JPH0385715A - Method of forming electrode of electronic component - Google Patents

Method of forming electrode of electronic component

Info

Publication number
JPH0385715A
JPH0385715A JP1223521A JP22352189A JPH0385715A JP H0385715 A JPH0385715 A JP H0385715A JP 1223521 A JP1223521 A JP 1223521A JP 22352189 A JP22352189 A JP 22352189A JP H0385715 A JPH0385715 A JP H0385715A
Authority
JP
Japan
Prior art keywords
alloy
electrode
layer
electronic component
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223521A
Other languages
Japanese (ja)
Inventor
Yuji Uesugi
雄二 植杉
Koichi Kumagai
浩一 熊谷
Yasuhiko Miyamoto
宮本 康彦
Chihiro Saeki
千尋 佐伯
Shinichi Touzawa
陶沢 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1223521A priority Critical patent/JPH0385715A/en
Publication of JPH0385715A publication Critical patent/JPH0385715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the solderability and strength as an electrode by a method wherein a Cu alloy containing P or Ag with a specific content is employed as flame-coating material. CONSTITUTION:Although it is necessary to have the content of P in Cu alloy enough to minimize oxidation at the time of flame-coating, the content of P is practically limited within a range of 0.1-10wt.%. Further, it is effective to have the thickness of an electrode 3 not larger than 0.7mm in order to suppress residual stress and deformation within practical levels. When a multilayer structure is employed as the structure of the electrode, if the main components of the element 13 of an electronic component are Al thin films 2, a Cu-Zn alloy layer 10 which has little potential difference from the Al thin film 2 is formed, then the P-Cu alloy layer 3 is formed and an Sn layer or an Sn-Pb alloy layer 11 is further formed on the P-Cu alloy layer 3. With this constitution, the solderability can be improved. Further, it is also effective that, for instance, the Cu-Zn layers 10 are formed on the element 13 of the electronic component and the layers 10 are flame-coated with the Cu-alloy layers 15 containing 60wt.% of Ag and, after the surface are polished, the surfaces are reduced by organic acid or the like and the Sn alloy layers 11 are formed to form the electrodes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子部品の電極を溶射にて形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming electrodes of electronic components by thermal spraying.

従来の技術 従来、フィルムコンデンサ等の電子部品の電極形成は、
Cu、Zn、Sn、Pb等を主成分とした溶射材を用い
ている(例えば、特公昭5329218号公報、特公昭
53−29219号公報等参照)。
Conventional technology Conventionally, electrode formation for electronic components such as film capacitors is
A thermal spraying material containing Cu, Zn, Sn, Pb, etc. as main components is used (see, for example, Japanese Patent Publication No. 5329218, Japanese Patent Publication No. 53-29219, etc.).

発明が解決しようとする課題 電子部品の電極を溶射にて形成する場合、従来、Zn合
金または5n−Pb合金等の線材をアークまたはプラズ
マ等で溶融させ、高速のエアーで吹付け、電子部品の当
該位置に付着させるという方法がとられるが、その際上
記金属が溶融した粉末状態で飛散するときの粒径は数μ
〜数10μと微粒であるため、粉末の表面が容易に酸化
される。
Problems to be Solved by the Invention When forming electrodes of electronic components by thermal spraying, conventionally, wire rods such as Zn alloy or 5n-Pb alloy are melted with an arc or plasma, and then sprayed with high-speed air to form the electrodes of electronic components. A method is used to attach the metal to the relevant location, but in this case, when the metal is scattered in a molten powder state, the particle size is several microns.
The surface of the powder is easily oxidized because it is a fine particle with a size of several tens of microns.

そのため、溶射により形成した電極は半田付性が非常に
悪いという問題がある。
Therefore, there is a problem that electrodes formed by thermal spraying have very poor solderability.

そこで、電極の半田付性を向上させるため、溶射後、溶
射金属の表面を還元し、溶射金属の表面を半田付性のよ
い金属、例えば半田をコーティングすれば電極としての
半田付性は若干向上する。
Therefore, in order to improve the solderability of the electrode, the surface of the sprayed metal is reduced after spraying, and the surface of the sprayed metal is coated with a metal with good solderability, such as solder, which will slightly improve the solderability of the electrode. do.

すなわち、第7図(a)に示すように、電子部品の素子
16に溶射金属17を溶射した後、溶射金属の表面を研
磨し、さらにフラックス等により、還元すると、溶射金
属の内部17パは酸化物の多い層であるが、表面17′
は還元された金属の状態となる。この状態で半田18を
コーティングし、半田デイツプを行なう。
That is, as shown in FIG. 7(a), after the sprayed metal 17 is sprayed onto the element 16 of the electronic component, the surface of the sprayed metal is polished and further reduced with flux or the like, so that the interior 17 of the sprayed metal is Although it is a layer with a lot of oxide, the surface 17'
is in the reduced metal state. In this state, solder 18 is coated and solder dip is performed.

このようにすると、半田デイツプの回数が1〜2回まで
は、第7・図(b)のように基板19との間にきれいな
半田フィレット18′を形成することができる。
In this way, a clean solder fillet 18' can be formed between the solder fillet 18' and the substrate 19 as shown in FIG. 7 (b) until the number of solder dips is 1 to 2 times.

しかし、半田デイツプを2〜3回以上行なうと、還元さ
れた金属層17′は、半田中に拡散し消失していく。そ
のため半田付状態は、第7図(C)のように不充分な半
田フィレット18“の状態となり半田付不良を生じるこ
とになる。
However, if solder dipping is performed two or three times or more, the reduced metal layer 17' diffuses into the solder and disappears. Therefore, the soldering state is such that the solder fillet 18'' is insufficient as shown in FIG. 7(C), resulting in poor soldering.

電子部品には、最近の高密度・高信頼化の実装技術の要
望に伴い、半田デイツプ3回までは良好な半田付状態を
得る半田付性が求められており、以上述べた従来の溶射
による電極形成では、充分な半田付性が得られていなか
った。
With the recent demand for high-density, high-reliability mounting technology, electronic components are required to have good solderability that allows for up to three solder dips. In electrode formation, sufficient solderability was not obtained.

従来の溶射による電極形成法では、溶射金属粒子の表面
が酸化された状態で、電極を形成していくため、粒子間
の結合強度、すなわち電極としての強度が弱いという問
題点もあった。
In the conventional method of forming electrodes by thermal spraying, the electrodes are formed with the surfaces of the sprayed metal particles in an oxidized state, so there is a problem that the bonding strength between the particles, that is, the strength as an electrode is weak.

本発明は、電子部品の電気を溶射にて形成する場合、従
来の方法では上記のように、電極としての半田付性が悪
く、また電極としての強度も弱いという問題点を解決す
るための電極形成方法を提供することを目的としている
The present invention provides an electrode to solve the problem that when forming electronic parts by thermal spraying, the conventional method has poor solderability as an electrode and weak electrode strength. The purpose is to provide a formation method.

課題を解決するための手段 上記目的を達成するために、本発明の電極形成法におい
ては、0.1〜10重量%のPを含むCu合金あるいは
Agを60重量%以上含むCu合金を溶射材として用い
る。これにより溶射時に金属粒子の表面の酸化を抑える
ことができ、電極としての半田付性の向上と電極強度の
向上が計れる。
Means for Solving the Problems In order to achieve the above object, in the electrode forming method of the present invention, a Cu alloy containing 0.1 to 10% by weight of P or a Cu alloy containing 60% by weight or more of Ag is used as a thermal spraying material. used as This makes it possible to suppress oxidation of the surface of the metal particles during thermal spraying, thereby improving the solderability and strength of the electrode.

電極の特性あるいは半田付性をより向上させるため電極
構造を多層にする。たとえば電極の最内層は、電子部品
の素子と電位差の少ない金属、例えは、Cu−Zn合金
とし、次に中間層は、Pを含むCu合金、あるいはAg
を60重量%以上含むCu合金とし、最外層は5n−P
b合金とする。
In order to further improve electrode characteristics or solderability, the electrode structure is multilayered. For example, the innermost layer of the electrode is made of a metal that has a small potential difference with the element of the electronic component, such as a Cu-Zn alloy, and the intermediate layer is made of a Cu alloy containing P or Ag.
Cu alloy containing 60% by weight or more, and the outermost layer is 5n-P
B alloy.

作   用 溶射金属としてPを含むCu合金を用いれば電極の酸化
が押えられる理由を次に述べる。
The reason why electrode oxidation can be suppressed by using a P-containing Cu alloy as the sprayed metal will be described below.

Pを含むCu合金が溶射時に溶融したとき、Pは優先的
に02と反応するため、溶射金属のCu等の酸化を抑制
あるいはCu等の酸化物を還元する。すなわち、 4P+Cu+50−+2P205+Cu2 P + 5
 Cu O+P 20 s + 5 Cu等の反応が生
しる。
When a Cu alloy containing P is melted during thermal spraying, P preferentially reacts with 02, so oxidation of Cu, etc. in the thermal sprayed metal is suppressed or oxides of Cu, etc. are reduced. That is, 4P+Cu+50-+2P205+Cu2P+5
A reaction such as CuO+P20s+5Cu occurs.

また、溶射金属としてAgを60重量%以上含む場合、
Agは溶射時に殆ど酸化されないため、形成された電極
は半田付性が良好であり、また溶射粒子間の結合強度も
高いものが得られる。
In addition, when the sprayed metal contains 60% by weight or more of Ag,
Since Ag is hardly oxidized during thermal spraying, the formed electrode has good solderability and also has high bonding strength between the thermal spray particles.

実  施  例 以下、本発明の実施例について図面を参照しながら説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例において、そのフィルムコ
ンデンザに溶射による電極を形成した状態を示す。第1
図において、1はフィルム、2はフィルム上に形成され
たAI薄膜であり、フイルムコンデンザの素子13を構
成している。3は溶射により形成したP−Cu合金又は
P−AgCu合金の電極である。溶射材としては表1の
■、■に示す合金のワイヤ材を用い、アーク溶射あるい
はプラズマ溶射により4の矢印の方向から溶射を行った
ものである。
FIG. 1 shows a first embodiment of the present invention in which electrodes are formed on the film capacitor by thermal spraying. 1st
In the figure, 1 is a film, 2 is an AI thin film formed on the film, and constitutes an element 13 of a film capacitor. 3 is an electrode made of P-Cu alloy or P-AgCu alloy formed by thermal spraying. Wire materials of alloys shown in Table 1 (1) and (2) were used as thermal spraying materials, and thermal spraying was performed in the direction of arrow 4 by arc spraying or plasma spraying.

表1 の酸化を最少限に抑える量であることが必要である。そ
のため溶射時の雰囲気により必要なPの量は異なってく
る。溶射をN2等の非酸化性カスにて行なう場合、ある
いは減圧容器中で非酸化性カスにて行なう場合、Pff
iは、0.1〜0.5重量%あれば充分である。しかし
、通常のアーク溶剤のようにエアにて行なう場合は、P
量を多くする必要がある。但しP量が10 w t%を
越えると、P−Cu合金として脆くなるため、ワイヤ材
として加工が困難になり実用的てなくなる。またP量が
多くなるほと、溶射粒子の凝固収縮量が多くなり、溶射
層の残留応力および変形が多くなり、実用的でなくなる
。溶射て実用的なP量の範囲は0.1〜10wt%と限
定される。
It is necessary that the amount minimizes the oxidation shown in Table 1. Therefore, the required amount of P varies depending on the atmosphere during thermal spraying. When thermal spraying is performed with non-oxidizing gas such as N2, or when performing spraying with non-oxidizing gas in a vacuum vessel, Pff
It is sufficient for i to be 0.1 to 0.5% by weight. However, when using air like a normal arc solvent, P
It is necessary to increase the amount. However, if the amount of P exceeds 10 wt%, the P-Cu alloy becomes brittle and difficult to process as a wire material, making it impractical. Further, as the amount of P increases, the amount of solidification shrinkage of the sprayed particles increases, and the residual stress and deformation of the sprayed layer increases, making it impractical. The practical range of P amount for thermal spraying is limited to 0.1 to 10 wt%.

また、P−Cu合金の残留応力、溶射時の変形量は、溶
射前のP−Cu合金に含まれるP量により異なるが、残
留応力及び溶射時の変形を実用レベルに押さえるには、
第1図に示す電極3の厚さ5を0.7mm以下にするこ
とが有効である。
In addition, the residual stress of the P-Cu alloy and the amount of deformation during thermal spraying vary depending on the amount of P contained in the P-Cu alloy before thermal spraying, but in order to suppress the residual stress and deformation during thermal spraying to a practical level,
It is effective to make the thickness 5 of the electrode 3 shown in FIG. 1 0.7 mm or less.

表1の■て示ずようにP−CuにAgを加えると、融点
を下げると共に、溶射金属粒子の酸化をより少なくする
ことができる。特に7P−20Ag−73Cuは三元共
晶で、融点が646℃と低いため、低温溶射が可能であ
る。
When Ag is added to P-Cu as shown in Table 1, it is possible to lower the melting point and further reduce oxidation of the sprayed metal particles. In particular, 7P-20Ag-73Cu is a ternary eutectic and has a low melting point of 646°C, so low-temperature spraying is possible.

第2図は本発明の第2の実施例で、10は電子部品の素
子13と電位差の少ない溶射金属層、例えば素子13の
主構成要素がAI薄膜2であればCu−Zn合金層であ
る。次にP−Cu合金3を溶射し、さらにその上にSn
あるいは5n−Pb合金のコーティング層11を形成し
たものである。
FIG. 2 shows a second embodiment of the present invention, in which 10 is a sprayed metal layer having a small potential difference with the element 13 of the electronic component, for example, if the main component of the element 13 is the AI thin film 2, it is a Cu-Zn alloy layer. . Next, P-Cu alloy 3 is thermally sprayed, and then Sn
Alternatively, a coating layer 11 of 5n-Pb alloy is formed.

素子に接する溶射金属を素子と電位差の少ない金属にす
るのは局所電池作用による電蝕を防ぐためてあり、電極
の最外層に5n−Pb合金をコーティングすることによ
りプリント基板等への実装時の半田付性をより向上させ
ることができる。
The reason why the sprayed metal in contact with the element is a metal that has a small potential difference with the element is to prevent galvanic corrosion due to local battery action, and by coating the outermost layer of the electrode with 5n-Pb alloy, it can be easily mounted on a printed circuit board, etc. Solderability can be further improved.

なお、電極の最外層にSn合金をコーティングする方法
としては、第2図のP−Cu合金の溶射層3の表面の凹
凸が0.5m、m以下になるよう研磨した後、Sn合金
を溶融浸漬でコーティングする方法、あるいはP−Cu
合金の溶射層の表面を研磨後、有機酸あるいはフラック
スで表面を還元し、Sn合金の溶融浸漬でコーティング
する方法が望ましい。
The method for coating the outermost layer of the electrode with the Sn alloy is to polish the surface of the thermally sprayed layer 3 of P-Cu alloy as shown in Fig. 2 so that the unevenness is 0.5 m or less, and then melt the Sn alloy. Dip coating method or P-Cu
It is preferable to polish the surface of the sprayed alloy layer, reduce the surface with an organic acid or flux, and then coat the surface by melt dipping the Sn alloy.

P−Cu合金の溶射層3は、前述のようにPの還元作用
により酸化が非常に少ないので、5nPb合金と合金層
をつくった状態となる。そのため、実装時のデイツプ半
田付を3回以上繰り返しても半田付性の劣化はない。
The sprayed layer 3 of the P-Cu alloy has very little oxidation due to the reducing action of P as described above, so it forms an alloy layer with the 5nPb alloy. Therefore, even if dip soldering during mounting is repeated three or more times, there is no deterioration in solderability.

なお、電子部品の素子とP−Cu合金の電位差が小さい
場合、たとえば0.3V以下の場合は、第2図の如く3
層にせず、第1図の溶射層3の」二に、5n−Pb合金
をコーティングすればよい。
Note that if the potential difference between the element of the electronic component and the P-Cu alloy is small, for example, 0.3V or less, the
Instead of forming a layer, the 5n-Pb alloy may be coated on the second side of the thermal sprayed layer 3 in FIG.

第5図は電極を複数の溶射金属層て形成する場合、P−
Cu合金層の下の溶射金属層10の表面の凹凸をP−C
u合金層の厚さ以下にする必要性を説明するための図を
示す。電子部品の所定の場所のみに溶射金属層を形成す
るには、遮蔽板等を用いるので、溶射金属層には同図に
示すような凹凸12が生しる。この凹凸がある状態てP
−Cu合金を溶射し、P−Cu合金の表面を所定の形状
 0 に研磨すると、電極の表面にP−Cu合金以外の合金層
が現れ、半田付性を阻害する。そのため、同図A−A’
 、B−B’の一点鎖線の如く、研磨あるいはパリ取り
を行ない、溶射合金層10の表面の凹凸がP−Cu合金
層の厚さ以下にすることが不可欠となる。
Figure 5 shows the P-
The unevenness of the surface of the sprayed metal layer 10 under the Cu alloy layer is P-C.
A diagram for explaining the necessity of making the thickness less than or equal to the thickness of the u alloy layer is shown. Since a shielding plate or the like is used to form the sprayed metal layer only at a predetermined location of the electronic component, the sprayed metal layer has irregularities 12 as shown in the figure. In this uneven state P
When a -Cu alloy is thermally sprayed and the surface of the P-Cu alloy is polished into a predetermined shape, an alloy layer other than the P-Cu alloy appears on the surface of the electrode, which inhibits solderability. Therefore, the figure A-A'
, B-B', it is essential to perform polishing or deburring to make the surface irregularities of the sprayed alloy layer 10 less than the thickness of the P-Cu alloy layer.

第3図は本発明の第3の実施例を示す図で、電子部品の
素子13にCu−Znの溶射層10、その上にAgを2
0重量%以上含むCu合金層14を溶射し、さらにP−
Cu合金層3、Sn合金のコーティング層11で電極を
形成する方法を示す。
FIG. 3 is a diagram showing a third embodiment of the present invention, in which an element 13 of an electronic component is coated with a Cu-Zn sprayed layer 10, and Ag is coated on top of the thermally sprayed layer 10.
A Cu alloy layer 14 containing 0% by weight or more is thermally sprayed, and further P-
A method of forming an electrode using a Cu alloy layer 3 and a Sn alloy coating layer 11 will be shown.

溶射したCu−Zn合金層10は比較的酸化が大きいた
め、Cu−Zn溶射金属粒子間の結合力が弱い。そのた
め、Cu−Znの溶射層に直接厚<P−Cu合金を溶射
すると、P−Cu合金層の凝固収縮力で、Cu−Zn溶
射層の内部にクラックが生じやすい。クラックを防止す
るには本実施例のように酸化の少ないAg−Cu合金層
14を中間層として形成することが、有効な手段となる
Since the thermally sprayed Cu-Zn alloy layer 10 is relatively heavily oxidized, the bonding force between the Cu-Zn thermally sprayed metal particles is weak. Therefore, if a thickness<P-Cu alloy is directly sprayed onto a Cu-Zn sprayed layer, cracks are likely to occur inside the Cu-Zn sprayed layer due to the solidification shrinkage force of the P-Cu alloy layer. In order to prevent cracks, it is effective to form the Ag-Cu alloy layer 14, which is less oxidized, as an intermediate layer as in this embodiment.

Ag−Cu合金の例として、表1の■の合金が上げられ
る。
As an example of the Ag-Cu alloy, the alloy shown in (■) in Table 1 can be mentioned.

第4図は本発明の第4の実施例を示す図で、電子部品の
素子13にCu −Z nの溶射層1o、その上にAg
を60重量%以上含むCu合金層15を溶射し、その表
面を研磨後、有機酸あるいはフラックスで還元し、Sn
合金のコーティング層11を形成して電極を形成する方
法を示す。
FIG. 4 is a diagram showing a fourth embodiment of the present invention, in which an element 13 of an electronic component is coated with a thermally sprayed layer 1o of Cu-Zn, and a layer 1o of Ag is deposited thereon.
A Cu alloy layer 15 containing 60% by weight or more of Sn is thermally sprayed, its surface is polished, and then reduced with an organic acid or flux.
A method of forming an electrode by forming an alloy coating layer 11 is shown.

半田デイツプ3回まで半田付状態が良好な電極を得るに
は、同図の溶射層15の溶射金属粒子の酸化を極力小さ
くする必要があり、P−Cu合金以外の溶射金属として
は、Agを60重量%以上含むCu合金が適している。
In order to obtain an electrode with good soldering condition up to three solder dips, it is necessary to minimize the oxidation of the sprayed metal particles in the sprayed layer 15 shown in the figure. A Cu alloy containing 60% by weight or more is suitable.

その合金の例を、表1の■に示す。Examples of such alloys are shown in Table 1 (■).

第6図は、以上の本発明の各実施例の方法と従来の方法
にて電極を形威し、半田デイツプにより半田付性を比較
検討した結果を示す。第6図よりわかるように、従来の
電極形成方法では、デイツプ半田付の回数とともに半田
付歩留が極端に低下する。本発明の各実施例の電極形成
方法では、デイツプ半田付を繰り返しても半田付歩留り
は良好である。特にP−Cu合金層とその上にSn合金
をコーティングした実施例2,3は、デイツプ半田付を
3回以上行っても非常に良好な状態であることがわかる
FIG. 6 shows the results of a comparative study of solderability using solder dips after forming electrodes using the method of each embodiment of the present invention and the conventional method. As can be seen from FIG. 6, in the conventional electrode forming method, the soldering yield extremely decreases as the number of dip soldering increases. In the electrode forming method of each embodiment of the present invention, the soldering yield is good even if dip soldering is repeated. In particular, it can be seen that Examples 2 and 3, in which the P-Cu alloy layer and the Sn alloy were coated thereon, remained in very good condition even after dip soldering was performed three or more times.

発明の効果 本発明は、以上説明したような電極形成方法であるため
、以下のような効果を奏する。
Effects of the Invention Since the present invention is an electrode forming method as described above, it has the following effects.

溶射時に酸化を殆ど生じないP−Cu合金、あるいはA
g−Cu合金を用いるため、デイツプ半田付を繰り返し
ても半田付性は良好な状態を保つ。
P-Cu alloy or A that hardly oxidizes during thermal spraying
Since g-Cu alloy is used, solderability remains good even after repeated dip soldering.

特にP−Cu合金を溶射し、その表面を研磨し還元後、
Sn合金をコーティングする電極形成法では、半田付性
の非常に良好な電極が得られる。
In particular, after spraying P-Cu alloy and polishing and reducing the surface,
The electrode formation method of coating with Sn alloy provides electrodes with very good solderability.

また、溶射金属粒子の酸化が少ないため、粒子間の結合
力も強く、電極としての強度の向上が計れる。
In addition, since the sprayed metal particles are less oxidized, the bonding force between the particles is strong, and the strength of the electrode can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の第1〜第4実施例の電極形成
方法で電極形成を行った電子部品の断面図、第5図は溶
射金属層の表面処理の必要性を3 説明する断面図、第6図は本発明の各実施例と従来例の
半田付特性を比較して示したグラフ、第7図(a)〜(
C)は従来例の電極形成方法で電極形成を行った電子部
品の断面図である。 3−P−Cu、P−Ag−Cu合金の溶射金属層からな
る電極、10・・・・・・素子と電位差の少ない溶射金
属層、11・・・・・・Snあるいは5n−Pb合金の
コーティング層、13・・・・・・素子、14・・・・
・・Agを20%以上含むCu合金の溶射金属層、15
・・・・・・Agを60%以上含むCu合金の溶射金属
層。
Figures 1 to 4 are cross-sectional views of electronic components in which electrodes were formed using the electrode formation methods of the first to fourth embodiments of the present invention, and Figure 5 illustrates the necessity of surface treatment of the sprayed metal layer. FIG. 6 is a graph comparing the soldering characteristics of each embodiment of the present invention and the conventional example, and FIG. 7(a) to (
C) is a cross-sectional view of an electronic component in which electrodes were formed using a conventional electrode forming method. 3-Electrode made of a sprayed metal layer of P-Cu or P-Ag-Cu alloy, 10...A sprayed metal layer with a small potential difference from the element, 11...Sn or 5n-Pb alloy Coating layer, 13... Element, 14...
・・Sprayed metal layer of Cu alloy containing 20% or more of Ag, 15
......A thermally sprayed metal layer of a Cu alloy containing 60% or more of Ag.

Claims (9)

【特許請求の範囲】[Claims] (1) 電子部品の電極形成を溶射にて行なう方法にお
いて、溶射材としてPを0.1〜10重量%を含むCu
合金を用いて溶射することを特徴とする電子部品の電極
形成方法。
(1) In a method of forming electrodes of electronic components by thermal spraying, Cu containing 0.1 to 10% by weight of P is used as a thermal spraying material.
A method for forming electrodes of electronic components, characterized by thermal spraying using an alloy.
(2) 複数の金属層から構成された電極の少なくとも
1つの金属層を、Pを0.1〜10重量%含むCu合金
を溶射材として溶射して形成することを特徴とする電子
部品の電極形成方法。
(2) An electrode for an electronic component, characterized in that at least one metal layer of an electrode composed of a plurality of metal layers is formed by thermal spraying a Cu alloy containing 0.1 to 10% by weight of P as a thermal spraying material. Formation method.
(3) 電極の複数の層のうち最外層がSnまたはSn
合金である特許請求の範囲第2項記載の電子部品の電極
形成方法。
(3) Outermost layer of multiple layers of electrode is Sn or Sn
A method for forming an electrode of an electronic component according to claim 2, wherein the electrode is an alloy.
(4) P−Cu合金の溶射層の表面の凹凸を0.5m
m以下にした後、P−Cu合金の表面を還元し、その上
にSnまたはSn合金層を形成する特許請求の範囲第2
項記載の電子部品の電極形成方法。
(4) The unevenness of the surface of the sprayed layer of P-Cu alloy is 0.5 m.
m or less, the surface of the P-Cu alloy is reduced, and a Sn or Sn alloy layer is formed thereon.
A method for forming an electrode of an electronic component as described in Section 1.
(5) 電極の複数の金属層のうち最内層がCu−Zn
合金である特許請求の範囲第2項記載の電子部品の電極
形成方法。
(5) The innermost layer of the multiple metal layers of the electrode is Cu-Zn.
A method for forming an electrode of an electronic component according to claim 2, wherein the electrode is an alloy.
(6) 溶射により電極として形成されたP−Cu合金
の厚さが0.7mm以下である特許請求の範囲第1項ま
たは第2項記載の電子部品の電極形成方法。
(6) A method for forming an electrode for an electronic component according to claim 1 or 2, wherein the P-Cu alloy formed as an electrode by thermal spraying has a thickness of 0.7 mm or less.
(7) P−Cu合金の層に接して、その内側に溶射に
より形成された層がAgを20重量%以上含むCu合金
である特許請求の範囲第2項記載の電子部品の電極形成
方法。
(7) The method for forming an electrode for an electronic component according to claim 2, wherein the layer formed by thermal spraying on the inner side of the P-Cu alloy layer is a Cu alloy containing 20% by weight or more of Ag.
(8) 複数の金属層から構成された電極の内、その最
外層はSnまたはSn合金にて形成し、最外層に接する
金属層はAgまたはAgを60重量%以上含むCu合金
を溶射して形成することを特徴とする電子部品の電極形
成方法。
(8) Among the electrodes composed of multiple metal layers, the outermost layer is formed of Sn or a Sn alloy, and the metal layer in contact with the outermost layer is thermally sprayed with Ag or a Cu alloy containing 60% by weight or more of Ag. 1. A method for forming an electrode of an electronic component, characterized by forming an electrode.
(9) 溶射した金属層の表面の凹凸を0.5mm以下
にした後、次の層の金属を溶射することを特徴とする電
子部品の電極形成方法。
(9) A method for forming an electrode for an electronic component, which comprises reducing the unevenness of the surface of the sprayed metal layer to 0.5 mm or less, and then spraying the next layer of metal.
JP1223521A 1989-08-30 1989-08-30 Method of forming electrode of electronic component Pending JPH0385715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223521A JPH0385715A (en) 1989-08-30 1989-08-30 Method of forming electrode of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223521A JPH0385715A (en) 1989-08-30 1989-08-30 Method of forming electrode of electronic component

Publications (1)

Publication Number Publication Date
JPH0385715A true JPH0385715A (en) 1991-04-10

Family

ID=16799445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223521A Pending JPH0385715A (en) 1989-08-30 1989-08-30 Method of forming electrode of electronic component

Country Status (1)

Country Link
JP (1) JPH0385715A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648123A (en) * 1992-04-02 1997-07-15 Hoechst Aktiengesellschaft Process for producing a strong bond between copper layers and ceramic
US6749339B1 (en) 1999-09-03 2004-06-15 Sumitomo Electric Industries, Ltd. Hydrodynamic bearing assembly and spindle motor having the same
US7215508B2 (en) 2001-03-08 2007-05-08 Ngk Spark Plug Co., Ltd. Ceramic dynamic-pressure bearing and hard disk drive using the same
JP2008082414A (en) * 2006-09-27 2008-04-10 Nippon Densan Corp Fluid dynamic bearing device, magnetic disk device and portable electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112449A (en) * 1975-03-28 1976-10-04 Hitachi Cable Filler metal and method of producing the same
JPS56122121A (en) * 1980-02-28 1981-09-25 Nippon Electric Co Method of manufacturing electronic part
JPS5969906A (en) * 1982-10-14 1984-04-20 松下電器産業株式会社 Method of forming terminal electrode of laminated ceramic condenser
JPS60130814A (en) * 1983-12-19 1985-07-12 松下電器産業株式会社 Method of forming external electrode of laminated ceramic capacitor
JPS6477912A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112449A (en) * 1975-03-28 1976-10-04 Hitachi Cable Filler metal and method of producing the same
JPS56122121A (en) * 1980-02-28 1981-09-25 Nippon Electric Co Method of manufacturing electronic part
JPS5969906A (en) * 1982-10-14 1984-04-20 松下電器産業株式会社 Method of forming terminal electrode of laminated ceramic condenser
JPS60130814A (en) * 1983-12-19 1985-07-12 松下電器産業株式会社 Method of forming external electrode of laminated ceramic capacitor
JPS6477912A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648123A (en) * 1992-04-02 1997-07-15 Hoechst Aktiengesellschaft Process for producing a strong bond between copper layers and ceramic
JP2944215B2 (en) * 1992-04-02 1999-08-30 ヘキスト・アクチェンゲゼルシャフト How to create a strong bond between a copper layer and a ceramic
US6749339B1 (en) 1999-09-03 2004-06-15 Sumitomo Electric Industries, Ltd. Hydrodynamic bearing assembly and spindle motor having the same
US7360950B2 (en) 1999-09-03 2008-04-22 Sumitomo Electric Industries, Ltd. Hydrodynamic bearing assembly
US7215508B2 (en) 2001-03-08 2007-05-08 Ngk Spark Plug Co., Ltd. Ceramic dynamic-pressure bearing and hard disk drive using the same
JP2008082414A (en) * 2006-09-27 2008-04-10 Nippon Densan Corp Fluid dynamic bearing device, magnetic disk device and portable electronic equipment

Similar Documents

Publication Publication Date Title
US5038996A (en) Bonding of metallic surfaces
US4441118A (en) Composite copper nickel alloys with improved solderability shelf life
JPS586143A (en) Semiconductor device
EP1011118A1 (en) Electronic component
WO2014020751A1 (en) Component having electrode dissolution prevention layer, and manufacturing method therefor
US10780530B2 (en) Solder ball, solder joint, and joining method
US5390845A (en) Low-bridging soldering process
JP2003198117A (en) Soldering method and junction structure body
US3393446A (en) Method for joining aluminum to metals
KR100272682B1 (en) Soldering method
EP0365807B1 (en) Bonding of metallic surfaces
JPH08164496A (en) Sn-zn solder, sn-zn-bi solder, method for surface treatment of same, and mounted substrate using it
CN109326530B (en) Soldering conductors to aluminum metallizations
JPH0385715A (en) Method of forming electrode of electronic component
JP5001655B2 (en) Solder composition and solder layer forming method using the same
EP2669937B1 (en) METHOD FOR MANUFACTURING Sn ALLOY BUMP
JP2000054189A (en) MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JPH05337679A (en) Solder powder for cream solder and its production
JP4724650B2 (en) Solder joining method and solder joint
JP3018507B2 (en) Chip type electronic components
JPH0845938A (en) Semiconductor device and its manufacture
JPH07188942A (en) Tin and tin alloy plating material excellent in oxidation resistance and its production
JP2000307223A (en) Substrate for electronic circuit and manufacture of electronic circuit using the same
JPS6318695A (en) Wiring board
JPS619992A (en) Creamy solder