50重
量%以下のアクリロニトリル−スチレン共重量体
の場合には、それぞれ透明性と耐衝撃性に優れた
組成物が得られる。 本発明の熱可塑性重合体組成物には、必要に応
じて共役ジオレフイン系重合体を組成物中のブロ
ツク共重合体混合物100重量部に対して100重量部
以下、好ましくは50重量部以下の量で配合しても
良い。この場合、ブロツク共重合体混合物は共役
ジオレフイン系重合体を均一に分散させる効果が
あり、耐衝撃性の改良の点で有利となる。共役ジ
オレフイン系重合体の配合量が上記範囲より多く
なると組成物の外観特性が悪化するため好ましく
ない。共役ジオレフイン系重合体としては、天然
ゴム、合成ポリイソプレン、ポリブタジエン、ブ
タジエン−スチレン共重合ゴム、イソブレン−ス
チレン共重合体ゴム等の他、これらの水添物など
が使用できる。 本発明の熱可塑性重合体組成物には、必要に応
じて、任意の添加剤を配合することができる。添
加剤の種類はプラスチツクの配合に一般に用いら
れるものであれば特に制限はないが、例えば、ガ
ラス繊維、ガラスビーズ、シリカ、炭カル、タル
クなどの無機補強剤、有機繊維、クマロンインデ
ン樹脂などの有機補強剤、有機パーオキサイド、
無機パーオキサイドなどの架橋剤、チタン白、カ
ーボンブラツク、酸化鉄などの顔料、染料、難燃
剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑
剤、可塑剤、その他の増量剤或いはこれらの混合
物などが挙げられる。 例えば、ガラス繊維やカーボン繊維を本発明の
樹脂状の熱可塑性重合体組成物100重量部に対し
て150重量%以下、好ましくは10〜100重量部配合
した組成物は、剛性、耐熱性、機械的強度が向上
し、優れた成形品用素材を提供する。 本発明において、成分(a)のブロツク共重合体混
合物と成分(b)の熱可塑性樹脂、あるいはこれらと
上記の各種添加剤を混合する方法は、従来公知の
あらゆる方法が利用できる。 例えば、オーブンロール、インテンシブミキサ
ー、インターナルミキサー、コニーダー、二軸ロ
ーター付の連続混練機、押出機等の一般的な混和
機を用いた熔融混練方法、各成分を溶剤に溶解又
は分解混合後溶剤を加熱除去する方法等が用いら
れる。 この様にして得た本発明の熱可塑性重合体組成
物は、従来公知の任意の成形加工方法、例えば、
押出成形、射出成形、中空成形、回転成形などに
よつてシート、発泡体、フイルム、各種形状の射
出成形品、中空成形品、圧空成形品、回転成形品
等極めて多種多様にわたる実用上有用な製品に容
易に成形加工でき、自動車部品、電気部品、機械
部品、履物、電線ケーブル、食品包装容器等に利
用することができる。 この様にして得た本発明の熱可塑性重合体組成
物を素材とする成形品は、必要に応じて塗装やメ
ツキを施すことができる。 塗装する場合、塗料としてはアクリルまたはビ
ニル変性エチレン樹脂系塗料、アルキド樹脂系塗
料、ポリウレタンン樹脂系塗料、エポキシ樹脂系
塗料、フエノール樹脂系塗料、メラミン樹脂系塗
料、ユリア樹脂系塗料等公知のいずれの塗料も使
用できる。 また、メツキ処理により金属的な感触をだすこ
ともできる。メツキ方法としては、化学メツキや
電気メツキ等従来公知のいずれの方法でも実施で
きる。 以下、本発明を更に詳細に説明するための実施
例を示すが、本発明の内容をこれらの実施例に限
定するものでないことは云うまでもない。尚、以
下の実施例で用いたブロツク共重合体混合物及び
ブロツク共重合体は次の様にして製造した。 〔ブロツク共重合体混合物Aの製法〕 まず、B−A−Liのポリマー構造を有するブロ
ツク共重合体のリビングポリマーを製造するた
め、窒素ガスで内部置換したステンレス製の撹拌
機付重合器に、予め精製乾燥したブタジエンを20
重量%の濃度で含有するn−ヘキサン溶液を仕込
み、次いで触媒としてn−ブチルリチウムを添加
して70℃で90分間重合した。その後スチレンを20
重量%の濃度で含有するn−ヘキサン溶液を添加
し、50℃で2時間重合を継続した。添加したモノ
マー量及び触媒量はブロツク共重合体のポリスチ
レン重合体のnが約13000、スチレン含有量が
62.5重量%になるように調節した。尚、ポリスチ
レンブロツクのw/nは約1.25であつた。こ
こで使用した重合器は、次の連続重合工程におい
てはそのまま貯蔵槽として使用した。 連続重合工程においては、L/Dが約4のステ
ンレス製撹拌機付き重合器を第1番目の重合器R
−1として使用し、L/Dが約8の重合器を第2
番目の重合器R−2として使用した。予め窒素ガ
スで内部置換した後、所定温度まで昇温された重
合器R−1には前記のブロツク共重合体のリビン
グポリマー及びブタジエンを、又重合器R−2に
はスチレンを各々重量比で32:48:20の割合で連
続的に供給した。ブタジエン及びスチレンは、そ
れぞれ20重量%n−ヘキサン溶液として供給し
た。重合器R−1及び重合器R−2における平均
滞留時間は、それぞれ、約45分、約35分とし、重
合温度はそれぞれ平均約90℃、約75℃に設定して
連続重合した。かかる条件下での各重合器出口に
おけるブタジエン又はスチレンの転化率は約95%
以上であつた。 重合器R−2より連続的に送り出されるブロツ
ク共重合体混合物溶液にジーtert−ブチル−p−
クレゾール及びトリスノニルフエスフオスフアイ
トを安定剤としてブロツク共重合体混合物100重
量部当りそれぞれ0.5重量部添加した後、溶媒を
加熱除去してブロツク共重合体混合物を得た。得
られたブロツク共重合体混合物のスチレン含有量
は約39〜41重量%、ブロツクスチレン含有量は約
38〜41重量%、メルトフローインデツクス
(ASTMD−1238−57T、条件G)は8〜12であ
つた。又、このブロツク共重合体混合物は第1図
に示した如く、分子量の増加と共にスチレン含有
量が減少する組成分布を有するブロツク共重合体
混合物であつた。尚、第1図の組成分布はGPC
により分子量分布示差屈析計を検知器として測定
すると同時に、展開液中の微分スチレン含有量を
紫外吸光光度計を検知器として測定して求めた。
GPCは島津製作所LC−1型を用い、(イ)カラム
HSG30,50,60、(ロ)展開液テトラヒドロフラン、
(ハ)温度40℃の条件で測定した。 〔ブロツク共重合体混合物Bの製法〕 次に示す方法により、スチレン含有量が30重量
%のブロツク共重合体混合物を、n−ヘキサン85
%、シクロヘキサン15重量%からなる溶解性パラ
メーター約7.4の混合溶媒(溶媒S1とする)中で
製造した。 窒素ガスで内部置換したステンレス製の撹拌機
付き重合器に、ブタジエン3重量部を20重量%の
濃度で含有する溶媒S1溶液を仕込み、次いで触媒
としてn−ブチルリチウムを0.05重量部添加して
70℃で60分重合した。次にn−ブチルリチウムを
0.2重量部添加した後、スチレン30重量部を20重
量%の濃度で含有する溶媒S1溶液を60分かけて定
量ポンプで添加して重合し、全体としてのスチレ
ン含有量が約91重量%の、B−A−LiとA−Liの
混合物を得た。その後ブタジエン67重量部を20重
量%の濃度で含有する溶媒S1溶液を添加して70℃
で90℃分間重合した。この間における重合系内の
液相部の溶解性パラメーターは約7.3〜7.4であつ
た。得られた重合体溶液の一部を取り出し、それ
に含まれる重合体の組成分布を調べたところ第2
図の如き組成分布であつた。また、得られた活性
な重合体にテトラクロルシランを、使用したn−
ブチルリチウムの1/4モル添加してカツプリング
反応させた重合体は、第3図の如き組成分布を有
するブロツク共重合体混合物であつた。 〔ブロツク共重合体混合物Cの製法〕 次に示す方法により、スチレン含有量が40重量
%で、しかもスチレン含有量が分子量の増加と共
に実質上連続的に減少するような組成分布を有す
るブロツク共重合体混合物を、n−ヘキサン約70
重量%、ヘプタン約20重量%、ペンタン約10重量
%からなる溶解性パラメーター約7.3の混合溶媒
(溶媒S2とする)中で製造した。 窒素ガスで内部置換したステンレス製の撹拌機
付き重合器に、ブタジエン6重量部を20重量%の
濃度で含有する溶媒S2溶液を仕込み、次いで触媒
としてn−ブチルリチウムを0.1重量部添加して
70℃で60分間重合した。その後スチレン20重量部
を20重量%の濃度で含有する溶媒S2溶液を60分か
けて定量ポンプで添加して重合し、スチレン含有
量が約77重量%でB−A−Li構造を有する予備重
合体を得た。次にブタジエン54重量部を20重量%
で含有する溶媒S2溶液を添加して70℃で90分間重
合した。この間における重合系内の液相部の溶解
性パラメーターは約7.2〜7.3であつた。その後更
にスチレン20重量部を20重量%で含有する溶媒S2
溶液を60分かけて定量ポンプで添加し、重合し
た。尚、スチレンの溶媒S2溶液を定量ポンプで添
加する際、重合器内の温度は70℃になる様に調節
した。得られた重合体溶液にジ−tert−ブチル−
p−クレゾール及びトリスノニルフエニルフオス
フアイトを安定剤としてそれぞれ0.5重量部添加
した後、溶媒を加熱除去して重合体を得た。 得られた重合体の分子量分布及び組成分布を第
4図に示したが、この重合体は分子量の増加と共
にスチレン含有量が連続的に減少する組成分布を
有するブロツク共重合体混合物であつた。 〔ブロツク共重合体混合物Dの製法〕 次に示す方法により、スチレン含有量が76重量
%で、しかもスチレン含有量が第5図に示した如
く分子量の増加と共に実質上連続的に減少するよ
うな組成組成物を有するブロツク共重合体混合物
を、溶解性パラメーター約7.3のn−ヘキサン中
で製造した。 窒素ガスで内部置換したステンレス製の撹拌機
付き重合器に、ブタジエン4重量部を20重量%の
濃度で含有するn−ヘキサン溶液を仕込み、次い
で触媒としてn−ブチルルチウムを0.08重量部添
加して70℃で60分間重合した。その後スチレン16
重量部を20重量%の濃度で含有するn−ヘキサン
溶液を60分かけて定量ポンプで添加し、重合し
た。次にブタジエン20重量部20重量%の濃度で含
有するn−ヘキサン溶液を添加して70℃で60分間
重合した後、スチレン60重量部を20重量%の濃度
で含有するn−ヘキサン溶液を90分かけて定量ポ
ンプで添加し、重合した。尚、スチレンのn−ヘ
キサン溶液を定量ポンプで添加する際、重合器内
の温度は70℃になる様に調節した。得られた重合
体の後処理は前記と同様にして行つた。 〔ブロツク共重合体混合物E及びその水添物の製
法〕 ブロツク共重合体混合物Cの製法において、ビ
ニル化剤としてテトラヒドロフランを少量用いる
以外は同様の方法で重合を行ない、ビニル結合の
含有量が約40%のブロツク共重合体混合物Eを得
た。このブロツク共重合体混合物は、ブロツク共
重合体混合物Cと同様の組成分布を有していた。 次に、ナフテン酸コバルトとトリエチルアルミ
ニウムを触媒として、水素圧7Kg/cm2、温度50℃
で5時間水素添加を行つて、ブタジエンに基づく
二重結合約90%が水素添加され、スチレンに基づ
くベンゼン環のほとんどが水素添加されていない
ブロツク共重合体混合物Eの水添物(ブロツク共
重合体混合物Fとする)を得た。 〔ブロツク共重合体1の製法〕 洗浄、乾燥した撹拌機、ジヤケツト付の重合器
を窒素置換し、これにブタジエン12重量部を20重
量%の濃度で含有するn−ヘキサン溶液及びn−
ブチルリチウムを0.11重量部添加した後、70℃で
60分重合した。その後スチレン20重量部、ブタジ
エン48重量部、スチレン20重量部をそれぞれ20重
量%で含有するn−ヘキサン溶液を逐次的に添加
し、それぞれ70℃で60分づつ重合した。得られた
ブロツク共重合体の後処理は前記と同様にして行
つた。得られたブロツク共重合体はスチレン含有
量が約40重量%、ブロツクスチレン分子量が約38
重量%、メルトフローインデツクスが約10で、第
6図に示した如く均一な組成分布を有するブロツ
ク共重合体であつた。 〔ブロツク共重合体2の製法〕 窒素ガス雰囲気下において、スチレン30重量部
を含むシクロヘキサン溶液にn−ブチルリチウム
0.25重量部添加し、70℃で1時間重合した後、
1,3−ブタジエン70重量部を含むシクロヘキサ
ン溶液を加えて70℃で2時間重合した。その後テ
トラクロルシランを、使用したn−ブチルリチウ
ムの1/4当量添加してスチレン含有量30重量%の
(A−B)−4Si構造のブロツク共重合体を得た。得
られた重合体は、第6図と同じ様な均一な組成分
布を有するブロツク共重合体であつた。 〔ブロツク共重合体3の製法〕 重合溶媒をn−ヘキサンの代りにシクロヘキサ
ンとする以外はブロツク共重合体混合物Dと同様
の方法でスチレン含有量が76重量%のブロツク共
重合体を製造した。得られた重合体は、第7図に
示した如く、均一な組成分布を有するブロツク共
重合体であつた。 また、以下の実施例において熱可塑性樹脂とし
て使用した樹脂の略号は次の通りである。 GPPS;汎用ポリスチレン HIPS;ゴム変性耐衝撃性ポリスチレン ABS;アクリロニトリル−ブタジエン−スチレ
ン共重合体 HDPE;高密度ポリエチレン PP;ポリプロピレン ケン化EVA;エチレン−酢酸ビニル共重合体の
ケン化物 MMA;ポリメチルメタクリル酸 PPO;ポリフエニレンオキサイド PPS;ポリフエニレンスフイド PC;ポリカーボネート PS;ポリスチレン PA1;ナイロン6 PA2;ナイロン66 PET;ポリエチレンテレフタレート PBT;ポリブチレンテレフタレート PU;熱可塑性ポリウレタン 実施例1〜9及び比較例1〜9 第1表及び第2表に示した配合処法に従つてブ
ロツク共重合体混合物又はブロツク共重合体と熱
可塑性樹脂からなる熱可塑性重合体組成物を作成
し、そのアイゾツト衝撃強度及び表面光沢を測定
した。「アイゾツト衝撃強度はJIS K6871に準じ、
又表面光沢はJIS Z8741に準じて測定した。」そ
の結果を第1表及び第2表に示す。本発明で規定
するブロツク共重合体混合物を含有する組成物
は、耐衝撃性及び表面光沢に優れることが明らか
になつた。
The present invention relates to a thermoplastic polymer composition with excellent appearance properties such as transparency and surface gloss, and impact resistance.
More specifically, it is a block copolymer mixture composed of a block copolymer consisting of a conjugated diene and a vinyl aromatic hydrocarbon, wherein the vinyl aromatic hydrocarbon content of the block copolymer constituting the mixture is The present invention relates to a thermoplastic polymer composition comprising a block copolymer mixture and a thermoplastic resin having a composition distribution that changes substantially continuously with increasing . Conventionally, thermoplastic resins such as styrene resins and olefin resins have been processed by extrusion molding, injection molding, blow molding,
Because it can be easily formed by vacuum forming, it is used in a wide range of applications, including as a material for food packaging containers, household goods, electrical parts, and industrial goods. However, depending on the application, these thermoplastic resins often lack impact resistance and cannot fully satisfy the needs of end users. For example, polystyrene has been used for transparent containers because it is lightweight, inexpensive, has excellent transparency and appearance, and is easy to process. Its use is severely limited due to defects such as cracking and breakage due to impact caused by dropping or the like during use of the molded product. Even with rubber-modified polystyrene manufactured for the purpose of improving the impact resistance of polystyrene, cracks and breakage may occur due to insufficient impact resistance during molding and use of complex shapes or deep-drawn products. There's a problem. In addition, the flame retardance, rigidity, etc. of the above-mentioned rubber-modified polystyrene, which is generally called impact-resistant styrene resin, acrylonitrile-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, etc. When flame retardants, inorganic fillers, etc. are added to improve the
This causes problems such as the impact resistance being reduced and the resin's original properties not being fully exhibited. In addition, olefin resins such as polyethylene and polypropylene have characteristics such as inexpensive raw material monomers, good chemical resistance, and electrical properties, and are widely used in films, general plastic molded products, etc. However, problems such as breakage occur in applications such as molded products that are used relatively permanently and containers for transporting materials that are handled vigorously, so improvements in impact resistance are desired. It is already known that blending a block copolymer consisting of a conjugated diolefin and a vinyl-substituted aromatic compound is effective as a method for improving the impact resistance of such styrene resins, olefin resins, etc. For example, Japanese Patent Publication No. 7126/1973 and Japanese Patent Publication No. 47/1983
43618 describes the use of linear block copolymers and branched radial block copolymers comprising conjugated diolefin-vinyl substituted aromatic compounds as impact modifiers for polystyrene. In addition, Japanese Patent Publication No. 52-21012 and Japanese Unexamined Patent Publication No. 1973
Publication No. 133252 describes the use of a block copolymer similar to the above for the purpose of further improving the impact resistance of rubber-modified polystyrene.
In addition, Special Publication No. 19915-19915 and Special Publication No. 19915-
No. 4624 discloses an attempt to improve the properties of polypropylene and polyethylene by blending them with a linear block copolymer. However, although the resin compositions made of block copolymers and various thermoplastic resins described in these documents can be expected to have a certain degree of impact resistance improvement effect, they are still insufficient for some applications, and more There is a strong need for the development of effective impact modifiers. Furthermore, resin compositions containing block copolymers generally tend to have lower appearance characteristics such as transparency and surface gloss, and there is a demand for improvements in such appearance characteristics. In view of the current situation, the present inventors conducted extensive studies to develop a resin composition with excellent appearance characteristics and impact resistance, and arrived at the present invention. That is, the present invention provides a block copolymer comprising (a) a polymer block mainly composed of at least one vinyl aromatic hydrocarbon and a polymer block mainly composed of at least one conjugated diene; A polymer mixture, wherein: (i) the overall vinyl aromatic hydrocarbon content of the mixture is 5 to 95% by weight; (ii) the overall number average molecular weight of the mixture is 5% to 95% by weight;
10,000 to 1,000,000, (iii) the block copolymer constituting the mixture has a composition distribution such that the vinyl aromatic hydrocarbon content changes substantially continuously with increasing molecular weight; Among the remaining components after removing 5% by weight of each of the low-molecular weight components and high-molecular weight components contained in The difference in group hydrocarbon content is 5
% or more by weight of a block copolymer mixture or a hydrogenated product of the block copolymer mixture (b) A thermoplastic polymer composition comprising a thermoplastic resin. A feature of the present invention is the use of a block copolymer mixture having a composition distribution in which the vinyl aromatic hydrocarbon content of the block polymer changes substantially continuously as the amount of aromatics increases; Having a composition distribution in which the hydrocarbon content varies virtually continuously improves the miscibility of the block copolymers and also improves the effect of each of the block copolymers with different vinyl aromatic hydrocarbon contents. Since the effects are exhibited synergistically, a thermoplastic polymer composition with excellent appearance characteristics and impact resistance can be obtained. The present invention will be explained in detail below. The block copolymer mixture of component (a) used in the present invention contains at least one, preferably two or more, vinyl aromatic hydrocarbon-based polymer blocks and at least one conjugated diene. It is composed of a block copolymer with polymer blocks. Here, the polymer block mainly composed of vinyl aromatic hydrocarbons refers to random copolymer blocks of vinyl aromatic hydrocarbons and conjugated dienes containing 50% by weight or more of vinyl aromatic hydrocarbons, and/or
or a vinyl aromatic hydrocarbon homopolymer block, and a polymer block mainly composed of conjugated diene refers to a random copolymer of a conjugated diene and a vinyl aromatic hydrocarbon containing conjugated diene in an amount exceeding 50% by weight. 1 shows a block and/or a conjugated diene homopolymer block. Although the vinyl aromatic hydrocarbons in the random copolymer block are uniformly distributed,
It may also be distributed in a tapered manner. The block copolymer constituting the block copolymer mixture used in the present invention has a polymer structure of the general formula: (a) (A-B) o (b) A(-B-A) o (c) B (-A-B) o (In the above formula, A is a polymer block mainly composed of vinyl aromatic hydrocarbons, and B is a polymer block mainly composed of conjugated diene. (2) [(B-A) o ] n+ 2 ---X (E) [(A-B) o ] n+2 ---X (F) [(B-A) o B] n+2 ---X (G) [( A-B) o A] n+2 ---X (In the above formula, A and B are the same as above, and
represents, for example, a residue of a coupling agent such as silicon tetrachloride or tin tetrachloride, or a residue of an initiator such as a polyfunctional organolithium compound. m and n are integers of 1 or more. ) or any mixture of these polymer structures can be used. The most important feature of the present invention is that the vinyl aromatic hydrocarbon content of the block copolymer constituting the block copolymer mixture changes substantially continuously as the molecular weight increases, that is, substantially continuously increases and/or Alternatively, a block copolymer mixture having a decreasing composition distribution is used as component (a). In the present invention, the vinyl aromatic hydrocarbon content of the block copolymer increases and/or decreases substantially continuously as the molecular weight increases. means that there are no substantial discontinuities in the change in vinyl aromatic hydrocarbon content, even if the vinyl aromatic hydrocarbon content increases or decreases monotonically and continuously with increasing molecular weight, or It may change by repeating continuous increases or decreases.
Generally, block copolymer mixtures in which the vinyl aromatic hydrocarbon content increases or decreases substantially monotonically with increasing molecular weight are preferred. A method for understanding the composition distribution of a block copolymer mixture is to fractionate the block copolymer mixture by molecular weight according to a conventional method and measure the molecular weight and vinyl aromatic hydrocarbon content of each fraction obtained. , a method of simultaneously measuring the molecular weight distribution and composition distribution by GPC, etc., but the method of determining the composition distribution of the block copolymer mixture of the present invention is not limited to these. The block copolymer mixture used in the present invention is
Among the block copolymers that constitute the main components of the block copolymer mixture, the difference in vinyl aromatic hydrocarbon content between the component with a low vinyl aromatic hydrocarbon content and the component with a high vinyl aromatic hydrocarbon content is 5% by weight or more, preferably
Mixtures having a compositional heterogeneity of 10% by weight or more, more preferably 15% by weight or more are suitable. Here, the block copolymer occupying the main polymer in the block copolymer mixture refers to the block copolymer in the remaining components after removing a portion of the low molecular weight component and high molecular weight component contained in the mixture. To give a numerical example, the low molecular weight component and the high molecular weight component are each 5% by weight (ratio to the entire block copolymer mixture), preferably 10% by weight,
More preferred is the remaining component after removing 15% by weight. Further, the block copolymer mixture used in the present invention is preferably a mixture composed of block copolymers in which at least one polymer block of the block copolymers has a different molecular weight. The polymer blocks with mutually different molecular weights among the block copolymers may be either a polymer block mainly composed of a vinyl aromatic hydrocarbon or a polymer block mainly composed of a conjugated diene, but generally a polymer block mainly composed of a conjugated diene is used. A mixture of block copolymers in which at least one polymer block is mutually changed is preferred. The total vinyl aromatic hydrocarbon content of the block copolymer mixture used in the present invention is 5 to 5.
95, preferably 10 to 90, more preferably 15 to 85% by weight. When the vinyl aromatic hydrocarbon content is 60% by weight or less, preferably 55% by weight or less, it exhibits properties as a thermoplastic elastomer, and when the vinylaromatic hydrocarbon content exceeds 60% by weight, preferably 65% by weight or less,
If it is more than % by weight, it exhibits properties as a thermoplastic resin. The overall number average molecular weight of the block copolymer mixture used in the present invention is from 10,000 to 1,000,000, preferably from 30,000 to 500,000. If it is smaller than this range, the effect of improving impact resistance will be small, and if it is larger than this range, the kneadability with the thermoplastic resin of component (b) will be reduced. Examples of the method for producing the block copolymer mixture used in the present invention include the continuous polymerization method described in Japanese Patent Application No. 55-122953 and the method described in Japanese Patent Application No. 56-209112. However, it is not limited to these. In the present invention, vinyl aromatic hydrocarbons include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, α-methylstyrene, vinylnaphthalene, vinylanthracene, etc. A particularly common example is styrene. These may be used not only alone, but also as a mixture of two or more. In the present invention, a conjugated diene is a diolefin having a pair of conjugated double bonds, such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,
3-butadiene, 1,3-pentadiene, 1,3
-hexadiene, etc., and particularly common ones include 1,3-butadiene and isoprene. These may be used not only alone, but also as a mixture of two or more. The block copolymer mixture used in the present invention is
Hydroxyl groups, thiol groups, nitrile groups, and sulfonic acid groups can be added by hydrogenation, halogenation, hydrogen halogenation, or chemical reactions within a range that does not impair its basic properties, such as the effect of improving impact resistance and appearance properties. Modifications such as introduction of functional groups such as carboxyl groups, amino groups, and epoxy groups may also be performed. In particular, when a hydrogenated product of the block copolymer mixture is used as component (a) of the present invention, a thermoplastic polymer composition having excellent weather resistance and heat deterioration resistance in addition to the above properties can be obtained. . As a method for hydrogenating the block copolymer mixture, a catalyst comprising a combination of a group metal compound such as nickel, cobalt, or iron and an organometallic compound containing a group metal to group metal, ruthenium, rhodium, Known methods such as hydrogenation using a compound such as palladium as a catalyst can be used. The hydrogenated block copolymer mixture is preferably one in which at least 80% of the aliphatic double bonds based on the conjugated diene compound in the block copolymer mixture are hydrogenated. Further, it is generally preferable that the hydrogenation rate of aromatic double bonds based on the vinyl aromatic compound in the block copolymer mixture be 20% or less. The hydrogenation rate of the hydrogenated substance in the block copolymer mixture is
It can be measured by instrumental analysis using an infrared spectrophotometer (IR) or nuclear magnetic resonance apparatus (NMR), or by titration analysis using iodine titration method. In addition, the ingredients
When the above block copolymer mixture is used as (a), the block copolymer mixture before hydrogenation is as follows:
1,2-bond (vinyl bond) based on conjugated compounds
Preference is given to using microstructures whose amount ranges from 25 to 65%, preferably from 35 to 55%. Next, the thermoplastic resin as component (b) used in the present invention is a polystyrene polymer, a polyphenylene ether polymer, a polyethylene polymer, a polypropylene polymer, a polybutene polymer, or a polyvinyl chloride polymer. Polymers, polyvinyl acetate polymers, polyamide polymers, thermoplastic polyester polymers, polyacrylate polymers, polyphenoxy polymers, polyphenylene sulfide polymers, polycarbonate polymers, polyacetal polymers The thermoplastic resin is at least one type of thermoplastic resin selected from polymers, polybutadiene polymers, thermoplastic polyurethane polymers, polysulfones, and the like. The polystyrene polymer used as the thermoplastic resin in the present invention includes polystyrene,
Styrene-α-methylstyrene copolymer, butadiene-styrene block copolymer, impact-resistant rubber-modified styrene polymer, acrylonitrile-styrene copolymer, styrene-methacrylic acid ester copolymer, styrene-maleic anhydride copolymer combination, acrylonitrile-butadiene-styrene copolymer, acrylic ester-butadiene-styrene copolymer, methacrylic ester-butadiene-
Examples include styrene copolymers and mixtures of these polystyrene polymers. As a polyphenylene ether polymer, the general formula (In the formula, R 1 and R 2 are hydrocarbon groups having 1 to 4 carbon atoms,
represents a substituted hydrocarbon group or a halogen atom,
p represents a degree of polymerization of 50 to 500. ) or a grafted polyphenylene ether copolymer obtained by graft-polymerizing a vinyl-substituted aromatic hydrocarbon to the polyphenylene ether polymer. Typical examples include poly(2,6-dimethyl-1,4-phenylene) ether and styrene-grafted poly(2,6-dimethyl-1,4-phenylene) ether. Examples of polyethylene polymers include ethylene homopolymers, copolymers of ethylene containing 50% or more of ethylene and other monomers copolymerizable with it, such as ethylene/vinyl acetate copolymers, ethylene/vinyl acetate copolymers, Vinyl chloride copolymer, ethylene/styrene copolymer, ethylene/ethyl acrylate copolymer,
Ethylene/acrylic acid ionomers, which are copolymers of ethylene and metal salts of acrylic acid such as sodium or potassium, such as ethylene/propylene copolymers, and ethylene homopolymers with other atoms or atomic groups at any position. replaced or added,
For example, chlorinated polyethylene or the like is used. Examples of polypropylene polymers include propylene homopolymers, copolymers of propylene containing 50% or more of propylene and other monomers copolymerizable with it, such as propylene/vinyl chloride copolymers, propylene/vinyl chloride copolymers, etc. Styrene copolymers, propylene/ethyl acrylate copolymers, propylene/vinyl acetate copolymers, etc., are produced by substituting or adding other atoms or atomic groups to any position of a propylene homopolymer, such as chlorination. Polypropylene etc. are used. Examples of the polybutene-based polymer include a butene-1 homopolymer, a copolymer of butene-1 and another monomer copolymerizable with it, and a butene-1 homopolymer containing other monomers at any position. There are polybutene-based polymers made by substituting or adding atoms or atomic groups. Examples of vinyl chloride-based polymers include polyvinyl chloride, polyvinylidene chloride, vinyl chloride, or copolymers of vinyl chloride containing 50% or more of vinylidene chloride and other monomers copolymerizable with it, such as polyvinylidene chloride. Vinyl/vinyl acetate copolymer, vinyl chloride/ethylene copolymer, vinyl chloride/propylene copolymer, vinyl chloride/isobutylene copolymer,
Vinyl chloride/vinylidene chloride copolymer, vinyl chloride/styrene/maleic anhydride terpolymer, vinyl chloride/styrene/acrylonitrile copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride/styrene/maleic anhydride ternary copolymer, Acrylic ester copolymers, vinyl chloride/maleic ester copolymers, vinyl chloride/methacrylic ester copolymers, vinyl chloride/acrylonitrile copolymers, etc. are used. Polyvinyl acetate-based polymers include polyvinyl acetate and copolymers of vinyl acetate and other copolymerizable monomers with a vinyl acetate content of 50% by weight or more, such as vinyl acetate and ethylene, propylene, chloride. Copolymers of vinyl, acrylonitrile, acrylic acid, maleic acid, fumaric acid, crotonic acid, and esters of these carboxylic acids, partial polyvinyl acetate products and acetalized products thereof, saponified products of vinyl acetate copolymers and acetals thereof Chemicals, etc. are used. The polyamide polymer includes dicarboxylic acid components such as terephthalic acid, isophthalic acid, adipic acid, sebacic acid, and bis(paracarboxyphenoxy)alkanes, and diamine components such as hexamethylene diamine, para-aminocyclohexylmethane, metaxylene diamine, 1,4-bis(3-aminopropoxy)cyclohexane, transhexahydroparaphenylenediamine, etc., α-pyrrolidone, ω-aminocaproic acid, ε-caprolactam, 11-aminoundecanoic acid, para-aminobenzoic acid as aminocarboxylic acid components , 4-aminophenyl-4-carboxyphenyl ether, etc., and polymers and copolymers obtained by condensation reaction. The thermoplastic polyester polymer includes maleic acid, maleic anhydride, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, chlorinated maleic acid, phthalic acid, phthalic anhydride, isophthalic acid, 3,6 as a dicarboxylic acid component. - Endomethylenetetrahydrophthalic anhydride, tetrahydrophthalic acid, adipic acid, cepacic acid, thiodiglycolic acid, tetrachlorophthalic anhydride, 3,6-endodichloromethylenetetrachlorophthalic acid, etc., as glycol components ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,3-, or 2,3- or 1,4-butylene glycol,
Polymers and copolymers obtained by condensation reaction using 1,4-butenediol, bisphenol dioxyethyl ether, bisphenol dioxypropyl ether, neopentyl glycol, etc. can be used. Examples of polyacrylate polymers include acrylic acid and its esters, acrylamide, acrylonitrile, methacrylic acid and its esters,
Examples include polymers and copolymers of methacrylic acid amide and methacrylonitrile, as well as copolymers with other copolymerizable monomers containing 50% by weight or more of these acrylic acid monomers. As a polycarbonate polymer, 4,4'-
Dihydroxyphenyl alkanes, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, A polymer obtained by the reaction of a dihydroxy compound such as 4,4'-dihydroxy-3,3'5,5'-tetrachlorodiphenylalkanes, a phosgene compound, and phosgene, or a polymer obtained by the reaction of the dihydroxy compound and diphenyl carbonate. Examples include polymers obtained by transesterification. Examples of polyacetal polymers include polyoxymethylene, polyoxymethylene derivatives, polyacetaldehyde, polyisobutyraldehyde, formaldehyde-acetaldehyde copolymer, 3,
Examples include 3-polybis(chloromethyl)oxacyclobutane. As the polybutadiene polymer, in addition to trans polybutadiene, 1,2-polybutadiene, and partially hydrogenated 1,2-polybutadiene, modified liquid polybutadiene such as maleic anhydride-modified liquid polybutadiene and epoxidized liquid polybutadiene can be used. As the thermoplastic polyurethane polymer, diisocyanate components include alkylene diisocyanates having 3 to 12 carbon atoms, cyclohexylene diisocyanate, phenylene diisocyanate, tolylene diisocyanate, etc., and glycol components include alkylene diols having 3 to 12 carbon atoms, butenediol, butyne. Examples include polymers obtained by polyaddition reaction using diols, cyclohexylene diol, etc. Among the thermoplastic resins used in the thermoplastic polymer composition of the present invention, preferred are the polystyrene polymers, polyphenylene ether polymers, polyethylene polymers, polypropylene polymers, and polybutene polymers. combination or any mixture thereof. In the present invention, depending on the composition ratio of the block copolymer mixture of component (a) and the thermoplastic resin of component (b), products ranging from resin-like to rubber-like to leather-like can be obtained. The composition ratio when obtaining a resinous composition is such that the content of vinyl polymer hydrocarbon as component (a) is 60% to 95% by weight, preferably 65% by weight.
~85% by weight, the weight ratio of component (a) to component (b) is in the range of 95/5 to 5/95, preferably 90/10 to 10/90, and the vinyl of component (a) The content of aromatic hydrocarbons is 5% to 60% by weight, preferably 15% by weight
-55% by weight, the recommended weight ratio of component (a) to component (b) is 2/98 to 50/50, preferably 5/95 to 40/60. When the amount of component (a) is less than the above range, the effect of improving impact resistance is small; on the other hand, when it is too large, the rigidity decreases. In addition, when obtaining a rubber-like or leather-like composition, the composition ratio is such that the molecular weight of the vinyl aromatic hydrocarbon is 5% to 60% by weight, preferably 15% to 55% by weight. Used as component (a), and the weight ratio of component (a) to component (b) is from 98/2 to less than 50/50, preferably
A range of 95/5 to 60/40 is recommended. If the amount of component (a) is less than the above range, the composition will lose its rubber-like or leather-like properties and become a resin-like composition. In the thermoplastic polymer composition of the present invention, component (a)
A particularly preferred combination of the block copolymer mixture and the thermoplastic resin of component (b) has a vinyl aromatic hydrocarbon content of 15 to 60% by weight, preferably 20% by weight.
3 to 50 parts by weight of a block copolymer mixture containing ~55% by weight and any one of the polystyrene polymer, polyphenylene ether polymer, polyethylene polymer, polypropylene polymer, or polybutene polymer. 10 to 90 parts by weight of a block copolymer mixture having a vinyl aromatic hydrocarbon content of 60 to 95% by weight, preferably 65 to 85% by weight; Preferably 15 to 85 parts by weight and 90 to 10 parts of the polystyrene polymer, polyphenylene ether polymer, polyethylene polymer, polypropylene polymer, polybutene polymer or any mixture thereof; Preferably, the thermoplastic polymer composition comprises 85 to 15 parts by weight. In the thermoplastic polymer composition described above, when the polystyrene polymer is a styrene-methacrylic ester copolymer having a methacrylic acid ester content of about 35% by weight or more, or in the latter thermoplastic polymer composition, the polystyrene polymer In the case of polystyrene, a styrene-methacrylate ester polymer with a methacrylate ester content of less than 35% by weight, and an acrylonitrile-styrene copolymer with an acrylonitrile content of 50% or less, each has excellent transparency and impact resistance. A composition is obtained. The thermoplastic polymer composition of the present invention may optionally contain a conjugated diolefin polymer in an amount of 100 parts by weight or less, preferably 50 parts by weight or less, based on 100 parts by weight of the block copolymer mixture in the composition. You can also mix it with In this case, the block copolymer mixture has the effect of uniformly dispersing the conjugated diolefin polymer, which is advantageous in terms of improving impact resistance. If the blending amount of the conjugated diolefin polymer exceeds the above range, the appearance characteristics of the composition will deteriorate, which is not preferable. As the conjugated diolefin polymer, natural rubber, synthetic polyisoprene, polybutadiene, butadiene-styrene copolymer rubber, isobrene-styrene copolymer rubber, and hydrogenated products thereof can be used. The thermoplastic polymer composition of the present invention may contain arbitrary additives, if necessary. The type of additive is not particularly limited as long as it is commonly used in plastic formulations, but examples include glass fiber, glass beads, inorganic reinforcing agents such as silica, charcoal, and talc, organic fibers, coumaron indene resin, etc. organic reinforcing agent, organic peroxide,
Crosslinking agents such as inorganic peroxides, pigments such as titanium white, carbon black, iron oxide, dyes, flame retardants, antioxidants, ultraviolet absorbers, antistatic agents, lubricants, plasticizers, other fillers, or mixtures thereof. Examples include. For example, a composition containing glass fibers or carbon fibers in an amount of 150% by weight or less, preferably 10 to 100 parts by weight, based on 100 parts by weight of the resin-like thermoplastic polymer composition of the present invention has good rigidity, heat resistance, and mechanical properties. Provides an excellent material for molded products with improved mechanical strength. In the present invention, any conventionally known method can be used to mix the block copolymer mixture of component (a) and the thermoplastic resin of component (b), or the various additives described above. For example, melt-kneading methods using general kneading machines such as oven rolls, intensive mixers, internal mixers, co-kneaders, continuous kneaders with twin-screw rotors, extruders, etc., each component is dissolved in a solvent, or the solvent is mixed after decomposition and mixing. A method of removing the particles by heating is used. The thermoplastic polymer composition of the present invention thus obtained can be processed by any conventionally known molding method, for example,
Extrusion molding, injection molding, blow molding, rotary molding, etc. produce a wide variety of practically useful products such as sheets, foams, films, injection molded products of various shapes, blow molded products, pressure molded products, rotary molded products, etc. It can be easily molded and processed, and can be used for automobile parts, electrical parts, mechanical parts, footwear, electric wires and cables, food packaging containers, etc. The molded article made of the thermoplastic polymer composition of the present invention thus obtained can be painted or plated as necessary. When painting, use any known paint such as acrylic or vinyl-modified ethylene resin paint, alkyd resin paint, polyurethane resin paint, epoxy resin paint, phenol resin paint, melamine resin paint, urea resin paint, etc. Paints can also be used. It is also possible to create a metallic feel by plating. As the plating method, any conventionally known method such as chemical plating or electric plating can be used. Examples will be shown below to explain the present invention in more detail, but it goes without saying that the content of the present invention is not limited to these Examples. The block copolymer mixture and block copolymer used in the following examples were produced in the following manner. [Production method of block copolymer mixture A] First, in order to produce a living polymer of a block copolymer having a polymer structure of B-A-Li, a stainless steel polymerization vessel equipped with a stirrer and internally purged with nitrogen gas was heated. 20% of pre-purified and dried butadiene
An n-hexane solution containing a concentration of % by weight was charged, and then n-butyllithium was added as a catalyst and polymerization was carried out at 70°C for 90 minutes. Then add 20 styrene
A n-hexane solution containing a concentration of % by weight was added, and the polymerization was continued at 50° C. for 2 hours. The amount of monomer and catalyst added was determined when the n of the polystyrene polymer of the block copolymer was approximately 13,000 and the styrene content was
The content was adjusted to 62.5% by weight. The w/n of the polystyrene block was approximately 1.25. The polymerization vessel used here was used as a storage tank in the next continuous polymerization process. In the continuous polymerization process, a stainless steel polymerization vessel with an L/D of approximately 4 and a stirrer is used as the first polymerization vessel R.
-1, and a polymerization vessel with L/D of about 8 is used as the second polymerizer.
It was used as the second polymerization vessel R-2. After internal purge with nitrogen gas in advance, the living polymer of the block copolymer and butadiene were placed in the polymerization vessel R-1, which had been heated to a predetermined temperature, and styrene was placed in the polymerization vessel R-2 in weight ratios. It was fed continuously at a ratio of 32:48:20. Butadiene and styrene were each supplied as a 20% by weight solution in n-hexane. The average residence time in the polymerization vessel R-1 and polymerization vessel R-2 was about 45 minutes and about 35 minutes, respectively, and the polymerization temperature was set at an average of about 90°C and about 75°C, respectively, for continuous polymerization. Under these conditions, the conversion rate of butadiene or styrene at the outlet of each polymerizer is approximately 95%.
That's all. Di-tert-butyl-p-
After adding 0.5 parts by weight of each of cresol and trisnonyl phosphate as stabilizers per 100 parts by weight of the block copolymer mixture, the solvent was removed by heating to obtain a block copolymer mixture. The resulting block copolymer mixture has a styrene content of approximately 39 to 41% by weight;
The melt flow index (ASTMD-1238-57T, condition G) was 8-12. Moreover, as shown in FIG. 1, this block copolymer mixture had a composition distribution in which the styrene content decreased as the molecular weight increased. The composition distribution in Figure 1 is based on GPC.
At the same time, the differential styrene content in the developing solution was measured using an ultraviolet absorption photometer as a detector.
GPC used Shimadzu LC-1 model, (a) column
HSG30, 50, 60, (b) developing solution tetrahydrofuran,
(c) Measured at a temperature of 40°C. [Production method of block copolymer mixture B] A block copolymer mixture having a styrene content of 30% by weight was mixed with n-hexane 85% by the following method.
% and 15% by weight of cyclohexane with a solubility parameter of about 7.4 (referred to as solvent S 1 ). A solvent S1 solution containing 3 parts by weight of butadiene at a concentration of 20% by weight was charged into a stainless steel polymerization vessel equipped with a stirrer and the interior was purged with nitrogen gas, and then 0.05 parts by weight of n-butyllithium was added as a catalyst.
Polymerization was carried out at 70°C for 60 minutes. Next, add n-butyllithium
After adding 0.2 parts by weight, a solution of Solvent S 1 containing 30 parts by weight of styrene at a concentration of 20% by weight was added over 60 minutes using a metering pump to polymerize, resulting in an overall styrene content of about 91% by weight. , a mixture of B-A-Li and A-Li was obtained. Then a solution of solvent S 1 containing 67 parts by weight of butadiene at a concentration of 20% by weight was added and the mixture was heated to 70°C.
Polymerization was carried out at 90°C for minutes. During this period, the solubility parameter of the liquid phase within the polymerization system was about 7.3 to 7.4. A part of the obtained polymer solution was taken out and the composition distribution of the polymer contained therein was investigated.
The composition distribution was as shown in the figure. In addition, tetrachlorosilane was added to the obtained active polymer, and n-
The polymer obtained by adding 1/4 mole of butyllithium and causing a coupling reaction was a block copolymer mixture having a composition distribution as shown in FIG. [Production method of block copolymer mixture C] A block copolymer having a styrene content of 40% by weight and a composition distribution such that the styrene content decreases substantially continuously as the molecular weight increases is produced by the following method. The combined mixture was diluted with n-hexane to approx.
% by weight, in a mixed solvent (referred to as solvent S 2 ) with a solubility parameter of about 7.3, consisting of about 20% by weight of heptane and about 10% by weight of pentane. A solvent S2 solution containing 6 parts by weight of butadiene at a concentration of 20% by weight was charged into a stainless steel polymerization vessel equipped with a stirrer and the interior was purged with nitrogen gas, and then 0.1 part by weight of n-butyllithium was added as a catalyst.
Polymerization was carried out at 70°C for 60 minutes. Thereafter, a solvent S 2 solution containing 20 parts by weight of styrene at a concentration of 20% by weight was added over 60 minutes using a metering pump to polymerize, and a preliminarily prepared material with a styrene content of about 77% by weight and a B-A-Li structure was prepared. A polymer was obtained. Next, add 54 parts by weight of butadiene to 20% by weight.
A solution containing solvent S2 was added and polymerized at 70°C for 90 minutes. During this period, the solubility parameter of the liquid phase within the polymerization system was approximately 7.2 to 7.3. Thereafter, a solvent S 2 further containing 20 parts by weight of styrene at 20% by weight
The solution was added via a metering pump over 60 minutes to polymerize. Note that when adding the styrene solvent S 2 solution using a metering pump, the temperature inside the polymerization vessel was adjusted to 70°C. Di-tert-butyl-
After adding 0.5 parts by weight of each of p-cresol and trisnonylphenyl phosphorite as stabilizers, the solvent was removed by heating to obtain a polymer. The molecular weight distribution and composition distribution of the obtained polymer are shown in FIG. 4, and this polymer was a block copolymer mixture having a composition distribution in which the styrene content continuously decreased as the molecular weight increased. [Production method of block copolymer mixture D] By the method shown below, a block copolymer mixture having a styrene content of 76% by weight and in which the styrene content decreases substantially continuously as the molecular weight increases, as shown in FIG. A block copolymer mixture having a composition was prepared in n-hexane with a solubility parameter of about 7.3. An n-hexane solution containing 4 parts by weight of butadiene at a concentration of 20% by weight was charged into a stainless steel polymerization vessel equipped with a stirrer and the interior was purged with nitrogen gas, and then 0.08 parts by weight of n-butyl rutium was added as a catalyst. Polymerization was carried out at ℃ for 60 minutes. Then styrene 16
An n-hexane solution containing 20% by weight was added using a metering pump over 60 minutes to effect polymerization. Next, an n-hexane solution containing 20 parts by weight of butadiene at a concentration of 20% by weight was added and polymerized at 70°C for 60 minutes. It was added in minutes using a metering pump to polymerize. Incidentally, when adding the styrene n-hexane solution using a metering pump, the temperature inside the polymerization vessel was adjusted to 70°C. The resulting polymer was post-treated in the same manner as described above. [Production method of block copolymer mixture E and its hydrogenated product] In the production method of block copolymer mixture C, polymerization was carried out in the same manner except that a small amount of tetrahydrofuran was used as a vinylizing agent, and the content of vinyl bonds was approximately A 40% block copolymer mixture E was obtained. This block copolymer mixture had a composition distribution similar to block copolymer mixture C. Next, using cobalt naphthenate and triethylaluminum as catalysts, hydrogen pressure was 7 Kg/cm 2 and temperature was 50°C.
Hydrogenation was carried out at A combined mixture F) was obtained. [Production method of block copolymer 1] A washed and dried polymerization vessel equipped with a stirrer and a jacket was purged with nitrogen, and an n-hexane solution containing 12 parts by weight of butadiene at a concentration of 20% by weight and n-
After adding 0.11 parts by weight of butyllithium, at 70℃
Polymerization was carried out for 60 minutes. Thereafter, n-hexane solutions each containing 20 parts by weight of 20 parts by weight of styrene, 48 parts by weight of butadiene, and 20 parts by weight of styrene were successively added, and polymerization was carried out at 70 DEG C. for 60 minutes each. The resulting block copolymer was post-treated in the same manner as described above. The resulting block copolymer has a styrene content of approximately 40% by weight and a block styrene molecular weight of approximately 38.
The block copolymer had a melt flow index of about 10 by weight and a uniform composition distribution as shown in FIG. [Production method of block copolymer 2] In a nitrogen gas atmosphere, n-butyllithium was added to a cyclohexane solution containing 30 parts by weight of styrene.
After adding 0.25 parts by weight and polymerizing at 70°C for 1 hour,
A cyclohexane solution containing 70 parts by weight of 1,3-butadiene was added and polymerized at 70°C for 2 hours. Thereafter, tetrachlorosilane was added in an amount equivalent to 1/4 of the n-butyllithium used to obtain a block copolymer having an (A-B) -4Si structure with a styrene content of 30% by weight. The obtained polymer was a block copolymer having a uniform composition distribution similar to that shown in FIG. [Production method of block copolymer 3] A block copolymer having a styrene content of 76% by weight was produced in the same manner as for block copolymer mixture D except that cyclohexane was used instead of n-hexane as the polymerization solvent. The obtained polymer was a block copolymer having a uniform composition distribution, as shown in FIG. Further, the abbreviations of resins used as thermoplastic resins in the following examples are as follows. GPPS; general-purpose polystyrene HIPS; rubber-modified high-impact polystyrene ABS; acrylonitrile-butadiene-styrene copolymer HDPE; high-density polyethylene PP; polypropylene saponified EVA; saponified ethylene-vinyl acetate copolymer MMA; polymethyl methacrylic acid PPO; polyphenylene oxide PPS; polyphenylene sulfide PC; polycarbonate PS; polystyrene PA 1 ; nylon 6 PA 2 ; nylon 66 PET; polyethylene terephthalate PBT; polybutylene terephthalate PU; thermoplastic polyurethane Examples 1 to 9 and comparison Examples 1 to 9 A block copolymer mixture or a thermoplastic polymer composition consisting of a block copolymer and a thermoplastic resin was prepared according to the compounding method shown in Tables 1 and 2, and its Izo impact strength was determined. and surface gloss was measured. "Izotsu impact strength is based on JIS K6871,
In addition, surface gloss was measured according to JIS Z8741. ” The results are shown in Tables 1 and 2. It has been revealed that the composition containing the block copolymer mixture defined by the present invention has excellent impact resistance and surface gloss.

【表】【table】

【表】【table】

【表】 実施例10〜14及び比較例10〜14 第3表に示した配合処法に従い、ポリスチレン
等にブロツク共重合体混合物又はブロツク共重合
体を30mmφ押出機で混練してペレツト化した後、
25mmφシート押出機を用いて押出し、厚さ0.3mm
のシートを成形した。得られたシートの透明性を
JIS K−6714に従つて、また耐衝撃強度を
ASTM D1709に準じたダート衝撃試験法でそれ
ぞれ測定した。 結果を第3表に示した。 尚、ブロツク共重合体混合物C30重量部と、メ
タクリ酸メチル−スチレン共重合体(メタクリル
酸メチルの含有量約50重量%)70重量部とからな
る組成物を同様にシート成形して得たシートは全
光線透過率が88%、ヘイズが10%であり、透明な
シートであつた。
[Table] Examples 10 to 14 and Comparative Examples 10 to 14 After kneading a block copolymer mixture or block copolymer into polystyrene etc. using a 30 mmφ extruder and pelletizing according to the compounding method shown in Table 3. ,
Extruded using a 25mmφ sheet extruder, thickness 0.3mm
A sheet was formed. The transparency of the obtained sheet
In accordance with JIS K-6714, and impact resistance
Each was measured using a dart impact test method according to ASTM D1709. The results are shown in Table 3. In addition, a sheet obtained by similarly sheet-molding a composition consisting of 30 parts by weight of block copolymer mixture C and 70 parts by weight of methyl methacrylate-styrene copolymer (content of methyl methacrylate: approximately 50% by weight) It was a transparent sheet with a total light transmittance of 88% and a haze of 10%.

【表】【table】

【表】 実施例15〜27及び比較例15〜27 第4〜6表に示した配合処法に従つてブロツク
共重合体混合物又はブロツク共重合体と熱可塑性
樹脂からなる熱可塑性重合体組成物を作成し、そ
のアイゾツト衝撃強度を測定した。結果を第4〜
6表に示したが、本発明で規定するブロツク共重
合体混合物を含有する組成物は、耐衝撃性に優れ
ることが明らかになつた。 次に、第5表及び第6表に示した各組成物の耐
候性試験及び耐熱老化性験を行つた。耐候性試験
は、ウエザオメーター1000時間暴露後の成形片の
アイゾツト衝撃強度を測定した。また耐熱老化性
試験は、成形片を約120℃の雰囲気下に約1ケ月
間放置した後、アイゾツト衝撃強度を測定した。
その結果、成分(a)としてブロツク共重合体混合物
Fを用いた組成物は、他のものと比較して極めて
優れた耐候性及び耐熱老化性に優れることが明ら
かになつた。
[Table] Examples 15 to 27 and Comparative Examples 15 to 27 Thermoplastic polymer compositions comprising block copolymer mixtures or block copolymers and thermoplastic resins according to the formulation methods shown in Tables 4 to 6. was prepared and its Izot impact strength was measured. Results from 4th
As shown in Table 6, it has been revealed that the composition containing the block copolymer mixture defined by the present invention has excellent impact resistance. Next, each composition shown in Tables 5 and 6 was subjected to a weather resistance test and a heat aging resistance test. In the weather resistance test, the Izot impact strength of the molded piece was measured after being exposed to a weatherometer for 1000 hours. In the heat aging resistance test, the molded pieces were left in an atmosphere of about 120° C. for about one month, and then the Izot impact strength was measured.
As a result, it was revealed that the composition using block copolymer mixture F as component (a) had extremely excellent weather resistance and heat aging resistance compared to other compositions.

【表】【table】

【表】【table】

【表】 実施例28及び29 ブロツク共重合体混合物D100重量部と、メタ
クリル酸メチル−スチレン共重合体(メタクリル
酸メチルの含有量約20重量%)100重量部(実施
例28)又はアクリロニトリル−スチレン共重合体
(アクリロニトリルの含有量約25重量%)35重量
部(実施例29)とを押出機で溶融混練してペレツ
ト化した後、射出成形により物性測定試験片を作
成した。結果を第7表に示したが透明性の良好な
組成物が得られた。
[Table] Examples 28 and 29 100 parts by weight of block copolymer mixture D and 100 parts by weight of methyl methacrylate-styrene copolymer (content of methyl methacrylate: about 20% by weight) (Example 28) or acrylonitrile-styrene 35 parts by weight of a copolymer (acrylonitrile content: about 25% by weight) (Example 29) was melt-kneaded in an extruder to form pellets, and then injection molded to prepare test pieces for measuring physical properties. The results are shown in Table 7, and a composition with good transparency was obtained.

【表】 実施例30及び比較例28 HIPSを100重量部、ブロツク共重合体混合物
B又はブロツク共重合体2を10重量部、三酸化ア
ンチモンを3重量部、デカブロモテトラリンを30
重量部を溶融混練してペレツト状にした後、射出
成形して物性測定試験片を作成した。得られた結
果を第8表に示した。
[Table] Example 30 and Comparative Example 28 100 parts by weight of HIPS, 10 parts by weight of block copolymer mixture B or block copolymer 2, 3 parts by weight of antimony trioxide, 30 parts by weight of decabromotetralin
Parts by weight were melt-kneaded to form pellets, which were then injection molded to prepare test pieces for measuring physical properties. The results obtained are shown in Table 8.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の成分(a)として使用で
きるブロツク共重合体混合物、第6図及び第7図
は比較例のブロツク共重合体の分子量分布(実
線)及び分子量と結合スチレン含有との関係(点
線)を示すグラフである。
Figures 1 to 5 show block copolymer mixtures that can be used as component (a) of the present invention, and Figures 6 and 7 show the molecular weight distribution (solid line) and molecular weight and bonded styrene of block copolymers of comparative examples. It is a graph showing the relationship (dotted line) with content.

Claims (1)

【特許請求の範囲】 1 (a) 少なくとも1個のビニル芳香族炭化水素
を主体とする重合体ブロツクと少なくとも1個
の共役ジエンを主体とする重合体ブロツクを有
するブロツク共重合体混合物であつて、 (i) 該混合物の全体としてのビニル芳香族炭化
水素含有量が5〜95重量%、 (ii) 該混合物の全体としての数平均分子量が
10000〜1000000, (iii) 該混合物を構成するブロツク共重合体のビ
ニル芳香族炭化水素含有量が分子量の増加と
共に、実質上連続的に変化するような組成分
布を有し、しかも、該混合物中に含まれる低
分子量成分及び高分子量成分をそれぞれ5重
量%(ブロツク共重合体混合物全体に対する
割合)除いた残りの成分間において、ビニル
芳香族炭化水素含有量の少ない成分と多い成
分とのビニル芳香族炭化水素含有量の差が5
重量%以上、であるブロツク共重合体混合物
又は該ブロツク共重合体混合物の水添物 (b) 熱可塑性樹脂 から成る熱可塑性重合体組成物。 2 熱可塑性樹脂が、ポリスチレン系重合体、ポ
リフエニレンエーテル系重合体、ポリエチレン系
重合体、ポリプロピレン系重合体、ポリブテン系
重合体、ポリ塩化ビニル系重合体、ポリ酢酸ビニ
ル系重合体、ポリアミド系重合体、熱可塑性ポリ
エステル系重合体、ポリアクリレート系重合体、
ポリフエノキシ系重合体、ポリフエニレンスルフ
イド系重合体、ポリカーボネート系重合体、熱可
塑性ポリウレタン系重合体、ポリスルフオンから
選ばれた少なくとも1種の熱可塑性樹脂である特
許請求の範囲第1項記載の組成物。
[Scope of Claims] 1 (a) A block copolymer mixture having at least one polymer block mainly composed of a vinyl aromatic hydrocarbon and at least one polymer block mainly composed of a conjugated diene, (i) the total vinyl aromatic hydrocarbon content of the mixture is 5 to 95% by weight; (ii) the total number average molecular weight of the mixture is 5 to 95% by weight;
10,000 to 1,000,000, (iii) the block copolymer constituting the mixture has a composition distribution such that the vinyl aromatic hydrocarbon content changes substantially continuously with increasing molecular weight; Among the remaining components after removing 5% by weight of each of the low-molecular weight components and high-molecular weight components contained in The difference in group hydrocarbon content is 5
% by weight or more of a block copolymer mixture or a hydrogenated product of the block copolymer mixture (b) A thermoplastic polymer composition comprising a thermoplastic resin. 2 The thermoplastic resin is a polystyrene polymer, a polyphenylene ether polymer, a polyethylene polymer, a polypropylene polymer, a polybutene polymer, a polyvinyl chloride polymer, a polyvinyl acetate polymer, or a polyamide polymer. Polymers, thermoplastic polyester polymers, polyacrylate polymers,
The composition according to claim 1, which is at least one thermoplastic resin selected from polyphenoxy polymers, polyphenylene sulfide polymers, polycarbonate polymers, thermoplastic polyurethane polymers, and polysulfones. thing.
JP2213082A 1982-02-16 1982-02-16 Thermoplastic polymer composition Granted JPS58141233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213082A JPS58141233A (en) 1982-02-16 1982-02-16 Thermoplastic polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213082A JPS58141233A (en) 1982-02-16 1982-02-16 Thermoplastic polymer composition

Publications (2)

Publication Number Publication Date
JPS58141233A JPS58141233A (en) 1983-08-22
JPH039141B2 true JPH039141B2 (en) 1991-02-07

Family

ID=12074299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213082A Granted JPS58141233A (en) 1982-02-16 1982-02-16 Thermoplastic polymer composition

Country Status (1)

Country Link
JP (1) JPS58141233A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451607A (en) * 1983-01-27 1984-05-29 Phillips Petroleum Company Poly(arylene sulfide) compositions
JPS60228556A (en) * 1984-04-27 1985-11-13 Asahi Chem Ind Co Ltd Impact-resistant thermoplastic resin composition
JPS60252649A (en) * 1984-05-28 1985-12-13 Mitsubishi Gas Chem Co Inc Polyphenylene ether resin composition
JPH0615649B2 (en) * 1984-07-26 1994-03-02 旭化成工業株式会社 Hydrogenated block copolymer composition
JPS61152752A (en) * 1984-12-27 1986-07-11 Mitsui Petrochem Ind Ltd Polypropylene composition
JPS61252259A (en) * 1985-05-02 1986-11-10 Asahi Chem Ind Co Ltd Resin composition
JPS6220551A (en) * 1985-07-19 1987-01-29 Asahi Chem Ind Co Ltd Elastomer composition
JPS6225149A (en) * 1985-07-25 1987-02-03 Asahi Chem Ind Co Ltd Highly elastic hydrogenated block copolymer composition
JPH0689215B2 (en) * 1986-08-04 1994-11-09 旭化成工業株式会社 Bumper composition
JPH01174550A (en) * 1987-12-28 1989-07-11 Kuraray Co Ltd Hydrogenated block copolymer composition
JPH0637539B2 (en) * 1988-02-17 1994-05-18 旭化成工業株式会社 Block copolymer mixture
US5084551A (en) * 1990-12-12 1992-01-28 General Electric Co. Polyphenylene ether process and resin composition
US5037943A (en) * 1990-12-18 1991-08-06 General Electric Co. Polyphenylene ether process and resin composition
US6040382A (en) * 1994-02-04 2000-03-21 Phillips Petroleum Company Polymer blend clarity
JP2001139761A (en) * 1999-11-12 2001-05-22 Kuraray Co Ltd Thermoplastic polymer composition
US6844383B2 (en) 2000-05-25 2005-01-18 Asahi Kasei Kabushiki Kaisha Block copolymer and composition thereof
KR100508743B1 (en) 2001-03-15 2005-08-17 아사히 가세이 가부시키가이샤 Block copolymer composition
JP2007002886A (en) * 2005-06-22 2007-01-11 Mitsubishi Chemicals Corp Thermoplastic elastomer composition for gasket and gasket
JP5221587B2 (en) * 2010-03-29 2013-06-26 新日鉄住金化学株式会社 Flame retardant polylactic acid resin composition

Also Published As

Publication number Publication date
JPS58141233A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
JPH039141B2 (en)
US4304881A (en) Alkenyl aromatic resin composition having an excellent impact strength
Utracki Commercial polymer blends
GB1571014A (en) Graft copolymer and process for producing the same
JPH03205411A (en) Thermoplastic copolymer, its production and thermoplastic resin composition containing same
JPWO2002094932A1 (en) Block copolymer composition
CA2382071C (en) Improved flow carbonate polymer blends
JPH0794591B2 (en) Thermoplastic resin composition
JPH0312097B2 (en)
JP3335747B2 (en) Production method of block copolymer
JP3335746B2 (en) Method for producing block copolymer
JPS6247219B2 (en)
EP4029915B1 (en) Thermoplastic resin composition, preparation method thereof, and molded article manufactured therefrom
EP3805312B1 (en) Impact modified copolymers of (meth)acrylate esters and/or free radically polymerizable monomers containing nucleophilic groups
JPH0260687B2 (en)
JPS634586B2 (en)
KR100604088B1 (en) Thermoplastic Resin Composition of Polycarbonate and Polystyrene Blend
JPH10158350A (en) Production of block copolymer
JPH06313105A (en) Thermoplastic resin composition
JPH0468343B2 (en)
EP0378410A1 (en) Rubber-modified styrene-based copolymer
KR20220057413A (en) Thermoplastic resin composition, method for preparing the same and article prepared therefrom
Utracki et al. Polymer industry
JPS59149950A (en) Thermoplastic resin composition
JPH0366345B2 (en)