JPH0385302A - Operating method of steam turbine equipment - Google Patents

Operating method of steam turbine equipment

Info

Publication number
JPH0385302A
JPH0385302A JP22040089A JP22040089A JPH0385302A JP H0385302 A JPH0385302 A JP H0385302A JP 22040089 A JP22040089 A JP 22040089A JP 22040089 A JP22040089 A JP 22040089A JP H0385302 A JPH0385302 A JP H0385302A
Authority
JP
Japan
Prior art keywords
steam
valve
nozzle
turbine
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22040089A
Other languages
Japanese (ja)
Inventor
Masahiko Sanada
真田 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22040089A priority Critical patent/JPH0385302A/en
Publication of JPH0385302A publication Critical patent/JPH0385302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To protect a specific nozzle from erosion by selectively opening one or more than specific governing valve and performing control in a steam turbine wherein the steam inflows to steam chambers divided to the plural in the steam inflow parts in the steam turbine are controlled respectively by the governing valves. CONSTITUTION:Steam generated in a boiler 1 is lead to a turbine 7 through a main steam pipe 2 and a nozzle (not shown in the drawing), and the steam volume flows into the turbine 7 is controlled by performing drive control of governing valves 3a-3b provided at the inlet port of the turbine 7, for example, by mechanical cams. The mechanical cams are constructed so as to move cam levers 10a-10d due to the rotation of cams 9a-9b mounted to a cam shaft 8 in a vertical direction, and that movement is transmitted to the valve rod 11a of respective governing valves 3a-3b. In this instance, the mounting states of respective cams 9a-9b on the cam shaft 8 are properly changed, for example, the first valve cam 9a is exchanged with the second valve cam 9b to protect the same nozzle from the intensive erosion.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、蒸気タービン設備の第一段ノズル浸食対策の
為の蒸気加減弁制御に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a steam control valve control for preventing erosion of a first stage nozzle of steam turbine equipment.

(従来の技術) 蒸気タービン設備において、ボイラから送られてくる蒸
気は、蒸気止め弁、蒸気加減弁を過つて、第一段ノズル
に導かれる。
(Prior Art) In steam turbine equipment, steam sent from a boiler passes through a steam stop valve and a steam control valve, and is guided to a first stage nozzle.

ここで、蒸気加減弁は、低流量時の性能を良好にする目
的で、1井目がほぼ全開すると、2弁目が開き始め、2
弁目がほぼ全開すると3井目が開き始めるといった様に
決まった順番に開くように、機械式のカム又は電気信号
によって設定されており、更に第一段ノズル蒸気室は、
蒸気加減弁に対応して、通常4つに分割されている。
Here, in order to improve the performance at low flow rates, the steam control valve starts to open when the first well is almost fully opened, and the second well starts to open.
It is set by a mechanical cam or electric signal to open in a fixed order, such as when the valve is almost fully opened, the third well begins to open, and the first stage nozzle steam chamber is
It is usually divided into four parts corresponding to the steam control valves.

従来技術では、蒸気加減弁開閉順位はいつも同じである
ため、蒸気タービン起動時に蒸気が流入する部位(第一
段ノズル蒸気室)は常に同一部である。
In the conventional technology, since the opening/closing order of the steam control valve is always the same, the part (first stage nozzle steam chamber) into which steam flows when the steam turbine is started is always the same part.

(発明が解決しようとする課題) ところで、ボイラから送られてくる蒸気中には、ボイラ
チューブの酸化スケール等の微少な固形物が含まれてい
て、その多くは送気開始時に集中的にタービン内へ流入
する為、いつも送気開始時に開いている第一番目の蒸気
加減弁に対応した蒸気室に固形物が集中することになる
(Problem to be solved by the invention) By the way, the steam sent from the boiler contains small amounts of solid matter such as oxidized scale on the boiler tube, and most of it is concentrated at the beginning of air supply to the turbine. Since the solids flow into the steam chamber, the solids will concentrate in the steam chamber corresponding to the first steam control valve, which is always open at the start of air supply.

このため、一番目に開く蒸気加減弁に対応したノズルが
固形物による浸食を受け、ノズル面積が拡大する。浸食
を受けたノズル部では、充分な圧力降下をせず、またノ
ズルから噴出する蒸気の方向も、正常なノズル部と変わ
る。このためノズルを通って噴出した蒸気力を受けて回
転する動翼は、正常ノズル部と浸食を受けたノズル部を
通過することにより、1回転する毎に力の方向と大きさ
の変化を受ける。
For this reason, the nozzle corresponding to the steam control valve that opens first is eroded by solid matter, and the nozzle area is expanded. In the nozzle part that has been eroded, there is not a sufficient pressure drop, and the direction of steam ejected from the nozzle is also different from that in a normal nozzle part. For this reason, the rotor blades, which rotate in response to the steam power ejected through the nozzle, undergo changes in the direction and magnitude of the force every time they rotate as they pass through the normal nozzle part and the nozzle part that has been eroded. .

浸食量の増加に伴って、1回転する毎にくり返される力
の方向と大きさの変化によるくり返し応力も大きくなっ
て、許容量を超えた浸食が発生した場合は、動翼の許容
強度を上回るくり返し応力となって、動翼を破損するこ
とになる。
As the amount of erosion increases, the repeated stress due to changes in the direction and magnitude of the force that repeats each rotation also increases, and if erosion exceeding the allowable amount occurs, the allowable strength of the rotor blade should be reduced. This will result in repeated stress that exceeds the limit and damage the rotor blades.

従来は、第一段の第−弁に対応したノズルの浸食量が許
容値を超える前にノズルの補修を行って対応していたが
、ノズルの補修には数ケ月を要する場合があり1本格定
検毎に補修していた。また、ノズルの補修の都度、ノズ
ル蒸気室を焼鈍するため、ノズル蒸気室が軟化し、蒸気
室は数回の補修で新製する必要があることから+ 10
数年毎に蒸気室を新製する必要があった。
Previously, the nozzle corresponding to the first stage valve was repaired before the amount of erosion exceeded the allowable value, but repairing the nozzle could take several months and one full-scale It was repaired at every regular inspection. Additionally, each time the nozzle is repaired, the nozzle steam chamber is annealed, which softens the nozzle steam chamber and requires a new steam chamber to be manufactured after several repairs.
A new steam room had to be built every few years.

本発明の目的は、ノズル浸食に対する簡略定検での対応
を可能とすると共に、ノズルの補修インターバルを延ば
し蒸気室の寿命を延ばすことにある。
An object of the present invention is to make it possible to deal with nozzle erosion through simple periodic inspections, and to extend the nozzle repair interval and extend the life of the steam chamber.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記課題を解決するためのものであって、蒸
気タービンの蒸気流入部が複数の蒸気室に仕切られてお
り、それぞれの蒸気室に流入する蒸気量を個々に加減す
る複数の加減弁を有する蒸気タービン設備の運転方法に
おいて、上記複数の加減弁のうちの一又は二以上の特定
の加減弁を選択的に開いて制御し、しかもその加減弁の
特定を適時変更することを特徴とするものである。
(Means for Solving the Problems) The present invention is intended to solve the above problems, and provides a steam turbine in which a steam inlet section of a steam turbine is partitioned into a plurality of steam chambers, and steam flowing into each steam chamber. In a method of operating a steam turbine facility having a plurality of regulating valves that individually adjust the amount, one or more specific regulating valves among the plurality of regulating valves are selectively opened and controlled; The feature is that the identification of the information is changed in a timely manner.

(作用) 蒸気流入が特定の蒸気室、特定のノズルに集中すると特
定のノズルが集中的浸食されるが、本発明によれば、こ
れが回避できる。
(Function) If the steam inflow is concentrated in a specific steam chamber or a specific nozzle, the specific nozzle will be eroded intensively, but according to the present invention, this can be avoided.

(実施例) 第1図は、蒸気の流れを示す系統図の一例である。ボイ
ラエで発生した蒸気は、主蒸気管2を通って、タービン
7に導かれる。タービン7の入口には、加減弁3a、 
3b、 3c、 3dが設けられており。
(Example) FIG. 1 is an example of a system diagram showing the flow of steam. Steam generated in the boiler passes through the main steam pipe 2 and is guided to the turbine 7. At the inlet of the turbine 7, a regulating valve 3a,
3b, 3c, and 3d are provided.

タービンに流入する蒸気量を制御している。加減弁38
〜3dは、機械式のカム又は、電気信号によって開閉す
る。
It controls the amount of steam flowing into the turbine. Adjustment valve 38
~3d is opened and closed by a mechanical cam or an electric signal.

第2図は、機械式カムの場合の加減弁の開閉機構の概念
を示す図である。加減弁を開閉する動きは、カム軸8に
よって伝えられる。カム軸8に取付けられたカム9a、
 9b、 9c、 9dは、カム軸8と共に回転し、カ
ムレバーLOa、 10b、 10c、 LOdを上下
方向に動かす。カムレバー10a〜10dの動きは、各
加減弁3a〜3dの弁体11aに伝えられる。第2図で
は、加減弁3aを代表して示し、加減弁3b〜3dは省
略する。弁体1.1aによって弁体12aが順番に開閉
されることにより、蒸気量が変化する。
FIG. 2 is a diagram showing the concept of an opening/closing mechanism of a control valve in the case of a mechanical cam. The movement of opening and closing the regulating valve is transmitted by the camshaft 8. a cam 9a attached to the camshaft 8;
9b, 9c, and 9d rotate together with the camshaft 8, and move the cam levers LOa, 10b, 10c, and LOd in the vertical direction. The movements of the cam levers 10a-10d are transmitted to the valve bodies 11a of the respective control valves 3a-3d. In FIG. 2, the regulator valve 3a is shown as a representative, and the regulator valves 3b to 3d are omitted. The amount of steam changes as the valve element 12a is sequentially opened and closed by the valve element 1.1a.

第3図、第4図は、第一段ノズルの構造を示す図である
。加減弁3a〜3dを通過した蒸気は、リード管48〜
4dを通って、第一段ノズル人口13a〜13dに導か
れ、第一段ノズル蒸気室14a−14dに設けられたノ
ズル15a〜15dから噴出される。ここで、第一段ノ
ズル蒸気室14a〜14dは通常4つに分割されており
、加減弁3a〜3dと、各蒸気室14a〜14dは1対
1の構成となっている。従って、特定の加減弁13aを
通過した蒸気は、特定の蒸気室14aに導かれ、特定の
ノズル15aから噴射され、同時に流入したスケールに
より特定のノズル15aを浸食する。第5図、第6図は
同一カム軸上の各カム9a〜9dの取付状態を変更した
例を示す図であり、第5図、第6図では、第工弁カム9
aと第2弁カム9bを入れ替えた状態を示している。
3 and 4 are diagrams showing the structure of the first stage nozzle. The steam that has passed through the control valves 3a to 3d is transferred to lead pipes 48 to 48.
4d, it is guided to the first stage nozzle populations 13a to 13d, and is ejected from the nozzles 15a to 15d provided in the first stage nozzle steam chambers 14a to 14d. Here, the first stage nozzle steam chambers 14a to 14d are usually divided into four, and the control valves 3a to 3d and each steam chamber 14a to 14d are in a one-to-one configuration. Therefore, the steam that has passed through the specific control valve 13a is guided to the specific steam chamber 14a, and is injected from the specific nozzle 15a, and at the same time, the specific nozzle 15a is eroded by the inflowing scale. 5 and 6 are views showing examples in which the mounting states of the respective cams 9a to 9d on the same camshaft have been changed.
This shows a state in which the valve a and the second valve cam 9b have been replaced.

この結果、第5図では第1弁、第2弁、第3弁。As a result, in FIG. 5, the first valve, the second valve, and the third valve.

第4弁の順に開いていた加減弁が、第6図では、第2弁
、第1弁、第3弁、第4弁の順に開くようになり、 同
一ノズル15aの集中的な浸食を回避することができる
The control valves, which were opened in the order of the fourth valve, now open in the order of the second valve, first valve, third valve, and fourth valve in FIG. 6, thereby avoiding intensive erosion of the same nozzle 15a. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同一ノズルへの集中的な浸食を回避す
ることが可能となり、この結果、ノズルの補修回数が減
少する。
According to the present invention, it is possible to avoid concentrated erosion to the same nozzle, and as a result, the number of times the nozzle is repaired is reduced.

又、補修溶接による残溜応力を除去するために行うノズ
ル蒸気室全体の焼鈍回数も減少することから、焼鈍にと
もなう材料の軟化も減少し、蒸気室の寿命も延びる。
Furthermore, since the number of times the entire nozzle steam chamber is annealed to remove residual stress due to repair welding is reduced, softening of the material due to annealing is also reduced, and the life of the steam chamber is extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蒸気タービン設備の系統図、第2図は加減弁の
開閉機構を示す説明図、第3図は蒸気タービン設備の蒸
気入口部付近立面図、第4図は第3図のmV−rV線矢
視図、第5図および第6図はそれぞれカム軸上のカム配
置の例を示す斜視図である。 l・・・ボイラ      2・・・主蒸気管。 3a、3b、3c、3d・・・加減弁  7・・・ター
ビン8・・・カム軸      9a、9b、9c、9
+1・・カム10a、10b、10c、10d−カムレ
バー11a・・・弁棒      12a・・・、弁体
13a、13b、13c、13d・・−第1段ノズル入
ロ14a、14b、14c、14d−第1段ノズル蒸気
室15a、15b、15c、15d−第1段ノズル第 図 第 図 第 ○ 第 図 9b −’Ia
Figure 1 is a system diagram of the steam turbine equipment, Figure 2 is an explanatory diagram showing the opening/closing mechanism of the control valve, Figure 3 is an elevation view of the steam inlet area of the steam turbine equipment, and Figure 4 is the mV of Figure 3. -rV line arrow view, FIG. 5, and FIG. 6 are perspective views showing examples of cam arrangement on the camshaft, respectively. l... Boiler 2... Main steam pipe. 3a, 3b, 3c, 3d...Adjustment valve 7...Turbine 8...Camshaft 9a, 9b, 9c, 9
+1...Cam 10a, 10b, 10c, 10d-Cam lever 11a...Valve stem 12a..., valve body 13a, 13b, 13c, 13d...-First stage nozzle entry hole 14a, 14b, 14c, 14d- 1st stage nozzle steam chamber 15a, 15b, 15c, 15d - 1st stage nozzle Figure ○ Figure 9b -'Ia

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンの蒸気流入部が複数の蒸気室に仕切られて
おり、それぞれの蒸気室に流入する蒸気量を個々に加減
する複数の加減弁を有する蒸気タービン設備の運転方法
において、上記複数の加減弁のうちの一又は二以上の特
定の加減弁を選択的に開いて制御し、しかもその加減弁
の特定を適時変更することを特徴とする蒸気タービン設
備の運転方法。
In a method of operating a steam turbine facility in which a steam inflow portion of a steam turbine is partitioned into a plurality of steam chambers, and a plurality of control valves are provided to individually adjust the amount of steam flowing into each steam chamber, the plurality of control valves are provided. 1. A method of operating steam turbine equipment, which comprises selectively opening and controlling one or more specific control valves, and changing the specificity of the control valves as appropriate.
JP22040089A 1989-08-29 1989-08-29 Operating method of steam turbine equipment Pending JPH0385302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22040089A JPH0385302A (en) 1989-08-29 1989-08-29 Operating method of steam turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22040089A JPH0385302A (en) 1989-08-29 1989-08-29 Operating method of steam turbine equipment

Publications (1)

Publication Number Publication Date
JPH0385302A true JPH0385302A (en) 1991-04-10

Family

ID=16750522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22040089A Pending JPH0385302A (en) 1989-08-29 1989-08-29 Operating method of steam turbine equipment

Country Status (1)

Country Link
JP (1) JPH0385302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069195A (en) * 2008-09-22 2010-04-02 Kenkichi Endo Strap hanger support
WO2012070269A1 (en) * 2010-11-22 2012-05-31 三菱重工業株式会社 Combination steam valve and steam turbine
JPWO2014155579A1 (en) * 2013-03-27 2017-02-16 三菱重工コンプレッサ株式会社 Multi-valve steam valve and steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069195A (en) * 2008-09-22 2010-04-02 Kenkichi Endo Strap hanger support
WO2012070269A1 (en) * 2010-11-22 2012-05-31 三菱重工業株式会社 Combination steam valve and steam turbine
JP2012112270A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Ind Ltd Combined steam valve and steam turbine
JPWO2014155579A1 (en) * 2013-03-27 2017-02-16 三菱重工コンプレッサ株式会社 Multi-valve steam valve and steam turbine
US10227898B2 (en) 2013-03-27 2019-03-12 Mitsubishi Heavy Industries Compressor Corporation Multi-valve steam valve and steam turbine

Similar Documents

Publication Publication Date Title
JP5301347B2 (en) Control device for combined cycle power generation system
EP2559862B1 (en) Control of a blow-off valve responsive to a sudden de-loading of a gas turbine
US20160010508A1 (en) Multi-valve-type steam valve and steam turbine
CA1290576C (en) Steam chest modifications for improved turbine operations
JPH0385302A (en) Operating method of steam turbine equipment
US4847039A (en) Steam chest crossties for improved turbine operations
JPH11241603A (en) Combination valve structure of steam circulation device
JPH09152903A (en) Method and device for generating plant operation paln
JPH02185605A (en) Operation of steam turbine apparatus at low load level
RU2211338C2 (en) Device for nozzle steam distribution in high-pressure cylinder of steam turbine
US7927064B2 (en) Pelton turbine system and method
JP2001263003A (en) Steam pressure control method of steam turbine and controller
JP7269098B2 (en) Steam control valve system, power plant and steam control valve operation method
JP2003148173A (en) Device for controlling rotation of gas turbine
JPS62267504A (en) Steam flow control valve
CN111677888A (en) Communicating pipe butterfly valve structure for fine adjustment of zero-output operation of low-pressure cylinder
JPH11280408A (en) Control method of steam turbine
JP6744243B2 (en) Power plant and power plant control method
JPH1026072A (en) Horizontal pelton water turbine
US20110103930A1 (en) Valve Sequencing System and Method for Controlling Turbomachine Acoustic Signature
JPH08284792A (en) Flowing water controller for waterwheel
US20170102719A1 (en) Exchangeable orifice binary valve
JPH1030545A (en) Guide vane closing device
JPH02153205A (en) Operation of steam flow control valve of steam turbine and its device
JP4413588B2 (en) Steam turbine plant and operation method thereof