JPH0388300A - Plasma torch - Google Patents

Plasma torch

Info

Publication number
JPH0388300A
JPH0388300A JP1222988A JP22298889A JPH0388300A JP H0388300 A JPH0388300 A JP H0388300A JP 1222988 A JP1222988 A JP 1222988A JP 22298889 A JP22298889 A JP 22298889A JP H0388300 A JPH0388300 A JP H0388300A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
plasma
cooling
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1222988A
Other languages
Japanese (ja)
Inventor
Yuji Eto
江藤 祐士
Ikuo Hosoya
郁雄 細谷
Takehiro Kimura
木村 丈広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGATA TEKKO KK
Idemitsu Petrochemical Co Ltd
Original Assignee
NAGATA TEKKO KK
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGATA TEKKO KK, Idemitsu Petrochemical Co Ltd filed Critical NAGATA TEKKO KK
Priority to JP1222988A priority Critical patent/JPH0388300A/en
Publication of JPH0388300A publication Critical patent/JPH0388300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extend the service life of electrodes by providing a magnetic field forming means to act on plasma with electromagnetic force in the fixed direction in the vicinity of an arc generating means which consists of a hollow electrode and an electrode arranging at the center inside of the hollow electrode with a gap capable of an arc discharge, and also providing at least either one of the electrodes with a latent heat cooling means. CONSTITUTION:An arc discharge electrode having a ring-shaped gap is composed of the positive electrode 1 and the negative electrode 2 and a magnetic field forming means is composed of permanent magnets 5, 6. When an arc is discharged by applying voltage to between the electrodes 1, 2 with the supply of plasma gas, the gas rapidly expands and blows off from the gap between the electrodes 1, 2 as a plasma jet. The plasma jet is circulated by the magnetic field acting on the arc portion, at a high speed along the ring-shaped gap between the electrodes 1, 2. Cooling water is discharged to the positive electrode 1 and the negative electrode 2 from respective small holes 10, 14 of a pressure water supply part 9 and a pressure water supply tube 13. In this way the arc discharge only at one part between the electrodes 1, 2 is prevented from the occurrence and the life of the electrodes 1, 2 can be lengthened because of cooling them effectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切断、溶融、溶射等の各種プラズマ加工ある
いは気相反応に用いるプラズマトーチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma torch used for various plasma processing such as cutting, melting, and thermal spraying, or for gas phase reactions.

[従来の技術] 従来、切断、溶融、溶射等の各種プラズマ加工に用いる
プラズマトーチとして種々のものが開発されており、そ
のうち、電極の長寿命化あるいは電極冷却の効率化等の
観点から、有m#IJプラズマトーチ(特開昭56−1
47400号、同59−89800号。
[Prior Art] Various types of plasma torches have been developed for use in various types of plasma processing such as cutting, melting, and thermal spraying. m#IJ plasma torch (JP-A-56-1
No. 47400, No. 59-89800.

同6l−993ffO号、同 62−192270号、
同 62−192271号等)あるいは、潜熱冷却法を
採用したプラズマトーチ(特開昭61−187959号
等〉が提案されている。
Same No. 6l-993ffO, No. 62-192270,
62-192271, etc.) or a plasma torch employing a latent heat cooling method (Japanese Patent Application Laid-Open No. 61-187959, etc.).

そして、これら*磁場プラズマトーチまたは潜熱冷却法
を利用したプラズマトーチは、それぞれ単独に用いられ
ていた。これは、従来のプラズマトーチにおいては、通
常、アルゴンガス等の放電しやすいガスが用いられてお
り、有磁場プラズマトーチまたは潜熱冷却法を採用した
プラズマトーチな単独で用いるたけでも電極寿命、電極
冷却の点で特別な問題を生じないからであった。
These *magnetic field plasma torches and plasma torches that utilize latent heat cooling have been used independently. Conventional plasma torches usually use a gas that easily discharges, such as argon gas, and even if a magnetic field plasma torch or a plasma torch that uses latent heat cooling is used alone, the electrode life and electrode cooling will be reduced. This is because no particular problem arises in this respect.

[発明が解決しようとする課1lll]上述のように、
従来のプラズマトーチは、放電しやすいアルゴンガス等
を用いているので、有磁場プラズマトーチまたは潜熱冷
却法を採用したプラズマトーチ単独であってもそれ程問
題はなかった。
[Problems to be solved by the invention] As mentioned above,
Conventional plasma torches use argon gas or the like which is easily discharged, so there was no problem even if a magnetic field plasma torch or a plasma torch employing a latent heat cooling method was used alone.

しかし、近年、プラズマトーチの利用範囲か拡大し、ア
ルゴンガス以外のガスを利用することが技術的、経済的
に好ましい場合が出現してきた。
However, in recent years, the scope of use of plasma torches has expanded, and cases have emerged where it is technically and economically preferable to use gases other than argon gas.

例えば、アーク放電をCVD技術に利用する場合、プラ
ズマガスとして高濃度水素ガスを用いる必要かあるが、
水素ガスは放電電圧が高いため。
For example, when arc discharge is used in CVD technology, it is necessary to use highly concentrated hydrogen gas as the plasma gas.
Because hydrogen gas has a high discharge voltage.

電極間に高電圧を印加してプラズマを発生させなければ
ならない。
Plasma must be generated by applying a high voltage between the electrodes.

このため、電極表面は高温になりやすく、極端な場合に
は、局所的に電極の溶融が起きてしまうことがある。し
たがって、従来の有磁場プラズマトーチまたは潜熱冷却
法を採用したプラズマトーチ単独では、電極の短命化を
もたらすとともに、冷却効果も十分ではなかった。
Therefore, the electrode surface tends to reach a high temperature, and in extreme cases, the electrode may melt locally. Therefore, using a conventional magnetic field plasma torch or a plasma torch using a latent heat cooling method alone results in a shortened electrode life, and the cooling effect is not sufficient.

本発明は、上記問題点にかんがみてなされたもので、有
磁場プラズマトーチと潜熱冷却手段を有するプラズマト
ーチを有効に複合させたプラズマトーチの提供を目的と
する。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a plasma torch that effectively combines a magnetic field plasma torch and a plasma torch having a latent heat cooling means.

[課題を解決するための手段] 上記目的を達成するため、本発明のプラズマトーチは、
中空状の電極及び、この電極の内部中心にアーク放電可
能な間隙をもって設けられた電極とからなるアーク発生
手段と、このアーク発生手段の近傍に配置され、プラズ
マに一定方向の電磁力を作用させる磁界形成手段と、上
記電極の少なくとも一方を、冷媒の蒸発潜熱を利用して
冷却する潜熱冷却手段とを具備した構成としである。
[Means for Solving the Problem] In order to achieve the above object, the plasma torch of the present invention has the following features:
An arc generating means consisting of a hollow electrode and an electrode provided at the center of the electrode with a gap that allows arc discharge, and an arc generating means disposed near the arc generating means to apply an electromagnetic force in a fixed direction to the plasma. The configuration includes a magnetic field forming means and a latent heat cooling means for cooling at least one of the electrodes using latent heat of vaporization of a refrigerant.

[作用] 上記構成からなるプラズマトーチによれば、電極間のア
ーク放電が、間隙に沿って回転しながら行なわれ、電極
間の一部のみで行なわれることがない、また、冷媒(水
〉の蒸発潜熱を利用して、少なくとも一方の電極から熱
を奪うことによって効率的な冷却を行なう。
[Function] According to the plasma torch configured as described above, the arc discharge between the electrodes is performed while rotating along the gap, and is not performed only in a part of the space between the electrodes. Efficient cooling is performed by removing heat from at least one electrode using latent heat of vaporization.

[実施例] 以下、本発明プラズマトーチの実施例について第1図を
参照しつつ説明する。
[Example] Hereinafter, an example of the plasma torch of the present invention will be described with reference to FIG.

第1図は実施例プラズマトーチの縦断面図である。同図
において、lは銅等からなる陽極であり、先端をノズル
状とした中空体に形成しである。2はタングステン等か
らなる陰極であり、陽極lの中心に、陽極lとの間に適
宜の間隙を有する状態で配置されている。この陰極2は
、中空状の陰極ホルダ3の先端に取付けられており、陰
極ホルダ3と陽極1は絶縁体からなるスペーサ4を介し
て固定されている。
FIG. 1 is a longitudinal sectional view of an embodiment plasma torch. In the figure, l is an anode made of copper or the like, and is formed into a hollow body with a nozzle-shaped tip. Reference numeral 2 denotes a cathode made of tungsten or the like, which is placed at the center of the anode 1 with an appropriate gap between it and the anode 1. This cathode 2 is attached to the tip of a hollow cathode holder 3, and the cathode holder 3 and anode 1 are fixed via a spacer 4 made of an insulator.

これら陽極lと陰極2によって、リンク状の間隙を有す
るアーク放電電極を構成している。上記電極における陽
極lと陰極2(以下、電極1.2と称すこともある。〉
の間隙は0.5〜201−とすればよく、アーク発生の
確実性を向上させるには2〜1O−1とすることが好ま
しい。
These anode 1 and cathode 2 constitute an arc discharge electrode having a link-shaped gap. Anode 1 and cathode 2 in the above electrode (hereinafter sometimes referred to as electrode 1.2).
The gap may be 0.5 to 201-1, and preferably 2 to 10-1 to improve the reliability of arc generation.

また、電極の材料としては、導電性を有し、ある程度の
耐熱性を具備するものであれば特に制限されず、銅、タ
ングステン以外にも例えば、カーボン、白金、タングス
テン−希土類合金(W−Th等)、タンタル、チタン、
ステンレス鋼などを用いることができる。なお、電極1
.2は、どちらを陽極、陰極としてもよいが1通常は、
中空体の電極を陽極lとし、中空部中心に位置する電極
を陰極2とする。
Further, the material of the electrode is not particularly limited as long as it has conductivity and has a certain degree of heat resistance. etc.), tantalum, titanium,
Stainless steel or the like can be used. In addition, electrode 1
.. 2. Either can be used as an anode or a cathode, but 1. Usually,
The electrode in the hollow body is referred to as an anode 1, and the electrode located at the center of the hollow part is referred to as a cathode 2.

また、電極1.2の構成するリング状の間隙は真円状の
ものに限られず、環状に連続していればよく、大きさや
形状に制限はない、したがって、例えば楕円形リング状
、ひようたん形リング状、ベルト状等とすることもでき
る。
Further, the ring-shaped gap formed by the electrode 1.2 is not limited to a perfectly circular shape, but only needs to be continuous in an annular shape, and there are no restrictions on the size or shape. It can also be shaped like a tongue-shaped ring, a belt, etc.

5及び6は永久磁石であって、磁石5は陽極lの先端ノ
ズル部付近の外周に取付けてあり、磁石6は陰極2の内
部に埋設しである。これらの永久磁石5.6によって磁
界形成手段を構成している。なお、磁界形成手段として
は、永久磁石の代りにコイルを電極1.2の先端ノズル
部付近に配置し、このコイルに電流を流すことによって
磁界を形成するようにしたものであってもよい。
5 and 6 are permanent magnets, the magnet 5 being attached to the outer periphery of the anode l near the tip nozzle part, and the magnet 6 being embedded inside the cathode 2. These permanent magnets 5.6 constitute magnetic field forming means. As the magnetic field forming means, a coil may be arranged near the tip nozzle portion of the electrode 1.2 instead of the permanent magnet, and the magnetic field may be formed by passing a current through the coil.

7はプラズマガスの供給管であり、陽極lと陰極2の間
にプラズマガスを供給する。電極1.2間にプラズマガ
スを供給しつつ、電極1.2間にアークを放電すると、
上記ガスは超高温のために急激に膨張してプラズマジェ
ットとなって電極1.2の間隙より外部に向かって噴き
出す。
A plasma gas supply pipe 7 supplies plasma gas between the anode 1 and the cathode 2. When an arc is discharged between electrodes 1.2 while supplying plasma gas between electrodes 1.2,
The above gas expands rapidly due to the extremely high temperature, becomes a plasma jet, and is ejected outward from the gap between the electrodes 1.2.

また磁界形成手段によって磁界を形成すると、フレミン
グの左手の法則にもとづき電極1.2の間隙の放電アー
クに電磁力か作用し、プラズマジェットはリング状の間
隙に沿って移動し回転する。
Further, when a magnetic field is generated by the magnetic field forming means, an electromagnetic force acts on the discharge arc in the gap between the electrodes 1.2 based on Fleming's left-hand rule, and the plasma jet moves and rotates along the ring-shaped gap.

8は陽極lの外周に形威した冷却空間であり、加圧給水
部9より多数の小孔lOを介して冷却水が放水される。
Reference numeral 8 denotes a cooling space formed around the outer periphery of the anode 1, into which cooling water is discharged from a pressurized water supply section 9 through a large number of small holes 10.

放水された冷却水は、高温状態にある陽極lの外周に衝
突して蒸発する。このとき、陽極lより熱を奪い潜熱冷
却を行なう、11は蒸発した水蒸気の排出部である。
The discharged cooling water collides with the outer periphery of the anode l, which is in a high temperature state, and evaporates. At this time, numeral 11 is a discharge part for evaporated water vapor, which takes heat from the anode l and performs latent heat cooling.

12は陰極ホルダの内部に形威された冷却空間である。12 is a cooling space formed inside the cathode holder.

この冷却室rI!I12には加圧給水管13が貫入して
あり、多数の小孔14より陰極2及び陰極ホルダ3の内
周面に冷却水が放水される。この場合も、冷却水は高温
状態にある陰極2等に衝突して蒸発し、陰極2等より熱
を奪う、15は水蒸気の排出部である。
This cooling room rI! A pressurized water supply pipe 13 penetrates I12, and cooling water is sprayed onto the inner circumferential surfaces of the cathode 2 and cathode holder 3 through a large number of small holes 14. In this case as well, the cooling water collides with the cathode 2 etc. in a high temperature state and evaporates, taking away heat from the cathode 2 etc. 15 is a water vapor discharge section.

陽極を冷却するための冷却空間8.加圧給水部9、小孔
10.排出部11及び、陰極2(陰極ホルダ3)を冷却
するための冷却空間12.加圧給水管13.小孔14.
排出部15によって潜熱冷却手段を構成している。なお
1本実施例では、WI熱冷却手段を、Il極l及び陰極
2の双方を冷却する構成としであるが、このうち何れか
一方のみを冷却するようにした構成であってもよい。
Cooling space for cooling the anode8. Pressurized water supply part 9, small hole 10. A cooling space 12 for cooling the discharge part 11 and the cathode 2 (cathode holder 3). Pressurized water supply pipe 13. Small hole 14.
The discharge section 15 constitutes a latent heat cooling means. In this embodiment, the WI thermal cooling means is configured to cool both the Il pole 1 and the cathode 2, but it may be configured to cool only one of them.

このような構成からなるプラズマトーチにあっては、プ
ラズマガスな電極1.2の間隙に供給しつつ、電極1.
2間に電圧を印加し、アークを放電させる。これにより
、上記ガスは急激に膨張して電極1.2の間隙よりプラ
ズマジェットとなって噴き出す。
In the plasma torch having such a configuration, while supplying plasma gas to the gap between the electrodes 1.2, the plasma gas is supplied to the gap between the electrodes 1.2.
A voltage is applied between the two to discharge an arc. As a result, the gas expands rapidly and is ejected from the gap between the electrodes 1.2 as a plasma jet.

また、プラズマジェットの先端ノズル部付近に磁界を形
威しであるので、アーク部分に電磁力が作用し、アーク
すなわちプラズマジェットが電極1.2のリング状の間
隙に沿って高速回転する。
Further, since a magnetic field is applied near the tip nozzle portion of the plasma jet, an electromagnetic force acts on the arc portion, and the arc, that is, the plasma jet rotates at high speed along the ring-shaped gap between the electrodes 1.2.

一方、陽極l及び陰極2へは、加圧給水部9及び加圧給
水管13のそれぞれの小孔10.14から冷却水が放水
される。陽極l及び陰極2は高温になっているので、衝
突した冷却水は蒸発する。
On the other hand, cooling water is discharged to the anode 1 and the cathode 2 from the small holes 10.14 of the pressurized water supply section 9 and the pressurized water supply pipe 13, respectively. Since the anode 1 and the cathode 2 are at a high temperature, the colliding cooling water evaporates.

この際に陽極lと陰極2等は熱を奪われ、これにより陽
極lと陰極2等は冷却される。
At this time, heat is removed from the anode 1, the cathode 2, etc., and thereby the anode 1, the cathode 2, etc. are cooled.

[実験例と比較例] X豊1 上述したプラズマトーチ[陽極:タングステン、陰極:
銅、電極間の間隙: 31−]を用い、次の条件で実験
及び比較を行なった。
[Experimental Examples and Comparative Examples] X Yutaka 1 Plasma torch described above [Anode: tungsten, cathode:
Experiments and comparisons were conducted using copper and gap between electrodes: 31-] under the following conditions.

〈条件〉 コイルを用いて 500ガウスの磁界を形威し、Q、S
 l / winの冷却水を供給して潜熱冷却を行なっ
ているプラズマトーチにアルゴンガス11/sin 、
水素ガス101/sinの混合ガスをプラズマガスとし
て導入した。
<Conditions> A magnetic field of 500 Gauss is applied using a coil, and Q, S
Argon gas 11/sin,
A mixed gas of 101/sin of hydrogen gas was introduced as a plasma gas.

く結果〉 この結果、  tsov、 100 Aの直流アーク放
電か発生し、1時間安定して放電していることが確認さ
れた。
Results> As a result, it was confirmed that a DC arc discharge of tsov, 100 A occurred, and the discharge continued stably for 1 hour.

比(D4上 〈条件〉 コイルに電流を流さず磁界を形成しない以外は、実験例
と同じ放電条件で放電させた。
Ratio (D4 upper <conditions>) Discharge was performed under the same discharge conditions as in the experimental example except that no current was passed through the coil and no magnetic field was formed.

く結果〉 この結果、 10分後に放電が停止した。また、電極が
溶けて変形していることが確認された。
Results> As a result, the discharge stopped after 10 minutes. It was also confirmed that the electrodes were melted and deformed.

塩艶亘ユ く条件〉 冷却手段に潜熱冷却手段を用いず、通常の水冷手段を用
いた以外は、実験例と同じ放電条件で放電させた。
Salt Glossy Conditions> Discharge was performed under the same discharge conditions as in the experimental example, except that a normal water cooling means was used instead of a latent heat cooling means.

く結果〉 この結果、 15分後に放電が停止した。また、電極が
溶けて変形していることが確認された。
Results> As a result, the discharge stopped after 15 minutes. It was also confirmed that the electrodes were melted and deformed.

[発明の効果] 以上のように本発明のプラズマトーチによれば、電極間
の一部分のみにおけるアーク放電を防ぐとともに、電極
の冷却を効率的に行なうので、電極の長寿命化及び放電
しにくいガスの安定放電を可能ならしめるという効果が
ある。
[Effects of the Invention] As described above, according to the plasma torch of the present invention, arc discharge is prevented only in a portion between the electrodes, and the electrodes are efficiently cooled, so that the life of the electrodes is extended and gases that are difficult to discharge are prevented. This has the effect of making stable discharge possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明プラズマトーチの一実施例断面図である
。 l:陽極       2:陰極 3:陰極ホルダ    5,6:永久磁石8:冷却空間
     9:加圧給水部lO:小孔     12:
冷却空間 13:加圧給水管  14:小孔
FIG. 1 is a sectional view of one embodiment of the plasma torch of the present invention. 1: Anode 2: Cathode 3: Cathode holder 5, 6: Permanent magnet 8: Cooling space 9: Pressurized water supply section 1O: Small hole 12:
Cooling space 13: Pressurized water supply pipe 14: Small hole

Claims (1)

【特許請求の範囲】 中空状の電極及び、この電極の内部中心にアーク放電可
能な間隙をもって設けられた電極とからなるアーク発生
手段と、 このアーク発生手段の近傍に配置され、プラズマに一定
方向の電磁力を作用させる磁界形成手段と、 上記電極の少なくとも一方を、冷媒の蒸発潜熱を利用し
て冷却する潜熱冷却手段とを 具備したことを特徴とするプラズマトーチ。
[Claims] An arc generating means consisting of a hollow electrode and an electrode provided at the center of the electrode with a gap capable of allowing arc discharge; A plasma torch comprising: a magnetic field forming means for applying an electromagnetic force; and a latent heat cooling means for cooling at least one of the electrodes using latent heat of vaporization of a refrigerant.
JP1222988A 1989-08-31 1989-08-31 Plasma torch Pending JPH0388300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222988A JPH0388300A (en) 1989-08-31 1989-08-31 Plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222988A JPH0388300A (en) 1989-08-31 1989-08-31 Plasma torch

Publications (1)

Publication Number Publication Date
JPH0388300A true JPH0388300A (en) 1991-04-12

Family

ID=16791043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222988A Pending JPH0388300A (en) 1989-08-31 1989-08-31 Plasma torch

Country Status (1)

Country Link
JP (1) JPH0388300A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001135A (en) * 2001-06-18 2003-01-07 Sumitomo Electric Ind Ltd Crusher electrode and crusher
KR100486939B1 (en) * 2002-03-26 2005-05-03 재단법인서울대학교산학협력재단 Non-Transferred Type Plasma Torch With Step-Shaped Nozzle
JP2009506892A (en) * 2005-09-09 2009-02-19 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for operating a steam plasma burner and a steam cutting device
JP2010532744A (en) * 2007-07-06 2010-10-14 エヴァコ エルエルシー Method and apparatus for hydrogen-related power generation by dissociating water into a single gas at an inexpensive and carbon-free location
CN101998750B (en) 2009-08-14 2012-09-26 中国科学院金属研究所 Plasma cathode and protecting method thereof
DE102011053106B4 (en) * 2011-02-25 2016-03-24 Industrieanlagen-Betriebsgesellschaft Mbh Plasma torch and method for machining workpieces
USRE46925E1 (en) 2001-03-09 2018-06-26 Hypertherm, Inc. Composite electrode for a plasma arc torch
JP2020205279A (en) * 2014-01-31 2020-12-24 モノリス マテリアルズ インコーポレイテッド Plasma torch design

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46925E1 (en) 2001-03-09 2018-06-26 Hypertherm, Inc. Composite electrode for a plasma arc torch
JP2003001135A (en) * 2001-06-18 2003-01-07 Sumitomo Electric Ind Ltd Crusher electrode and crusher
KR100486939B1 (en) * 2002-03-26 2005-05-03 재단법인서울대학교산학협력재단 Non-Transferred Type Plasma Torch With Step-Shaped Nozzle
JP2009506892A (en) * 2005-09-09 2009-02-19 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for operating a steam plasma burner and a steam cutting device
JP2010532744A (en) * 2007-07-06 2010-10-14 エヴァコ エルエルシー Method and apparatus for hydrogen-related power generation by dissociating water into a single gas at an inexpensive and carbon-free location
US9994450B2 (en) 2007-07-06 2018-06-12 Evaco, Llc Method and apparatus for a low cost and carbon free point of use dissociation of water into elemental gases and production of hydrogen related power
CN101998750B (en) 2009-08-14 2012-09-26 中国科学院金属研究所 Plasma cathode and protecting method thereof
DE102011053106B4 (en) * 2011-02-25 2016-03-24 Industrieanlagen-Betriebsgesellschaft Mbh Plasma torch and method for machining workpieces
JP2020205279A (en) * 2014-01-31 2020-12-24 モノリス マテリアルズ インコーポレイテッド Plasma torch design

Similar Documents

Publication Publication Date Title
EP0368547B1 (en) Plasma generating apparatus and method
JP5396608B2 (en) Double plasma device
US5144110A (en) Plasma spray gun and method of use
EP0427194B1 (en) Multiple torch type plasma generation device and method of generating plasma using the same
JP3203754B2 (en) Diamond production method and production equipment
JP5799153B1 (en) Plasma torch, plasma spraying apparatus, and plasma torch control method
JPH08319552A (en) Plasma torch and plasma thermal spraying device
JPH0658840B2 (en) Transfer type plasma torch
JPH0388300A (en) Plasma torch
JP2002231498A (en) Composite torch type plasma generating method and device
KR20030077369A (en) Non-Transferred Type Plasma Torch With Step-Shaped Nozzle
JPH05226096A (en) Generation method of plasma torch and plasma jet
JP3166226B2 (en) Diamond production method and production equipment
JP2010536124A (en) Cathode assembly and method for pulsed plasma generation
JP2001040467A (en) Arc evaporating source, vacuum deposition device and vacuum deposition method
JPH0963790A (en) Nozzle for plasma torch
JPS63154273A (en) Plasma torch
JPH09148094A (en) Plasma spraying torch
JP7102045B1 (en) Plasma torch, plasma sprayer, and plasma torch control method
JPH0523859A (en) Plasma cutting device and plasma cutting torch therefor
KR20010078636A (en) Plasma arc torch
JPH0636890A (en) Plasma spraying torch
JPH04221064A (en) Vacuum arc generator and ion beam generator with this device utilized therefor
JPH04246160A (en) Thermal-spraying torch
JPH07201497A (en) Coaxial type electromagnetic accelerating flame spraying device