JPS634586B2 - - Google Patents

Info

Publication number
JPS634586B2
JPS634586B2 JP55093800A JP9380080A JPS634586B2 JP S634586 B2 JPS634586 B2 JP S634586B2 JP 55093800 A JP55093800 A JP 55093800A JP 9380080 A JP9380080 A JP 9380080A JP S634586 B2 JPS634586 B2 JP S634586B2
Authority
JP
Japan
Prior art keywords
weight
vinyl
substituted aromatic
aromatic compound
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55093800A
Other languages
Japanese (ja)
Other versions
JPS5721449A (en
Inventor
Toshinori Shiraki
Akio Iemori
Hideo Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9380080A priority Critical patent/JPS5721449A/en
Publication of JPS5721449A publication Critical patent/JPS5721449A/en
Publication of JPS634586B2 publication Critical patent/JPS634586B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐衝撃性及び成形品の外観特性に優
れたスチレン系重合体組成物に関する。 〔従来技術〕 従来、ポリスチレンの耐衝撃性や耐油性等を改
良した耐衝撃性ゴム変性スチレン系重合体として
耐衝撃性ゴム変性スチレン重合体、アクリロニト
リル―ブタジエン―スチレン共重合体、アクリル
酸エステル―ブタジエン―スチレン共重合体、メ
タクリル酸エステル―ブタジエン―スチレン共重
合体、耐衝撃性ゴム変性スチレン―無水マレイン
酸共重合体などが市販されている。 これらのゴム変性スチレン系重合体は剛性、耐
衝撃性、加工性などの特徴をいかし、包装材料、
電気部品、自動車部品、建築の装飾品など種々の
製品に使用されている。 従来、製造業者は価格および物性などを勘案し
市場で入手可能なこれらゴム変性スチレン系重合
体を選択し、これを単独又は配合物にして使用
し、末端ユーザーの要望に適合した製品を作つて
いる。しかし市場で入手可能なゴム変性スチレン
系重合体では耐衝撃性が不足で、末端ユーザーの
要望する耐衝撃性製品を製造することが出来ない
事態がしばしば生じている。このため、他の物性
を低下させることなく、市場で入手可能なゴム変
性スチレン系重合体の耐衝撃性を向上させる配合
技術の開発が切望されている。 ゴム変性スチレン系重合体の耐衝撃性改良方法
の一つとして共役ジオレフイン―ビニル置換芳香
族化合物ブロツク共重合体を強靭化剤として使用
することが既に知られている。例えば、特公昭52
―21012号公報及び特開昭48―56250号公報には耐
衝撃性ゴム変性スチレン重合体の強靭化剤とし
て、比較的共役ジオレフイン含有量の多いブロツ
ク共重合体を使用することが記載されている。し
かしながら、前者においては耐衝撃性は改良され
るもののゴム変性スチレン系重合体の表面光沢が
悪化するという欠点があり、また後者においては
良好な耐衝撃性及び表面光沢を有するゴム変性ポ
リスチレン組成物が得られるものの、その特性は
ゴム変性ポリスチレンのメチルエチルケトン可溶
部の極限粘度とスチレン―ジエンブロツク共重合
体の極限粘度との差0.1d/g以下にしたときに
のみ発現されるものであり、組成物の構成成分と
して極めて特殊の成分を使用しなければ上記特性
は達成されないという欠点を有している。 一方、特開昭50―121351号公報や特開昭51―
128347号公報には耐衝撃性ゴム変性スチレン重合
体の強靭化剤として、比較的ビニル置換芳香族含
有量の多いブロツク共重合体を使用することが記
載されており、かかる方法によつて得られた組成
物は良好な表面光沢を有する。しかしながら、こ
れらの組成物は耐衝撃性が低下するという欠点を
有し、必ずしも満足できる方法ではなかつた。 〔発明が解決すべき問題点〕 本発明者らはかかる現状に鑑み、耐衝撃性ゴム
変性スチレン系重合体を含有する組成物において
耐衝撃性と表面光沢に優れた組成物を得るべく鋭
意検討した結果、比較的共役ジオレフイン含有量
の多いブロツク共重合体と比較的ビニル置換芳香
族化合物含有量の多いブロツク共重合体とを、耐
衝撃性ゴム変性スチレン系重合体と組合せること
によりその目的が達成されることを見出し、本発
明をなすに至つた。 〔問題点を解決するための手段〕 即ち、本発明のスチレン系重合体組成物は、 (i) ビニル置換芳香族化合物の含有量が10重量%
以上55重量%未満である、共役ジオレフインと
ビニル置換芳香族化合物とからなるブロツク共
重合体1〜50重量%、 (ii) ビニル置換芳香族化合物の含有量が55重量%
以上95重量%以下である、共役ジオレフインと
ビニル置換芳香族化合物とからなるブロツク共
重合体であり、しかも (イ)
[Industrial Field of Application] The present invention relates to a styrenic polymer composition having excellent impact resistance and appearance characteristics of molded articles. [Prior art] Conventionally, impact-resistant rubber-modified styrenic polymers, acrylonitrile-butadiene-styrene copolymers, and acrylic esters have been used as impact-resistant rubber-modified styrenic polymers that improve the impact resistance and oil resistance of polystyrene. Commercially available products include butadiene-styrene copolymer, methacrylic acid ester-butadiene-styrene copolymer, and impact-resistant rubber-modified styrene-maleic anhydride copolymer. These rubber-modified styrenic polymers take advantage of their characteristics such as rigidity, impact resistance, and processability, and are used as packaging materials,
It is used in a variety of products such as electrical parts, automobile parts, and architectural decorations. Traditionally, manufacturers have selected rubber-modified styrenic polymers available on the market based on price and physical properties, and used them alone or in combination to create products that meet the needs of end users. There is. However, the rubber-modified styrenic polymers available on the market lack impact resistance, and it is often impossible to manufacture impact-resistant products desired by end users. Therefore, there is a strong desire to develop a compounding technique that improves the impact resistance of commercially available rubber-modified styrenic polymers without degrading other physical properties. It is already known that one method for improving the impact resistance of rubber-modified styrenic polymers is to use a conjugated diolefin-vinyl substituted aromatic compound block copolymer as a toughening agent. For example,
-21012 and JP-A-48-56250 describe the use of block copolymers with relatively high conjugated diolefin content as toughening agents for impact-resistant rubber-modified styrene polymers. . However, in the former, although the impact resistance is improved, the surface gloss of the rubber-modified styrenic polymer is deteriorated, and in the latter, the rubber-modified polystyrene composition has good impact resistance and surface gloss. However, its properties are only realized when the difference in the intrinsic viscosity of the methyl ethyl ketone soluble portion of the rubber modified polystyrene and the intrinsic viscosity of the styrene-diene block copolymer is 0.1 d/g or less, and the composition It has the disadvantage that the above characteristics cannot be achieved unless extremely specific components are used as constituents of the product. On the other hand, JP-A-50-121351 and JP-A-51-
Publication No. 128347 describes the use of a block copolymer with a relatively high vinyl-substituted aromatic content as a toughening agent for impact-resistant rubber-modified styrene polymers, and The composition has good surface gloss. However, these compositions have the drawback of reduced impact resistance, and the method has not always been satisfactory. [Problems to be Solved by the Invention] In view of the current situation, the present inventors have conducted extensive studies in order to obtain a composition containing an impact-resistant rubber-modified styrenic polymer that has excellent impact resistance and surface gloss. As a result, by combining a block copolymer with a relatively high content of conjugated diolefin and a block copolymer with a relatively high content of a vinyl-substituted aromatic compound with an impact-resistant rubber-modified styrenic polymer, the objective was achieved. The present inventors have discovered that the following can be achieved, and have come up with the present invention. [Means for solving the problem] That is, the styrenic polymer composition of the present invention has (i) a vinyl-substituted aromatic compound content of 10% by weight;
1 to 50% by weight of a block copolymer consisting of a conjugated diolefin and a vinyl-substituted aromatic compound, the content of which is less than 55% by weight; (ii) the content of the vinyl-substituted aromatic compound is 55% by weight;
A block copolymer consisting of a conjugated diolefin and a vinyl-substituted aromatic compound, the amount of which is 95% by weight or less, and (a)

〔発明の構成及びその作用効果の説明〕[Explanation of the structure of the invention and its effects]

以下、本発明について詳細に説明する。 まず、成分(i)のブロツク共重合体は、ビニル置
換芳香族化合物の含有量が10重量%以上55重量%
未満、好ましくは20〜53重量%、更に好ましくは
25〜50重量%のものである。又成分(ii)のブロツク
共重合体はビニル置換芳香族化合物の含有量が55
重量%以上95重量%以下、好ましくは57〜90重量
%のものである。本発明においては、ビニル置換
芳香族化合物の含有量が上記範囲内にある二種類
のブロツク共重合体を使用することにより耐衝撃
性と表面光沢に優れた組成物が得られる。又、本
発明において、成分(ii)のブロツク共重合体のビニ
ル置換芳香族化合物の含有量が55重量%以上65重
量%未満、好ましくは57〜63重量%の場合は耐衝
撃性により優れた組成物が得られ、一方、成分(ii)
のブロツク共重合体のビニル置換芳香族化合物の
含有量が65重量%以上95重量%以下、好ましくは
67〜90重量%の場合は表面光沢により優れた組成
物が得られるため、組成物に対する要求特性に応
じてブロツク共重合体のビニル置換芳香族化合物
の含有量を上記範囲内で任意に選定することがで
きる。 本発明で使用される成分(i)のブロツク共重合体
の製造方法としては、特公昭36―19286号公報、
特公昭43―14979号公報、特公昭49―36957号公報
などに記載されている。 これらはすべて、炭化水素溶剤中で有機リチウ
ム化合物等のアニオン重合開始剤を用い、共役ジ
オレフインとビニル置換芳香族化合物をブロツク
共重合する方法であり、一般式、 (A−B)oA(―B−A)o,B(―A−B)o (上式において、Aはビニル置換芳香族化合物
を主とする重合体ブロツクであり、Bは共役ジ
オレフインを主とする重合体ブロツクである。
AブロツクとBブロツクとの境界は必ずしも明
瞭に区別される必要はない。又、nは1以上の
整数である。) で表わされる線状ブロツク共重合体、あるいは一
般式 〔(B−A)o〕―n+2X,〔(A−B)o〕―n+2X 〔(B−A)―oBn+2X (上式において、A,Bは前記と同じであり、
Xは例えば四塩化ケイ素、四塩化スズなどのカ
ツプリング剤の残基又は多官能有機リチウム化
合物の残基を示す。m及びnは1以上の整数で
ある。) で表わされるラジアルブロツク共重合体として得
られる。尚、上記ブロツク共重合体の構造には、
完全型のブロツク共重合体も、又テーパー型のブ
ロツク共重合体も含みうる。 本発明において、成分(i)及び成分(ii)のブロツク
共重合体の製造に用いられるビニル置換芳香族炭
化水素としては、スチレン、o―メチルスチレ
ン、p―メチルスチレン、p―tertブチルスチレ
ン、1,3―ジメチルスチレン、α―メチルスチ
レン、ビニルナフタレン、ビニルアントラセン等
で、特に一般的なものとしてはスチレンがあげら
れる。これらは1種のみならず2種以上の混合物
として用いても良い。また、共役ジエンとして
は、炭素数が4ないし8の一対の共役二重結合を
有するジオレフインであり、例えば、1,3―ブ
タジエン、2―メチル―1,3―ブタジエン(イ
ソプレン)、2,3―ジメチル―1,3―ブタジ
エン、1,3―ペンタジエン、1,3―ヘキサジ
エン等があげられるが、特に一般的なものとして
は、1,3―ブタジエン、イソプレンがあげられ
る。これらは1種のみならず2種以上の混合物と
して用いても良い。 本発明で使用する成分(i)及び成分(ii)のブロツク
共重合体の分子量は、10000〜1000000、好ましく
は30000〜800000である。 本発明において、成分(ii)のブロツク共重合体と
して、一般式A−B(A及びBの意味は前記と同
じ)で表わされる構造を有するブロツク共重合体
を使用する場合には、特に光沢に優れた組成物が
得られる。 又、成分(ii)のブロツク共重合体として (イ) ブロツク共重合体中のビニル置換芳香族化合
物の25重量%以上75重量%以下、好ましくは25
〜70重量%、更に好ましくは30〜65重量%がブ
ロツク状ホモ重合体セグメントとして存在し、
かつ (ロ) 1,2―ビニル結合含有量が15%以下、好ま
しくは13%以下 であるブロツク共重合体を使用した組成物はブ
ロツク共重合体中の1,2―ビニル結合含有量
が少ないため、低温時の耐衝撃性が良好な興味
深い組成物が得られる。一般に、ブロツク状ホ
モ重合体セグメントとして存在するビニル置換
芳香族化合物の含有量が少ないブロツク共重合
体は、エーテル化合物や第3級アミン化合物等
の極性化合物を重合系に存在させて重合される
が、この様にして得られたブロツク共重合体は
1,2―ビニル結合含有量が高いため、このブ
ロツク共重合体を強靭化剤とした組成物は低温
時における耐衝撃性が悪いが、上記要件の(イ)及
び(ロ)を具備するブロツク共重合体を使用した場
合はかかる問題点も改善される。常温のみなら
ず低温においても耐衝撃性の優れた組成物は、
最近の食生活の変化に伴ない冷凍食品が広く普
及するにつれて、特に食品包装容器の素材とし
てその開発が要望されているものである。 上記要件(イ)において、ビニル置換芳香族化合物
のブロツク状ホモ重合体セグメントに組込まれて
いないビニル置換芳香族化合物、換言すれば、共
役ジエンと共重合しているビニル置換芳香族化合
物はビニル置換芳香族化合物のブロツク状ホモ重
合体セグメント以外の重合体鎖中の全体又は特定
領域に均一に分布していても、又テーパー状に分
布していてもよい。共重合体中のビニル置換芳香
族化合物のブロツク状ホモ重合体セグメントは、
四酸化オスミウムを触媒としてジ―ターシヤリー
ブチルハイドロパーオキサイドにより共重合体を
酸化分解する方法(例えば、L.M.Kolthoff et
al,J.Polymer Sci.,1429(1946)記載の方法)
などにより定量することができる。従つて、ブロ
ツク共重合体中にブロツク状ホモ重合体セグメン
トとして存在しているビニル置換芳香族化合物の
割合は、かかる方法法などで定量されたブロツク
状ホモ重合体セグメントの量をブロツク共重合体
中に含有されている全ビニル置換芳香族化合物の
量で除して把握することができる。また、ブロツ
ク共重合体中の1,2―ビニル結合の含有量は、
Analytical Chemistry第21巻923頁(1949年)に
記載された方法に従い、赤外分光光度計を用いて
測定することができる。 上記要件(イ)及び(ロ)を具備する成分(ii)のブロツク
共重合体の好ましい製造方法は、実質的に極性化
合物を含まない不活性炭化水素溶媒中で共役ジオ
レフインとビニル置換芳香族化合物との混合物を
少なくとも1個の重合器に連続的に供給し、有機
リチウム化合物を触媒として共重合させる方法で
ある。 ここで、単量体混合物を連続的に供給して共重
合させるとは、重合反応が実質的に進行している
重合器内へ、さらに共役ジオレフインとビニル置
換芳香族化合物を連続的に供給して、共重合させ
ることを意味する。従つて、共役ジオレフインと
ビニル置換芳香族化合物が重合器に連続的に供給
されて混合されていれば、必ずしもこれらの単量
体を事前に混合しておかなくてもよい。 かかるブロツク共重合体の製造において、共役
ジオレフインの一部及び/又はビニル置換芳香族
化合物の一部を、残部の共役ジオレフインとビニ
ル置換芳香族化合物との混合物とは別々に重合さ
せてもよい。この際、共役ジオレフインの一部及
び/又はビニル置換芳香族化合物の一部は重合器
に一度に全量供給しても、また所定量連続的に供
給してもよいが、残部の共役ジオレフインとビニ
ル置換芳香族化合物との混合物は重合器に連続的
に供給しなければならない。 又、かかるブロツク共重合体の製造方法は、セ
ミバツチ重合方法又は連続重合方法のいずれも採
用し得る。有機リチウム化合物としては、分子中
に少くとも1個のリチウム原子を結合した炭化水
素で、例えばn―プロピルリチウム、イソプロピ
ルリチウム、n―ブチルリチウム、sec―ブチル
リチウム、tert―ブチルリチウム、n―ペンチル
リチウム、リチウムトルエン、ベンジルリチウ
ム、1,4―ジリチオ―n―ブタン、1,2―ジ
リチオ―1,2―ジフエニルエタン、トリメチレ
ンジリチウム、オリゴイソプレニルジリチウム、
ポリスチリルリチウム等で特に一般的なものとし
てはn―ブチルリチウム、sec―ブチルリチウム
などがあげられる。また、不活性炭化水素溶媒と
しては、ブタン、ペンタン、ヘキサン、イソペン
タン、オクタン、イソオクタン等の脂肪族炭化水
素、シクロペンタン、メチルシクロペンタン、シ
クロヘキサン、メチルシクロヘキサン、エチルシ
クロヘキサン等の脂環式炭化水素、あるいはベン
ゼン、トルエン、エチルベンゼン、キシレン等の
芳香族炭化水素などが使用できる。これらは目的
に応じて混合して用いることも出来る。尚、溶媒
として用いる不活性炭化水素溶媒中には、エーテ
ル化合物や第3級アミン化合物等の極性化合物が
実質的に含有されないものを使用する。前述した
様に溶媒中に極性化合物が存在すると共重合体中
のビニル結合が増加して好ましくない。尚、ここ
で実質的に極性化合物が含有されないとは、1,
2―ビニル結合の含有量が本発明で規定する範囲
を逸脱しないブロツク共重合体が製造できる溶媒
を意味する。 本願発明の成分(ii)のブロツク共重合体は、ポリ
マー構造が一般式、 (A−B)o,A(―B−A)o,B(―A−B)o (上式において、Aはビニル置換芳香族化合物
を主とする重合体ブロツクであり、Bは共役ジ
オレフインを主とする重合体ブロツクである。
AブロツクとBブロツクとの境界は必ずしも明
瞭に区別される必要はない。又、nは1以上の
整数である。) で表わされる線状ブロツク共重合体、あるいは一
般式 〔(B−A)o〕―n+2X,〔(A−B)o〕―n+2X 〔(B−A)―oB〕―n+2X (上式おいて、A,Bは前記と同じであり、X
は例えば四塩化ケイ素、四塩化スズなどのカツ
プリング剤の残基又は多官能有機リチウム化合
物の残基を示す。m及びnは1以上の整数であ
る。) で表わされるラジアルブロツク共重合体を使用す
ることができる。尚、上記ブロツク共重合体の構
造にはテーパー型のブロツク共重合体も含みう
る。 次に、本発明において使用する耐衝撃性ゴム変
性スチレン系重合体は、ビニル置換芳香族化合物
もしくはこれと共重合可能なモノマーとエラスト
マーとの混合物を重合することにより得られ、重
合方法としては懸濁重合、乳化重合、塊状重合、
塊状―懸濁重合などが一般に行なわれている。ビ
ニル置換芳香族化合物と共重合可能なモノマーと
しては、α―メチルスチレン、アクリロニトリ
ル、アクリル酸エステル、メタクリル酸エステ
ル、無水マレイン酸などがあげられる。又、エラ
ストマーとしては、天然ゴム、合成イソプレンゴ
ム、ブタジエンゴム、スチレン―ブタジエンゴ
ム、ハイスチレンゴム、ポリブタジエンゴム、ク
ロロプレンゴム、ポリブテンゴム、ゴム状エチレ
ン―プロピレン共重合体、ゴム状ブタジエン―ア
クリロニトリル共重合体、ブチルゴム、各種ニト
リル系ゴム、ゴム状エチレン―酢酸ビニル共重合
体、ゴム状エチレン―アクリル酸エステル共重合
体、ゴム状アタクチツクポリプロピレン樹脂、ゴ
ム状エチレン―アクリル酸アイオノマー等が使用
される。 特に好ましい耐衝撃性ゴム変性スチレン系重合
体としては、耐衝撃性ゴム変性スチレン重合体、
アクリロニトリル―ブタジエン―スチレン共重合
体、アクリル酸エステル―ブタジエン―スチレン
共重合体、メタクリル酸エステル―ブタジエン―
スチレン共重合体、耐衝撃性ゴム変性スチレン―
無水マレイン酸共重合体などがあげられ、これら
は単独もしくは二種以上の混合物として使用する
こともできる。 本発明においては、成分(i),(ii)及び(iii)に加えて
更に非ゴム変性スチレン系重合体を含有させて組
成物の剛性等を改良することができる。非ゴム変
性スチレン系重合体は、ビニル置換芳香族化合物
もしくはこれと共重合可能なモノマーを重合する
ことにより得られるものである。ビニル置換芳香
族化合物と共重合可能なモノマーとしてはα―メ
チルスチレン、アクリロニトリル、アクリル酸エ
ステル、メタクリル酸エステル、無水マレイン酸
などがあげられる。 特に好ましい非ゴム変性スチレン系重合体とし
ては、ポリスチレン、スチレン―α―メルスチレ
ン共重合体、アクリロニトリル―スチレン共重合
体、スチレン―メタクリル酸エステル共重合体、
スチレン―無水マレイン酸共重合体などがあげら
れ、これらは単独もしくは二種以上の混合物とし
て使用することができる。 本発明において各成分の好ましい配合重量比
は、成分(i)が1〜50重量%、好ましくは3〜35重
量%、更に好ましくは5〜25重量%であり、成分
(ii)が1〜98重量%、好ましくは5〜92重量%であ
り、そして成分(iii)が1〜98重量%、好ましくは5
〜92重量%である。かかる成分(i),(ii)及び(iii)の配
合比範囲は、耐衝撃性と表面光沢に優れた組成物
を得る上で推奨される使用範囲である。かかる組
成物において成分(ii)と成分(iii)の組成比が1/1以
上の場合は比較的透明性の良好な組成物が得られ
る。 本発明のスチレン系重合体組成物は、必要に応
じて、任意の充填剤を含むことができる。本発明
において充填剤を配合する場合の配合量は、本発
明のスチレン系重合体組成物100重量部に対して、
好ましくは50重量部以下である。充填剤の配合量
が50重量部を超えると、組成物の耐衝撃性が低下
する傾向がみられる。 充填剤の種類はプラスチツクの配合に一般に用
いられるものであれば特に制限はないが、例え
ば、ガラス繊維、ガラスビーズ、シリカ、炭カ
ル、タルクなどの無機補強剤、有機繊維、クマロ
ンインデン樹脂などの有機補強剤、有機パーオキ
サイド、無機パーオキサイドなどの架橋剤、チタ
ン白、カーボンブラツク、酸化鉄などの顔料、染
料、難燃剤、酸化防止剤、紫外線吸収剤、帯電防
止剤、滑剤、可塑剤、その他の増量剤或いはこれ
らの混合物などが挙げられる。 本発明において各成分からなるスチレン系重合
体組成物は、従来公知のあらゆる配合方法によつ
て製造することができる。 例えば、オープンロール、インテンシブミキサ
ー、インターナルミキサー、コニーダー、二軸ロ
ーター付の連続混練機、押出機等の一般的な混和
機を用いて溶融混練方法、各成分を溶剤に溶解又
は分散混合後溶剤を加熱除去する方法が用いられ
る。 この様にして得た本発明のスチレン系重合体組
成物は、従来公知の任意の成形加工法、例えば、
押出成形、射出成形、中空成形などによつてシー
ト、発泡体、フイルム、各種形状の射出成形品、
中空成形品、圧空成形品、真空成形品2軸延伸成
形品等極めて多種多様にわたる実用上有用な製品
に容易に成形加工出来る。 〔実施例〕 本発明を更に詳細に説明するために以下に本発
明の実施例を示すが、本発明の内容をこれらの実
施例に限定するものでないことは云うまでもな
い。尚、実施例で使用した溶媒、単量体及びラン
ダマイザー等の添加剤は、予め精製、乾燥したも
のを使用した。 参考例1〜4及び参考比較例1,2 B―A―B―A(Bはブタジエンを主体とする
重合体ブロツクを、Aはスチレンを主体とする重
合体ブロツクを示す)の構造を有するスチレン含
有量40重量%、分子量約80000のテーパー型ブロ
ツク共重合体(サンプル1とする)と、同様の構
造を有するスチレン含有量80重量%、全スチレン
に対するブロツクスチレンの割合が83重量%、分
子量約140000、1,2―ビニル結合含有量11%の
テーパー型ブロツク共重合体(サンプル2とす
る)及びゴム含有量8重量%でメルトフロー(条
件G)2の耐衝撃性ゴム変性ポリスチレン
(HIPS1とする)を第1表に示した配合割合に従
つてヘンシエルミキサーで充分混合した後、押出
機によりペレツト化した。得られたペレツトを射
出成形して物性測定試験片を作成し、それらの物
性を測定した。
The present invention will be explained in detail below. First, the block copolymer of component (i) has a vinyl-substituted aromatic compound content of 10% by weight or more and 55% by weight.
less than 20%, preferably 20-53% by weight, more preferably
25-50% by weight. In addition, the block copolymer of component (ii) has a vinyl-substituted aromatic compound content of 55
The content is at least 95% by weight, preferably from 57 to 90% by weight. In the present invention, a composition excellent in impact resistance and surface gloss can be obtained by using two types of block copolymers having a vinyl-substituted aromatic compound content within the above range. In addition, in the present invention, when the content of the vinyl-substituted aromatic compound in the block copolymer of component (ii) is 55% by weight or more and less than 65% by weight, preferably 57 to 63% by weight, the block copolymer has better impact resistance. A composition is obtained, while component (ii)
The content of the vinyl-substituted aromatic compound in the block copolymer is 65% by weight or more and 95% by weight or less, preferably
When the content is 67 to 90% by weight, a composition with better surface gloss can be obtained, so the content of the vinyl-substituted aromatic compound in the block copolymer can be arbitrarily selected within the above range depending on the required properties of the composition. be able to. As a method for producing the block copolymer of component (i) used in the present invention, Japanese Patent Publication No. 36-19286,
It is described in Japanese Patent Publication No. 14979-1979, Publication No. 36957-1977, etc. All of these are methods of block copolymerizing a conjugated diolefin and a vinyl-substituted aromatic compound using an anionic polymerization initiator such as an organolithium compound in a hydrocarbon solvent, and have the general formula (A-B) o A(- B-A) o , B(-A-B) o (In the above formula, A is a polymer block mainly composed of a vinyl-substituted aromatic compound, and B is a polymer block mainly composed of a conjugated diolefin.
The boundary between A block and B block does not necessarily need to be clearly distinguished. Further, n is an integer of 1 or more. ), or the general formula [(B-A) o ]- n+2 X, [(A-B) o ]- n+2 X [(B-A)- o B n+2 X (In the above formula, A and B are the same as above,
X represents, for example, a residue of a coupling agent such as silicon tetrachloride or tin tetrachloride, or a residue of a polyfunctional organolithium compound. m and n are integers of 1 or more. ) is obtained as a radial block copolymer represented by: The structure of the above block copolymer has the following structure:
Complete block copolymers as well as tapered block copolymers can be included. In the present invention, vinyl-substituted aromatic hydrocarbons used for producing the block copolymers of component (i) and component (ii) include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, Among them, 1,3-dimethylstyrene, α-methylstyrene, vinylnaphthalene, vinylanthracene, etc., styrene is particularly common. These may be used not only as a single type but also as a mixture of two or more types. Further, the conjugated diene is a diolefin having a pair of conjugated double bonds having 4 to 8 carbon atoms, such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3 -dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc., and particularly common ones include 1,3-butadiene and isoprene. These may be used not only as a single type but also as a mixture of two or more types. The molecular weight of the block copolymer of component (i) and component (ii) used in the present invention is 10,000 to 1,000,000, preferably 30,000 to 800,000. In the present invention, when a block copolymer having a structure represented by the general formula A-B (A and B have the same meanings as above) is used as the block copolymer of component (ii), it has a particularly high gloss. A composition with excellent properties can be obtained. In addition, as the block copolymer of component (ii), (a) 25% by weight or more and 75% by weight or less, preferably 25% by weight or less of the vinyl-substituted aromatic compound in the block copolymer.
~70% by weight, more preferably 30-65% by weight, is present as block homopolymer segments;
and (b) a composition using a block copolymer with a 1,2-vinyl bond content of 15% or less, preferably 13% or less has a low 1,2-vinyl bond content in the block copolymer. This results in interesting compositions with good impact resistance at low temperatures. In general, block copolymers with a low content of vinyl-substituted aromatic compounds that exist as block homopolymer segments are polymerized in the presence of polar compounds such as ether compounds and tertiary amine compounds in the polymerization system. Since the block copolymer thus obtained has a high 1,2-vinyl bond content, compositions using this block copolymer as a toughening agent have poor impact resistance at low temperatures; When a block copolymer meeting requirements (a) and (b) is used, this problem can be improved. The composition has excellent impact resistance not only at room temperature but also at low temperature.
As frozen foods have become widespread due to recent changes in dietary habits, their development is particularly desired as a material for food packaging containers. In the above requirement (a), a vinyl-substituted aromatic compound that is not incorporated into the block homopolymer segment of the vinyl-substituted aromatic compound, in other words, a vinyl-substituted aromatic compound copolymerized with a conjugated diene is The aromatic compound may be distributed uniformly in the entire polymer chain other than the block homopolymer segment or in a specific region, or may be distributed in a tapered shape. Block-like homopolymer segments of vinyl-substituted aromatic compounds in copolymers are
A method of oxidative decomposition of copolymers with tertiary butyl hydroperoxide using osmium tetroxide as a catalyst (for example, LMKolthoff et al.
al, J. Polymer Sci., 1429 (1946) method)
It can be quantified by etc. Therefore, the proportion of vinyl-substituted aromatic compounds present as block-like homopolymer segments in a block copolymer can be determined by calculating the amount of block-like homopolymer segments determined by such a method. It can be determined by dividing it by the amount of all vinyl-substituted aromatic compounds contained therein. In addition, the content of 1,2-vinyl bonds in the block copolymer is
It can be measured using an infrared spectrophotometer according to the method described in Analytical Chemistry, Vol. 21, p. 923 (1949). A preferred method for producing the block copolymer of component (ii) that satisfies the above requirements (a) and (b) is to prepare a conjugated diolefin and a vinyl-substituted aromatic compound in an inert hydrocarbon solvent substantially free of polar compounds. This is a method in which a mixture of organic lithium and organic lithium compounds is continuously supplied to at least one polymerization vessel, and copolymerization is carried out using an organic lithium compound as a catalyst. Here, to copolymerize by continuously feeding the monomer mixture means to continuously feed the conjugated diolefin and the vinyl-substituted aromatic compound into the polymerization vessel where the polymerization reaction is substantially progressing. means to copolymerize. Therefore, as long as the conjugated diolefin and the vinyl-substituted aromatic compound are continuously supplied to the polymerization vessel and mixed, it is not necessarily necessary to mix these monomers in advance. In producing such a block copolymer, a portion of the conjugated diolefin and/or a portion of the vinyl-substituted aromatic compound may be polymerized separately from the remaining mixture of the conjugated diolefin and the vinyl-substituted aromatic compound. At this time, a part of the conjugated diolefin and/or a part of the vinyl-substituted aromatic compound may be fed into the polymerization vessel in its entirety at once or in a predetermined amount continuously, but the remaining conjugated diolefin and vinyl-substituted aromatic compound The mixture with the substituted aromatic compound must be fed continuously to the polymerization vessel. Further, as a method for producing such a block copolymer, either a semi-batch polymerization method or a continuous polymerization method can be adopted. Examples of organic lithium compounds include hydrocarbons with at least one lithium atom bonded in the molecule, such as n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and n-pentyllithium. Lithium, lithium toluene, benzyl lithium, 1,4-dilithio-n-butane, 1,2-dilithio-1,2-diphenylethane, trimethylene dilithium, oligoisoprenyl dilithium,
Particularly common examples of polystyryllithium include n-butyllithium and sec-butyllithium. Examples of inert hydrocarbon solvents include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, octane, and isooctane; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; Alternatively, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene can be used. These can also be mixed and used depending on the purpose. The inert hydrocarbon solvent used as the solvent is one that does not substantially contain polar compounds such as ether compounds and tertiary amine compounds. As mentioned above, the presence of polar compounds in the solvent increases the number of vinyl bonds in the copolymer, which is undesirable. Note that "substantially no polar compounds are contained" means 1,
It means a solvent that can produce a block copolymer whose content of 2-vinyl bonds does not fall within the range defined by the present invention. The block copolymer of component (ii) of the present invention has a polymer structure of the general formula (A-B) o , A(-B-A) o , B(-A-B) o (in the above formula, A B is a polymer block mainly composed of a vinyl-substituted aromatic compound, and B is a polymer block mainly composed of a conjugated diolefin.
The boundary between A block and B block does not necessarily need to be clearly distinguished. Further, n is an integer of 1 or more. ), or the general formula [(B-A) o ]- n+2 X, [(A-B) o ]- n+2 X [(B-A)- o B ]― n+2 X (In the above formula, A and B are the same as above, and
represents, for example, a residue of a coupling agent such as silicon tetrachloride or tin tetrachloride, or a residue of a polyfunctional organolithium compound. m and n are integers of 1 or more. ) can be used. Incidentally, the structure of the above block copolymer may also include a tapered block copolymer. Next, the impact-resistant rubber-modified styrenic polymer used in the present invention is obtained by polymerizing a mixture of a vinyl-substituted aromatic compound or a monomer copolymerizable therewith with an elastomer. Turbid polymerization, emulsion polymerization, bulk polymerization,
Bulk-suspension polymerization is commonly carried out. Examples of monomers copolymerizable with the vinyl-substituted aromatic compound include α-methylstyrene, acrylonitrile, acrylic esters, methacrylic esters, and maleic anhydride. Elastomers include natural rubber, synthetic isoprene rubber, butadiene rubber, styrene-butadiene rubber, high styrene rubber, polybutadiene rubber, chloroprene rubber, polybutene rubber, rubbery ethylene-propylene copolymer, rubbery butadiene-acrylonitrile copolymer. Rubber, butyl rubber, various nitrile rubbers, rubbery ethylene-vinyl acetate copolymers, rubbery ethylene-acrylic acid ester copolymers, rubbery atactic polypropylene resins, rubbery ethylene-acrylic acid ionomers, etc. are used. Particularly preferred impact-resistant rubber-modified styrenic polymers include impact-resistant rubber-modified styrenic polymers,
Acrylonitrile-butadiene-styrene copolymer, acrylic ester-butadiene-styrene copolymer, methacrylic ester-butadiene
Styrene copolymer, impact-resistant rubber-modified styrene
Examples include maleic anhydride copolymers, and these can be used alone or as a mixture of two or more. In the present invention, in addition to components (i), (ii), and (iii), a non-rubber-modified styrenic polymer can be further included to improve the rigidity of the composition. The non-rubber modified styrenic polymer is obtained by polymerizing a vinyl-substituted aromatic compound or a monomer copolymerizable therewith. Examples of monomers copolymerizable with the vinyl-substituted aromatic compound include α-methylstyrene, acrylonitrile, acrylic esters, methacrylic esters, and maleic anhydride. Particularly preferred non-rubber modified styrenic polymers include polystyrene, styrene-α-merstyrene copolymer, acrylonitrile-styrene copolymer, styrene-methacrylic acid ester copolymer,
Examples include styrene-maleic anhydride copolymer, which can be used alone or as a mixture of two or more. In the present invention, the preferred blending weight ratio of each component is that component (i) is 1 to 50% by weight, preferably 3 to 35% by weight, more preferably 5 to 25% by weight;
(ii) is 1 to 98% by weight, preferably 5 to 92% by weight, and component (iii) is 1 to 98% by weight, preferably 5% by weight.
~92% by weight. The blending ratio range of components (i), (ii) and (iii) is the recommended range for use in obtaining a composition with excellent impact resistance and surface gloss. In such a composition, when the composition ratio of component (ii) to component (iii) is 1/1 or more, a composition with relatively good transparency can be obtained. The styrenic polymer composition of the present invention can contain any filler, if necessary. In the present invention, when blending a filler, the blending amount is as follows:
Preferably it is 50 parts by weight or less. When the amount of filler added exceeds 50 parts by weight, the impact resistance of the composition tends to decrease. The type of filler is not particularly limited as long as it is commonly used in plastic compounding, but examples include glass fiber, glass beads, inorganic reinforcing agents such as silica, charcoal, and talc, organic fibers, coumaron indene resin, etc. organic reinforcing agents, crosslinking agents such as organic peroxides and inorganic peroxides, pigments such as titanium white, carbon black, and iron oxide, dyes, flame retardants, antioxidants, ultraviolet absorbers, antistatic agents, lubricants, and plasticizers. , other fillers, or mixtures thereof. In the present invention, the styrenic polymer composition consisting of each component can be produced by any conventionally known compounding method. For example, a melt-kneading method using a general mixer such as an open roll, an intensive mixer, an internal mixer, a co-kneader, a continuous kneader with a twin-screw rotor, an extruder, etc., each component is dissolved or dispersed in a solvent, and then the solvent is mixed. A method is used to heat and remove. The styrenic polymer composition of the present invention thus obtained can be processed by any conventionally known molding method, for example,
Sheets, foams, films, injection molded products of various shapes, etc. are made by extrusion molding, injection molding, blow molding, etc.
It can be easily molded into a wide variety of practically useful products such as blow molded products, pressure molded products, vacuum molded products, and biaxially stretched products. [Examples] Examples of the present invention are shown below to explain the present invention in more detail, but it goes without saying that the content of the present invention is not limited to these Examples. Note that the solvents, monomers, and additives such as randomizers used in the examples were purified and dried in advance. Reference Examples 1 to 4 and Reference Comparative Examples 1 and 2 Styrene having the structure B-A-B-A (B indicates a polymer block mainly composed of butadiene, and A indicates a polymer block mainly composed of styrene). A tapered block copolymer (sample 1) with a content of 40% by weight and a molecular weight of approximately 80,000 and a styrene content of 80% by weight with a similar structure, a ratio of block styrene to the total styrene of 83% by weight, and a molecular weight of approximately 140000, a tapered block copolymer with a 1,2-vinyl bond content of 11% (referred to as sample 2) and an impact-resistant rubber-modified polystyrene with a rubber content of 8% by weight and a melt flow (condition G) of 2 (HIPS1). ) were thoroughly mixed in a Henschel mixer according to the blending ratio shown in Table 1, and then pelletized using an extruder. The obtained pellets were injection molded to prepare specimens for measuring physical properties, and their physical properties were measured.

【表】 参考例5及び6 サンプル1の代わりにA―B―Aの構造を有す
るスチレン含有量30重量%、分子量約120000の完
全型ブロツク共重合体(サンプル3とする)を用
い、サンプル2の代わりにB―Aの構造を有する
スチレン含有量80重量%、全スチレンに対するブ
ロツクスチレンの割合が8.3重量%、分子量約
140000、1,2―ビニル結合含有量11%のテーパ
ー型ブロツク共重合体(サンプル4とする)又は
A―B―Aの構造を有するスチレン含有量60重量
%、分子量約140000、1,2―ビニル結合含有量
11%の完全型ブロツク共重合体(サンプル5とす
る)を用いた他は実施例1と同様にして物性測定
試験片を作成し、物性を測定した。
[Table] Reference Examples 5 and 6 In place of Sample 1, a complete block copolymer having an A-B-A structure with a styrene content of 30% by weight and a molecular weight of approximately 120,000 (referred to as Sample 3) was used. Styrene content with structure B-A instead of 80% by weight, proportion of blocked styrene to total styrene is 8.3% by weight, molecular weight approx.
140,000, a tapered block copolymer with a 1,2-vinyl bond content of 11% (referred to as sample 4) or a styrene content of 60% by weight with an A-B-A structure, a molecular weight of about 140,000, 1,2- Vinyl bond content
A test piece for measuring physical properties was prepared in the same manner as in Example 1, except that a 11% complete block copolymer (referred to as sample 5) was used, and the physical properties were measured.

【表】 実施例1及び比較例1 下記の様にしてA―B―Aの構造を有し、スチ
レン含有量80重量%、ブロツクスチレン(共重合
体中に含まれるホモポリスチレン)含有量約45重
量%および、1,2―ビニル結合含有量11%のブ
ロツク共重合体(サンプル6とする)を得た。 洗浄、乾燥した撹拌機ジヤケツト付きのオート
クレーブを窒素置換し、このオートクレーブにシ
クロヘキサン4を仕込んだ後、内温を90℃に昇
温した。次にn―ブチルリチウム2.1gを含有す
るヘキサン溶液を添加した後、ブタジエン100g
及びスチレン1400gを30重量%の濃度で含有する
シクロヘキサン溶液混合物をポンプにて90ml/
minの速度で連続的にオートクレーブに供給し、
供給が終了した後、約5分間撹拌下に放置した。
次に、これにブタジエン500gを30重量%の濃度
で含有するシクロヘキサン溶液混合物をポンプに
て90ml/minの速度で連続的に供給して反応させ
た後、更に、ブタジエン100g及びスチレン1400
gを30重量%の濃度で含有するヘキサン溶液混合
物をポンプにて90ml/minの速度で連続的に供給
し、供給終了後、約15分間撹拌下に放置した。
尚、重合中の重合温度は終始90℃に保持した。か
かる重合反応後、得られた共重合体溶液に安定剤
としてジ―tert―ブチル―p―クレゾールを添加
し、溶媒のシクロヘキサンを加熱留去してブロツ
ク共重合体を得た。 次に、以下に述べる方法でランダマイザーとし
てテトラヒドロフランを使用してA―B―Aの構
造を有するテーパー型ブロツク共重合体(サンプ
ル7とする)を合成した。 前述と同じオートクレーブに、シクロヘキサン
4、スチレン1400gを30重量%の濃度で含有す
るシクロヘキサン溶液、及びテトラヒドロフラン
10gを含有するシクロヘキサン溶液を、それぞ
れ、添加し、55℃に昇温した後、n―ブチルリチ
ウム2.1gを含有するヘキサン溶液を添加した。
その後60℃で1時間反応させた後、ブタジエン
700g及びスチレン1400gを30重量%の濃度で含
有するシクロヘキサン溶液混合物を添加し、同様
の条件下で反応させた。得られた共重合体溶液を
前述と同様の方法で処理し、ブロツク共重合体を
得た。このブロツク共重合体のスチレン含有量は
80重量%、ブロツクスチレン含有量は約42重量%
そして1,2―ビニル結合含有量は20%であつ
た。 次に、上記の各サンプルを、(A−B)―4Siの構
造を有するスチレン含有量30重量%、分子量約
170000のラジアル型ブロツク共重合体(サンプル
8とする)及びHIPS1と参考例1と同じ配合割
合で配合した組成物を作り、その物性を測定し
た。 第3表に示した物性測定結果からわかる様に、
本発明の組成物において成分(ii)としてブロツクス
チレンの少ないブロツク共重合体を使用すると耐
衝撃性の改良効果が大きく、又、更に1,2―ビ
ニル結合含有量の少ないブロツク共重合体を使用
した場合には低温における耐衝撃性も良好な組成
物が得られる。
[Table] Example 1 and Comparative Example 1 It has the structure ABA as shown below, the styrene content is 80% by weight, and the block styrene content (homopolystyrene contained in the copolymer) is about 45%. A block copolymer (referred to as sample 6) having a weight percent and a 1,2-vinyl bond content of 11% was obtained. A washed and dried autoclave equipped with a stirrer jacket was purged with nitrogen, and after charging cyclohexane 4 into the autoclave, the internal temperature was raised to 90°C. Next, after adding a hexane solution containing 2.1 g of n-butyllithium, 100 g of butadiene
A cyclohexane solution mixture containing 1,400 g of styrene and styrene at a concentration of 30% by weight was pumped to 90 ml/
Continuously feed the autoclave at a speed of min,
After the feeding was completed, it was left under stirring for about 5 minutes.
Next, a cyclohexane solution mixture containing 500 g of butadiene at a concentration of 30% by weight was continuously supplied using a pump at a rate of 90 ml/min to cause a reaction.
A hexane solution mixture containing g at a concentration of 30% by weight was continuously fed by a pump at a rate of 90 ml/min, and after the feeding was completed, the mixture was left under stirring for about 15 minutes.
The polymerization temperature during the polymerization was maintained at 90°C throughout. After the polymerization reaction, di-tert-butyl-p-cresol was added as a stabilizer to the resulting copolymer solution, and the solvent cyclohexane was distilled off under heating to obtain a block copolymer. Next, a tapered block copolymer having an ABA structure (referred to as sample 7) was synthesized using tetrahydrofuran as a randomizer in the manner described below. In the same autoclave as above, a cyclohexane solution containing 4 cyclohexane, 1400 g of styrene at a concentration of 30% by weight, and tetrahydrofuran.
A cyclohexane solution containing 10 g of n-butyllithium was added to each, and after the temperature was raised to 55° C., a hexane solution containing 2.1 g of n-butyllithium was added.
After that, after reacting at 60℃ for 1 hour, butadiene
A cyclohexane solution mixture containing 700 g and 1400 g of styrene at a concentration of 30% by weight was added and reacted under similar conditions. The obtained copolymer solution was treated in the same manner as described above to obtain a block copolymer. The styrene content of this block copolymer is
80% by weight, blocked styrene content is approximately 42% by weight
The 1,2-vinyl bond content was 20%. Next, each of the above samples was prepared with a styrene content of 30% by weight having a structure of (A-B) -4Si , and a molecular weight of approximately
A composition was prepared in which a radial block copolymer of 170,000 (referred to as sample 8) and HIPS1 were blended in the same proportions as in Reference Example 1, and its physical properties were measured. As can be seen from the physical property measurement results shown in Table 3,
In the composition of the present invention, when a block copolymer with a low block styrene content is used as component (ii), the effect of improving impact resistance is large, and furthermore, a block copolymer with a low content of 1,2-vinyl bonds is used. In this case, a composition having good impact resistance at low temperatures can be obtained.

【表】 実施例2及び比較例2,3 第1段目のモノマーとしてブタジエン400g及
びスチレン100gを30重量%の濃度で含有するシ
クロヘキサン溶液混合物を、第2段目のモノマー
としてブタジエン100g及びスチレン600gを30重
量%の濃度で含有するシクロヘキサン溶液混合物
を、第3段目のモノマーとしてブタジエン700g
及びスチレン100gを30重量%の濃度で含有する
シクロヘキサン溶液混合物を、そして第4段目モ
ノマーとしてブタジエン200g及びスチレン1300
gを30重量%の濃度で含有するシクロヘキサン溶
液混合物を用い、ポンプにてそれぞれ90ml/min
の速度で連続的に供給して反応させた他は、サン
プル6の製造方法と同様の方法で、B―A―B―
Aの構造を有し、スチレン含有量60重量%、ブロ
ツクスチレン40重量%及び、1,2―ビニル結合
含有量11%のブロツク共重合体(サンプル9とす
る)を得た。 次に第4表に示した充填剤配合前の組成物100
重量部に対して、それぞれ、三酸化アンチモン3
重量部及び、デカブロモテトラリンを30重量部添
加してヘンシエルミキサーで充分混合した後、押
出機でペレツト化した。このペレツトを射出成形
した試験片の物性は第4表に示したとおりであ
り、この結果から明らかなように本発明の組成物
の成形品は肌荒れも認められなく表面状態は極め
て良好であつた。
[Table] Example 2 and Comparative Examples 2 and 3 A cyclohexane solution mixture containing 400 g of butadiene and 100 g of styrene at a concentration of 30% by weight as monomers in the first stage, and 100 g of butadiene and 600 g of styrene as monomers in the second stage. A cyclohexane solution mixture containing at a concentration of 30% by weight was added to 700 g of butadiene as the third stage monomer.
and a cyclohexane solution mixture containing 100 g of styrene at a concentration of 30% by weight, and 200 g of butadiene and 1300 g of styrene as fourth stage monomers.
Using a cyclohexane solution mixture containing 30% by weight of
B-A-B-
A block copolymer (referred to as sample 9) having the structure A, containing 60% by weight of styrene, 40% by weight of block styrene, and 11% of 1,2-vinyl bond content was obtained. Next, the composition 100 before adding the filler shown in Table 4
Antimony trioxide 3 parts by weight, respectively
Parts by weight and 30 parts by weight of decabromotetralin were added and thoroughly mixed in a Henschel mixer, and then pelletized in an extruder. The physical properties of the test pieces injection-molded from these pellets are shown in Table 4, and as is clear from the results, the molded products of the composition of the present invention had extremely good surface conditions with no rough skin observed. .

【表】 実施例3及び比較例4 本発明において成分(i)と成分(ii)の併用による相
乗効果を確認するため、第5表に示した配合割合
に従つて組成物を作り、射出成形により物性測定
試験片を作成した。 物性測定結果を第5表に示したが、この結果か
ら成分(i)と成分(ii)を併用した方が、耐衝撃性と表
面光沢の点で優れており、その相乗効果が確認さ
れた。
[Table] Example 3 and Comparative Example 4 In order to confirm the synergistic effect of the combination of component (i) and component (ii) in the present invention, a composition was prepared according to the blending ratio shown in Table 5, and injection molded. A test piece for measuring physical properties was prepared. The physical property measurement results are shown in Table 5, and the results show that the combined use of component (i) and component (ii) is superior in terms of impact resistance and surface gloss, confirming their synergistic effect. .

【表】 実施例 4 サンプル8を7重量%、(A−B)―4Siの構造を
有するスチレン含有量75重量%、全スチレンに対
するブロツクスチレンの割合が68重量%、分子量
約160000、1,2―ビニル結合含有量11%のラジ
アル型ブロツク共重合体を13重量%、ゴム含有量
20重量%のアクリロニトリル―ブタジエン―スチ
レン共重合体を80重量%含有する本発明の組成物
100重量部にガラス繊維(日東紡績社製、CS69A
―401を使用した)30重量部を配合し、その組成
物から射出成形により成形品を得た。得られた成
形品は耐衝撃性に優れ、表面状態の良好な成形品
であつた。
[Table] Example 4 Sample 8 was 7% by weight, styrene content with (A-B) -4 Si structure was 75% by weight, proportion of blocked styrene to total styrene was 68% by weight, molecular weight was approximately 160,000, 1, 13% by weight radial block copolymer with 11% 2-vinyl bond content, rubber content
Compositions of the invention containing 80% by weight of 20% by weight of acrylonitrile-butadiene-styrene copolymer
100 parts by weight of glass fiber (manufactured by Nittobo Co., Ltd., CS69A
-401) was blended, and a molded article was obtained from the composition by injection molding. The obtained molded product had excellent impact resistance and a good surface condition.

Claims (1)

【特許請求の範囲】 1 (i) ビニル置換芳香族化合物の含有量が10重
量%以上55重量%未満である、共役ジオレフイ
ンとビニル置換芳香族化合物とからなるブロツ
ク共重合体1〜50重量%、 (ii) ビニル置換芳香族化合物の含有量が55重量%
以上95重量%以下である、共役ジオレフインと
ビニル置換芳香族化合物とからなるブロツク共
重合体であり、しかも (イ) 【表】 〓共重合体中に含有されている全

〓ビニル置換芳香族化合物の量

(ロ) 1,2―ビニル結合含有量が15%以下であ
るブロツク共重合体1〜98重量%、並びに (iii) 耐衝撃性ゴム変性スチレン系重合体1〜98重
量%からなるスチレン系重合体組成物。 2 成分(ii)のブロツク共重合体のビニル置換芳香
族化合物含有量が、55重量%以上65重量%未満で
ある特許請求の範囲第1項記載の組成物。 3 成分(ii)のブロツク共重合体のビニル置換芳香
族化合物含有量が、65重量%以上95重量%以下で
ある特許請求の範囲第1項記載の組成物。 4 成分(iii)が、耐衝撃性ゴム変性スチレン重合
体、アクリロニトリル―ブタジエン―スチレン共
重合体、アクリル酸エステル―ブタジエン―スチ
レン共重合体、メタクリル酸エステル―ブタジエ
ン―スチレン共重合体、耐衝撃性ゴム変性スチレ
ン―無水マレイン酸共重合体のいずれか1種又は
2種以上の混合物である特許請求の範囲第1項記
載の組成物。 5 成分(ii)が、一般式 A−B (式中、Aはビニル置換芳香族化合物を主体と
する重合体ブロツク、Bは共役ジオレフインを主
体とする重合体ブロツクを示す) で表わされる構造を有するブロツク共重合体であ
る特許請求の範囲第1項記載の組成物。 6 成分(ii)が、実質的に極性化合物を含まない不
活性炭化水素溶媒中で有機リチウム化合物を触媒
とし、共役ジオレフインとビニル置換芳香族化合
物との混合物を少なくとも1個の重合器に連続的
に供給して共重合させて得たブロツク共重合体で
ある特許請求の範囲第1項記載の組成物。 7 成分(ii)が、共役ジオレフインの一部及び/又
はビニル置換芳香族化合物の一部を残部の共役ジ
オレフインとビニル置換芳香族化合物との混合物
とは別々に重合させて得たブロツク共重合体であ
る特許請求の範囲第6項記載の組成物。 8 特許請求の範囲第1項記載の組成物におい
て、前記組成物100重量部に対して充填剤を50重
量部以下配合した組成物。
[Scope of Claims] 1 (i) A block copolymer consisting of a conjugated diolefin and a vinyl-substituted aromatic compound, in which the content of the vinyl-substituted aromatic compound is 10% by weight or more and less than 55% by weight, from 1 to 50% by weight. , (ii) the content of vinyl-substituted aromatic compounds is 55% by weight;
It is a block copolymer consisting of a conjugated diolefin and a vinyl-substituted aromatic compound in an amount of 95% by weight or less, and (a) [Table] 〓Total amount contained in the copolymer〓
〓Amount of vinyl substituted aromatic compound

(b) 1 to 98% by weight of a block copolymer having a 1,2-vinyl bond content of 15% or less, and (iii) a styrenic polymer consisting of 1 to 98% by weight of an impact-resistant rubber-modified styrenic polymer. Coalescing composition. 2. The composition according to claim 1, wherein the vinyl-substituted aromatic compound content of the block copolymer of component (ii) is 55% by weight or more and less than 65% by weight. 3. The composition according to claim 1, wherein the vinyl-substituted aromatic compound content of the block copolymer of component (ii) is 65% by weight or more and 95% by weight or less. 4 Component (iii) is impact resistant rubber modified styrene polymer, acrylonitrile-butadiene-styrene copolymer, acrylic ester-butadiene-styrene copolymer, methacrylic ester-butadiene-styrene copolymer, impact resistant The composition according to claim 1, which is any one type or a mixture of two or more types of rubber-modified styrene-maleic anhydride copolymers. 5 Component (ii) has a structure represented by the general formula A-B (wherein A is a polymer block mainly composed of a vinyl-substituted aromatic compound, and B is a polymer block mainly composed of a conjugated diolefin). The composition according to claim 1, which is a block copolymer comprising: 6 Component (ii) is a method in which a mixture of a conjugated diolefin and a vinyl-substituted aromatic compound is continuously introduced into at least one polymerization vessel using an organolithium compound as a catalyst in an inert hydrocarbon solvent substantially free of polar compounds. The composition according to claim 1, which is a block copolymer obtained by copolymerizing the composition. 7. A block copolymer in which component (ii) is obtained by polymerizing a part of the conjugated diolefin and/or a part of the vinyl-substituted aromatic compound separately from the remaining mixture of the conjugated diolefin and the vinyl-substituted aromatic compound. The composition according to claim 6, which is 8. The composition according to claim 1, which contains 50 parts by weight or less of a filler based on 100 parts by weight of the composition.
JP9380080A 1980-07-11 1980-07-11 Impact-resistant styrene polymer composition Granted JPS5721449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9380080A JPS5721449A (en) 1980-07-11 1980-07-11 Impact-resistant styrene polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9380080A JPS5721449A (en) 1980-07-11 1980-07-11 Impact-resistant styrene polymer composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP19828687A Division JPS6372750A (en) 1987-08-10 1987-08-10 Impact-resistant styrene polymer composition

Publications (2)

Publication Number Publication Date
JPS5721449A JPS5721449A (en) 1982-02-04
JPS634586B2 true JPS634586B2 (en) 1988-01-29

Family

ID=14092485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9380080A Granted JPS5721449A (en) 1980-07-11 1980-07-11 Impact-resistant styrene polymer composition

Country Status (1)

Country Link
JP (1) JPS5721449A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089558A (en) * 1989-04-26 1992-02-18 Bridgestone/Firestone, Inc. Thermoformable blends of multiblock polymer compositions with polystyrene
TWI638847B (en) 2015-02-09 2018-10-21 旭化成股份有限公司 Block copolymer composition, molding material, resin composition, and molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227447A (en) * 1975-08-26 1977-03-01 Abbott Lab Thermoplastic polymer mextures containing medical sealing and resealing material radial block polymers
JPS52115855A (en) * 1976-03-24 1977-09-28 Gunze Kk Biaxially oriented heat shrinkable polystylene film havig lowwtemperature shrinking property and colddresistance
JPS52124046A (en) * 1976-04-12 1977-10-18 Asahi Chem Ind Co Ltd Styrene resin compositions having excellent melt-flow characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227447A (en) * 1975-08-26 1977-03-01 Abbott Lab Thermoplastic polymer mextures containing medical sealing and resealing material radial block polymers
JPS52115855A (en) * 1976-03-24 1977-09-28 Gunze Kk Biaxially oriented heat shrinkable polystylene film havig lowwtemperature shrinking property and colddresistance
JPS52124046A (en) * 1976-04-12 1977-10-18 Asahi Chem Ind Co Ltd Styrene resin compositions having excellent melt-flow characteristics

Also Published As

Publication number Publication date
JPS5721449A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
US4304881A (en) Alkenyl aromatic resin composition having an excellent impact strength
JP4599495B2 (en) Linear block copolymer and resin composition containing the same
EP0620251A2 (en) Miscible polyolefin blends
KR101589758B1 (en) - carboxylate terminated polymers and their use in impact-modified plastics
JPS6366862B2 (en)
JPH0312097B2 (en)
JPH0257820B2 (en)
JPS638981B2 (en)
JPS634586B2 (en)
JP3103384B2 (en) Block copolymer resin composition
JPH0717809B2 (en) Block copolymer resin composition
JP5218718B2 (en) Thermoplastic resin composition
JPH0432106B2 (en)
JPH0260687B2 (en)
JPH0312099B2 (en)
JP3658861B2 (en) Resin composition containing star-shaped branched polystyrene
JP3688069B2 (en) Resin sheet
JP2844173B2 (en) Impact resistant transparent resin composition
JPS6225698B2 (en)
JP4305786B2 (en) Resin composition
JPH0257088B2 (en)
JPS6254141B2 (en)
JPH0316366B2 (en)
JP3383011B2 (en) Impact resistant resin composition
JP3599072B2 (en) Vinyl aromatic polymer-containing resin composition