JPH0387655A - Ultrasonic wave transfer speed measuring method in concrete plate - Google Patents

Ultrasonic wave transfer speed measuring method in concrete plate

Info

Publication number
JPH0387655A
JPH0387655A JP1225904A JP22590489A JPH0387655A JP H0387655 A JPH0387655 A JP H0387655A JP 1225904 A JP1225904 A JP 1225904A JP 22590489 A JP22590489 A JP 22590489A JP H0387655 A JPH0387655 A JP H0387655A
Authority
JP
Japan
Prior art keywords
concrete
ultrasonic
sensor
ultrasonic wave
transfer speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1225904A
Other languages
Japanese (ja)
Other versions
JP2756837B2 (en
Inventor
Yasunobu Yakida
康信 八木田
Noriaki Tokunaga
徳永 範明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Honda Electronics Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Honda Electronics Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Honda Electronics Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP1225904A priority Critical patent/JP2756837B2/en
Publication of JPH0387655A publication Critical patent/JPH0387655A/en
Application granted granted Critical
Publication of JP2756837B2 publication Critical patent/JP2756837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the transfer speed at a low cost and in a real time at any time by embedding transmitting and receiving ultrasonic sensors in both face sides of a concrete plate, and measuring an ultrasonic wave which transmits through the inside of the concrete plate. CONSTITUTION:For instance, after constructing a form 7 of a floor slab, an arrangement of bar of the floor is executed, a sensor (ultrasonic probe) 2 and a pipe 4 are set to a measuring position which is set on the form 7, and concrete 1 is placed. Subsequently, a sensor 3 is embedded into the concrete 1, and their surfaces are set to the same level. In this state, an ultrasonic wave of prescribed wavelength is transmitted from the sensors 2 (3), a transmission wave is received by the sensors 3 (2), and its transfer time is derived. From this transfer time, and a distance l between the sensor 2 and 3, a transfer speed of an ultrasonic wave in the concrete 1 is derived. Based on this transfer speed, strength of the concrete 1 can be estimated. The distance l is measured in advance, and inputted to a control unit 6. In the pipe 4, wiring of the sensor 2 is performed, and connected to the unit 6 through a plug 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、コンクリート版中の超i波仏迷速度測定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring ultra-i wave stray velocity in concrete slabs.

[従来の技術] 律築、土木♂)分野においては、通常のフンクリートや
高強度コンクリート(以下、これらを総称してコンクリ
ートと称す)の施工品質管理のために、あるいは既存コ
ンクリートの健全度、劣化状態の診断のためにコンクリ
ートの強度を測定することが行われており、コンクリー
ト強度測定方法としては、テストピースを用いて圧縮試
験を行う方法や、超音波探傷器を用いてコンクリート中
の超音波の伝達速度を測定し、該伝達速度に基づいて強
度を推定する方法等が採用されている。
[Conventional technology] In the field of regular construction and civil engineering, it is used to control the construction quality of ordinary concrete and high-strength concrete (hereinafter collectively referred to as concrete), or to check the soundness and deterioration of existing concrete. The strength of concrete is measured in order to diagnose its condition. Concrete strength measurement methods include compression testing using test pieces, and ultrasonic flaw detectors using ultrasonic waves in concrete. A method has been adopted in which the transmission speed of the beam is measured and the strength is estimated based on the transmission speed.

[発明が解決しようとする課題] しかしながら、上記の前者の方法、即ちテストピースを
用いて圧縮試験を行う方法は、コンクリートを打設する
度にいちいちテストピースを作成し、保存しておかなけ
ればならないので面倒であるばかりでな(、圧縮試験も
手間のかかるものである。
[Problem to be solved by the invention] However, the former method described above, that is, the method of performing a compression test using a test piece, requires that a test piece be created and stored each time concrete is poured. It's not only troublesome because it doesn't work (compression tests are also time-consuming).

また、後者の超音波を用いて超音波伝達速度を測定し、
該超音波伝達速度からコンクリ・−トの強度をHt ’
pt iる方法は、非破壊的に行える点ではイ1利であ
るが、次のような問題があった。即ち、コンクリート版
中の超音波伝達速度を測定方法としては、第5図に示す
ように、コンクリート版43の一方の面45に超音波発
信器41と超音波受信器42とを当接し、超音波発信器
41から超音波を発信し、図中破線で示したように、コ
ンクリート版43の他方の面46で反射してくる超音波
反射波を超音波受信器42で受信して、その間の時間か
ら超音波伝達速度を測定する反射法と、第6図に示すよ
うに、超音波の発信を行う送信用探触子(以下、探触子
をセンサと称す)81を試験体であるコンクリート83
の一方の面に、受信を行う受信用センサ82をコンクリ
ート83の他方の面にそれぞれ当接して、送信用センサ
81からコンクリート83の内部に超音波を放射し、そ
の透過波を受信用センサ82で受信して、送信から受信
までの時間から超音波伝達速度を測定する透過法がある
が、反射法においては、支保工等の型枠44が取り外さ
れる前の段階においても、即ち、コンクリート版43が
若令コンクリートの場合であっても測定可能ではあるが
、しかしながら、超音波反射波が比較的微弱なため、コ
ンクリート版43中の気泡や空隙あるいは骨材の存在、
反射面46での乱反射の影響等により、明確に超音波反
射波を捕らえられず、正確な測定ができないという問題
があり、特に、コンクリート版43に型枠44を取り付
けたままの状態で測定を行う場合には、当該型枠44が
湿っていると、図中−点鎖線で示すように、型枠44の
裏面47での超音波反射波も生じるため、測定がより困
難になるものである。また、透過法においては、コンク
リートを挟んで一方の面に超音波発信器を、また他方の
面に超音波受信器を設置しなければならないので、測定
装置の取り扱いが繁雑になり、特に広大なコンクリート
版のような場合には、測定者をコンクリート版の両面に
配置しなければならない等の問題があり、また、場所的
な事情から、コンクリートの他方の面側に超音波受信器
を設置するだけのスペースが確保できないような場合に
は、測定そのものが不可能となるものであり、更には、
型枠が除去された後においては測定が可能であったとし
ても、若令コンクリートの段階では支保工等の型枠が邪
魔となって測定ができないという問題も生じていた。
In addition, the ultrasonic transmission speed was measured using the latter ultrasonic wave,
From the ultrasonic transmission speed, the strength of concrete is Ht'
The pt i method has the advantage of being non-destructive, but it has the following problems. That is, as a method for measuring the ultrasonic transmission speed in a concrete slab, as shown in FIG. An ultrasonic wave is emitted from a sonic transmitter 41, and the ultrasonic reflected wave reflected from the other surface 46 of the concrete slab 43 is received by an ultrasonic receiver 42, as shown by the broken line in the figure. The reflection method measures the ultrasonic transmission speed based on time, and as shown in Fig. 6, a transmitting probe (hereinafter referred to as a sensor) 81 that transmits ultrasonic waves is used in concrete, which is a test specimen. 83
A reception sensor 82 that performs reception is brought into contact with the other surface of the concrete 83 on one surface of the concrete 83, and ultrasonic waves are emitted from the transmission sensor 81 into the concrete 83, and the transmitted waves are transmitted to the reception sensor 82. There is a transmission method in which the transmission speed of ultrasonic waves is measured from the time from transmission to reception.However, in the reflection method, even before the formwork 44 of the shoring etc. Although it is possible to measure even when 43 is young concrete, the ultrasonic reflected waves are relatively weak, so the presence of air bubbles, voids, or aggregate in the concrete slab 43,
Due to the influence of diffused reflection on the reflecting surface 46, etc., the reflected ultrasonic wave cannot be clearly captured and accurate measurement cannot be performed. If the mold 44 is wet, ultrasonic waves reflected from the back surface 47 of the mold 44 will also occur, as shown by the dashed line in the figure, making measurement more difficult. . In addition, in the transmission method, it is necessary to install an ultrasonic transmitter on one side of the concrete and an ultrasonic receiver on the other side, which makes handling of the measuring equipment complicated, especially in large areas. In cases such as concrete slabs, there are problems such as having to place the measurer on both sides of the concrete slab, and due to locational circumstances, the ultrasonic receiver must be installed on the other side of the concrete. If sufficient space cannot be secured, the measurement itself will be impossible, and furthermore,
Even if measurements were possible after the formwork was removed, there was a problem that measurements could not be taken at the young concrete stage because formwork such as shoring was in the way.

本発明は、上記の課題を解決するものであって、安価で
リアルタイムに強度測定を行うことができるコンクリー
ト版中の超音波伝達速度測定方法を提供することを目的
とするものである。
The present invention solves the above-mentioned problems, and an object of the present invention is to provide a method for measuring ultrasonic propagation speed in a concrete slab, which is inexpensive and can measure strength in real time.

[課題を解決するための手段] 上記の目的を達成するために、本発明のコンクリート版
中の超音波伝達速度測定方法は、コンクリートが打設さ
れる型枠の少なくとも一方の面側に設置され、コンクリ
ート版中に埋め込まれた第1の超音波センサと、コンク
リート版の他方の面倒に当接または埋め込まれた第2の
超音波センサとを設け、前記第1および第2の超音波セ
ンサの一方から所定の周波数の超音波を発信し、他方の
超音波センサで該超音波を受信することにより該コンク
リート版中の超音波伝達速度を測定することを特徴とす
る。
[Means for Solving the Problems] In order to achieve the above object, the method for measuring the ultrasonic transmission velocity in a concrete slab of the present invention includes: , a first ultrasonic sensor embedded in the concrete slab, and a second ultrasonic sensor abutted on or embedded in the other side of the concrete slab; It is characterized in that the ultrasonic transmission speed in the concrete slab is measured by transmitting ultrasonic waves of a predetermined frequency from one side and receiving the ultrasonic waves with the other ultrasonic sensor.

[作用および発明の効果コ 本発明のコンクリート版中の超音波伝達速度測定方法に
よれば、■従来の透過型超音波探傷器により、若令コン
クリートを非破壊的に測定することが可能である、■テ
ストピースが不要なので強度の確認を容易に行うことが
できる、■超音波センサは安価であるので、コストの上
昇をもたらさない、■超音波センサをコンクリート版中
に埋め込むので必要な場合にはいつでもリアルタイムに
コンクリート強度を確認することができ、従って、支保
工等の型枠を従来よりも早く解体することが可能である
、という効果を得ることができるものである。
[Operations and Effects of the Invention] According to the method for measuring ultrasonic transmission velocity in concrete slabs of the present invention, it is possible to non-destructively measure young concrete using a conventional transmission-type ultrasonic flaw detector. ■Since no test piece is required, strength can be easily confirmed.■Ultrasonic sensors are inexpensive, so they do not increase costs.■Ultrasonic sensors are embedded in concrete slabs, so they can be easily checked when necessary. The concrete strength can be checked in real time at any time, and therefore formwork such as shoring can be dismantled more quickly than before.

[実施例コ 以下、図面を参照しつつ実施例を説明するが、以下の説
明では床スラブのコンクリートの伝達速度を測定する場
合をとりあげる。
[Example 7] An example will be described below with reference to the drawings, and the following explanation deals with the case where the transmission velocity of concrete in a floor slab is measured.

第1図は本発明に係るコンクリート版中の超音波伝達速
度測定方法の1実施例を示す図であり、図中、1はコン
クリート版、2.3はセンサ(超音波探触子)、4はパ
イプ、5はプラグ、6はコントロールユ−= ノ)、7
 ハ”A 枠9小4゜第1図に>11ず構成を得るため
には、まり、床スラブの型枠7を施■゛シた後に床配筋
(図示ぜプ)をh゛い、型枠7■・、に設定した測定偵
譚にセンザ憂およびバイブ福をセーフ叶し、 ゴン′ク
リート1をt]設する3、(シζ、史にセン→3を:コ
ンクリートl中に坤め込み、センサ3の表ini lf
h:rンクリー トlの表曲ε同じ1/ベルとする5、
これにより、第1図に示す構成が得られ、こび〕状態に
わいC1センサ2またはセンサ3から所定の波長くυ超
音波を送信し、センサ3またはセンサ2で透過波を受信
し5、送信からプ・信までの間の伝達時間を求めること
ができる。そしで、該伝達時間と、センサ2とセンサ3
との間の距’114とからコンクリ−・41中にお(J
る超音波のmii!速度を求めることができ、こQ)よ
・)にしC得られた転達速度1ご八づい”こ数フンクリ
−) 10>強度を推定することができる。なお、セン
サ2とセンサ3との距mf1.taゝ)な方法にJ、り
予め測定さね、コントロール、”1. 、、?−−)ト
0に入力されているものである。また、第1図においで
、フントロールコ、ニット6は従来のものと同様0)構
成を有する超音波探傷器のリントロールユニ゛、7)で
あり、超音波の送信、受信を司ると共に、伝達速度を求
める演算、強度を求める演算等の所定の演算を行うもの
である。バイブ+1中にはセンづ2の配線が施されて↓
5す、該バ可プ4丙の配線と1ントい−ルユニット6と
の接続[、iブノグ5により行われる。また、第1図に
おいてはセンサ3とコントp−ルユニソト6と□□□接
続は省略きれているものである。
FIG. 1 is a diagram showing one embodiment of the method for measuring ultrasonic transmission speed in a concrete slab according to the present invention, in which 1 is a concrete slab, 2.3 is a sensor (ultrasonic probe), and 4 is the pipe, 5 is the plug, 6 is the control unit (no), 7
In order to obtain the configuration shown in Figure 1, frame 9, small 4゜゜゜゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛Formwork 7■.. Safely fulfill the sensor and vibe luck on the measurement reconnaissance set in the formwork 7, and set the Gon'crete 1 to 3. Inset, sensor 3 table ini lf
h: 1/bell 5,
As a result, the configuration shown in FIG. 1 is obtained. It is possible to find the transmission time from to P. Then, the transmission time, sensor 2 and sensor 3
Distance between '114 and concrete 41 (J
Ultrasonic mii! The speed can be calculated, and the intensity can be estimated. Measure the distance mf1.taゝ) in advance, control, "1. ,,? --) This is what is input in g0. In addition, in Fig. 1, the lint roll unit 6 is the lint roll unit 7) of the ultrasonic flaw detector, which has the same configuration as the conventional one. It performs predetermined calculations such as calculations for calculating intensity and calculations for calculating intensity. Senzu 2 wiring is installed inside Vibe +1 ↓
5. The connection between the wiring of the bus 4 and the 1-tole unit 6 is performed by the i-bunog 5. Further, in FIG. 1, the sensor 3, control unit 6, and □□□ connections are omitted.

センサ2およびパイプ4の具体的な構成例を第2図に弔
ず。センサ2は、圧711振動子12をエボキン樹勝1
3で固めflもので構成きれており、該センサ2はパイ
プ4の一端部に固定ぎれている。
A specific configuration example of the sensor 2 and the pipe 4 is shown in FIG. The sensor 2 is the pressure 711 vibrator 12 and the Evokin Jukatsu 1
The sensor 2 is fixed to one end of a pipe 4.

正電振動F−j、 2は、例えば、第3脚に示され゛に
いるように、円筒状となされてgす、その直径は30關
程度、厚さは101111程度となきれる。ま六−1圧
電娠動j’−12の表面+5および裏面16にはぞれぞ
れ、メツキ、蒸着等(、゛より銀の薄膜が形成されで電
極が形成されζいる7、圧電振動子12の両面にはハン
ダ等により2本Q)リード線9.11が接続されて起り
、該リード線8および11はパイプ・1の内部を通って
バ・イブ4の他端部に形成されている接点17および1
8にそれぞれ接続される。
For example, as shown in the third leg, the positive electric vibration F-j, 2 is formed into a cylindrical shape, with a diameter of about 30 mm and a thickness of about 101111 mm. A thin film of silver is formed by plating, vapor deposition, etc. on the front surface +5 and back surface 16 of the piezoelectric vibrator j'-12, respectively. Two lead wires 9 and 11 are connected to both sides of the pipe 12 by solder or the like, and the lead wires 8 and 11 pass through the inside of the pipe 1 and are formed at the other end of the pipe 4. Contacts 17 and 1
8 respectively.

接点17わよび18はコネクタ10を構成しておす、該
コネクタIOにプラグ5が挿入されると、接点17はプ
ラグ5の一方の接点と接触し、接点18はブーフグ5の
他ノコの接点と接触りるようになされている。また、パ
イプ4の表面には目盛りが形成されごおり、該1」盛り
によりlりのセンサ2.3の間の即離、あるいは:コン
クリートlのJ’F’ 8を計測することができるよう
に!ヨされにいる。
Contacts 17 and 18 constitute the connector 10. When the plug 5 is inserted into the connector IO, the contact 17 contacts one contact of the plug 5, and the contact 18 contacts the other contact of the boufug 5. It is designed to make contact. In addition, a scale is formed on the surface of the pipe 4, and the 1" scale makes it possible to measure the immediate separation between the 1 sensors 2 and 3, or: J'F' 8 of the concrete 1. To! I'm in trouble.

以上、本発明のt実施例について説明したが、本発明は
上記実施例に限定きれるものごはなく、種々の変形が可
能である。例えば、第1図においてはセンサ3はコンク
リート1中に埋め込まれCいるが、第4図に/」Xずよ
うに、−1ンクリート1の表面に当接するようにしても
よいことは当業者に明らかであ7)う。また、1−2記
実施例では床スーラブの1ンクリー、−トに゛)い゛C
説明し、たが、本発明がこれに限定されるものでないご
色は当然である。
Although t embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible. For example, in FIG. 1, the sensor 3 is embedded in the concrete 1, but it will be understood by those skilled in the art that the sensor 3 may be in contact with the surface of the concrete 1, as shown in FIG. It's obvious7). In addition, in the example 1-2, the first floor slab and the
However, the present invention is not limited thereto.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るコンクリート飯山の超I゛↑波仏
違速度測才方法の見実施例の構成を示す図、第2図はセ
ンサ部の具体的な構成例を示す図、第3図は圧電振動子
の具体例を小す図、第4図は本発明の変形例を示す図、
第5図は従来の反射法によるtli品゛波伝達速ぼ測定
力法を説明する図、第0図は従来の透過法によろ超昌波
イ五達速m:測カニ方U、を説明する図ぐある。 1・・・コンクリ〜 ト版、2.3・・・センサ(超音
波探触−r)、 4・・・パイプ、 5・・・グ′ラグ
、 6・・・::I :/ l・口・〜・ルユ;ット、
7・・・・型枠。 出  願  人 本多電イ”株式会社 (外1名)
Fig. 1 is a diagram showing the configuration of an embodiment of the concrete Iiyama super I゛↑ wave cross speed measuring method according to the present invention, Fig. 2 is a diagram showing a specific configuration example of the sensor section, and Fig. 3 is a diagram showing a specific example of the configuration of the sensor section. The figure is a small diagram of a specific example of a piezoelectric vibrator, and FIG. 4 is a diagram showing a modification of the present invention.
Figure 5 is a diagram explaining the force method used to measure the wave propagation velocity using the conventional reflection method, and Figure 0 is a diagram explaining the method used to measure the supersonic wave velocity m: measurement method U using the conventional transmission method. There is a plan to do so. 1...Concrete plate, 2.3...Sensor (ultrasonic probe-r), 4...Pipe, 5...Glug, 6...::I:/l・Mouth... Ruyu;t,
7...Formwork. Applicant: Honda Electric Co., Ltd. (1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)コンクリートが打設される型枠の少なくとも一方
の面側に設置され、コンクリート版中に埋め込まれた第
1の超音波探触子と、コンクリート版の他方の面側に当
接または埋め込まれた第2の超音波探触子とを設け、前
記第1および第2の超音波探触子の一方から所定の周波
数の超音波を発信し、他方の超音波探触子で該超音波を
受信することにより該コンクリート版中の超音波伝達速
度を測定することを特徴とするコンクリート版中の超音
波伝達速度測定方法。
(1) A first ultrasonic probe installed on at least one side of the formwork in which concrete is placed and embedded in the concrete slab, and a first ultrasonic probe that is placed in contact with or embedded in the other side of the concrete slab. a second ultrasonic probe, one of the first and second ultrasonic probes emits ultrasonic waves of a predetermined frequency, and the other ultrasonic probe emits the ultrasonic waves. 1. A method for measuring ultrasonic transmission speed in a concrete slab, the method comprising measuring the ultrasonic transmission speed in the concrete slab by receiving:
JP1225904A 1989-08-30 1989-08-30 Ultrasonic transmission speed measurement method in concrete slab Expired - Fee Related JP2756837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225904A JP2756837B2 (en) 1989-08-30 1989-08-30 Ultrasonic transmission speed measurement method in concrete slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225904A JP2756837B2 (en) 1989-08-30 1989-08-30 Ultrasonic transmission speed measurement method in concrete slab

Publications (2)

Publication Number Publication Date
JPH0387655A true JPH0387655A (en) 1991-04-12
JP2756837B2 JP2756837B2 (en) 1998-05-25

Family

ID=16836711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225904A Expired - Fee Related JP2756837B2 (en) 1989-08-30 1989-08-30 Ultrasonic transmission speed measurement method in concrete slab

Country Status (1)

Country Link
JP (1) JP2756837B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003475A (en) * 2005-06-27 2007-01-11 Akebono Brake Ind Co Ltd Method and device for concrete placement inspection
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method
JP2009025022A (en) * 2007-07-17 2009-02-05 Akebono Brake Ind Co Ltd Concrete structure quality inspection method and concrete structure quality inspection device
WO2011132024A1 (en) * 2010-04-20 2011-10-27 Alexander Herbert Gibson Embedded material testing device and method
KR101368196B1 (en) * 2013-12-02 2014-02-28 한국지질자원연구원 Apparatus for measuring wave transmission velocity and method for measuring wave transmission velocity using thereof
KR101703104B1 (en) * 2015-07-31 2017-02-06 한국지질자원연구원 Method and system for measuring acoustic wave velocity and acoustic attenuation for sediment sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164353A (en) * 1979-06-08 1980-12-22 Kuraray Co Ltd Hardening characteristic measuring unit by acoustic measurement
JPS59216055A (en) * 1983-05-24 1984-12-06 Fuji Bussan Kk Sampling device of product to be tested for concrete strength measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164353A (en) * 1979-06-08 1980-12-22 Kuraray Co Ltd Hardening characteristic measuring unit by acoustic measurement
JPS59216055A (en) * 1983-05-24 1984-12-06 Fuji Bussan Kk Sampling device of product to be tested for concrete strength measurement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003475A (en) * 2005-06-27 2007-01-11 Akebono Brake Ind Co Ltd Method and device for concrete placement inspection
JP4699108B2 (en) * 2005-06-27 2011-06-08 曙ブレーキ工業株式会社 Concrete placement inspection equipment
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method
JP2009025022A (en) * 2007-07-17 2009-02-05 Akebono Brake Ind Co Ltd Concrete structure quality inspection method and concrete structure quality inspection device
WO2011132024A1 (en) * 2010-04-20 2011-10-27 Alexander Herbert Gibson Embedded material testing device and method
KR101368196B1 (en) * 2013-12-02 2014-02-28 한국지질자원연구원 Apparatus for measuring wave transmission velocity and method for measuring wave transmission velocity using thereof
KR101703104B1 (en) * 2015-07-31 2017-02-06 한국지질자원연구원 Method and system for measuring acoustic wave velocity and acoustic attenuation for sediment sample

Also Published As

Publication number Publication date
JP2756837B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US20040054474A1 (en) Acoustic method for estimating mechanical properties of a material and apparatus therefor
JPH0352908B2 (en)
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
CN106767580A (en) A kind of ultrasonic method for determining defect laying depth in composite layer laminated structure
WO1987002462A1 (en) Ultrasonic method of measuring dimensions of flaw in solid material
JPH0387655A (en) Ultrasonic wave transfer speed measuring method in concrete plate
GB2091889A (en) Plastic anisotropy in sheet materials
KR20100090912A (en) Method for structural health monitoring using ultrasonic guided wave
JPS6321135B2 (en)
JPH0454447A (en) Fatigue damage measuring method
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
JPS62112056A (en) Measuring method for sound pressure in solid body of ultrasonic probe by photoelastic method
JPH0854378A (en) Method for evaluating surface crack of concrete
JPH0768763B2 (en) METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE
JP6478637B2 (en) Ultrasonic probe
Henault et al. Comparison of simulations and measurements of radar and ultrasound inspections of concrete structures
JPS61114160A (en) Ultrasonic measuring instrument
JPH03272456A (en) Measuring method for adhesion between rubber stress cone and insulator
RU2214590C2 (en) Procedure establishing physical and mechanical characteristics of polymer composite materials and device for its implementation
CN107271121A (en) A kind of multiple spot distribution type fiber-optic sound wave builds building body crack detection system
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JPH0821824A (en) Probing method for defective filling
JPH06242086A (en) Ultrasonic inspection system
KR20180027274A (en) Non-destruction testing apparatus having effective detection distance measurement function
JP2005345217A (en) Ultrasonic flaw detecting method and device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees