JPH03811A - Polyester yarn - Google Patents

Polyester yarn

Info

Publication number
JPH03811A
JPH03811A JP13683889A JP13683889A JPH03811A JP H03811 A JPH03811 A JP H03811A JP 13683889 A JP13683889 A JP 13683889A JP 13683889 A JP13683889 A JP 13683889A JP H03811 A JPH03811 A JP H03811A
Authority
JP
Japan
Prior art keywords
intrinsic viscosity
long period
period value
polyester fiber
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13683889A
Other languages
Japanese (ja)
Other versions
JP2555730B2 (en
Inventor
Tsugihiko Kai
甲斐 二男子
Masao Seki
昌夫 関
Kazuyoshi Koide
小出 和佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1136838A priority Critical patent/JP2555730B2/en
Publication of JPH03811A publication Critical patent/JPH03811A/en
Application granted granted Critical
Publication of JP2555730B2 publication Critical patent/JP2555730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title yarn useful for clothes and industrial materials, simultaneously satisfying specific physical properties such as intrinsic viscosity and tensile strength, having high strength, high modulus of elasticity, high crystallizability and low shrinkage. CONSTITUTION:The aimed yarn simultaneously satisfying characteristics of (A) <=0.8, preferably <=0.7 intrinsic viscosity, (B) >=7.0g/d tensile strength, (C) >=140g/d initial modulus of elasticity, (D) a long period value obtained by X-ray diffraction having correlation shown by the formula De>Dm (De is long period value in direction of the equator line; Dm is long period value in direction of the meridian line, (E) >=1.3800 density (g/cm<3>), (F) <=5% shrinkage percentage in boiling water and (G) <=5% dry heat shrinkage percentage and preferably consisting essentially of polyethylene terephthalate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高強力、高弾性、高結晶性、低収縮性にすぐ
れたポリエステル系繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polyester fiber that is excellent in high strength, high elasticity, high crystallinity, and low shrinkage.

[従来の技術] ポリエステル系繊維は、広く衣料用及び産業資材用とし
て用いられている。特に産業用に用いられる繊維は、引
張り強度、初期弾性率の大きいもの、また熱による収縮
率の小さいものが要求される。
[Prior Art] Polyester fibers are widely used for clothing and industrial materials. In particular, fibers used for industrial purposes are required to have high tensile strength, high initial elastic modulus, and low shrinkage rate due to heat.

従来、高強度ポリエステル繊維は、固相重合により、重
合度の大きいポリマーを使用し溶融紡糸した後、延伸す
ることが一般的である。
Conventionally, high-strength polyester fibers are generally melt-spun using a polymer with a high degree of polymerization through solid phase polymerization, and then stretched.

しかし、重合度の大きいポリエステルからは、高強力の
繊維が得られるが、その反面、固相重合という生産性の
劣る方法を必要とし、紡糸においても、高温、高圧に耐
える設備を必要とするという問題がある。
However, although high-strength fibers can be obtained from polyester with a high degree of polymerization, it requires a less productive method called solid-phase polymerization, and spinning requires equipment that can withstand high temperatures and high pressures. There's a problem.

また、延伸方法としては、ゾーン熱処理延伸法、誘電加
熱延伸法など数多くの例示がある。例えば、ゾーン熱処
理延伸法は、高温加熱、急冷、高温熱固定など、複雑な
工程であるため、加熱、冷却、バランスの少しの変動が
、糸特性に影響を与え、強力、弾性率、収縮率のバラン
スをとることが難かしいという問題があった。
Further, as the stretching method, there are many examples such as a zone heat treatment stretching method and a dielectric heating stretching method. For example, the zone heat treatment drawing method is a complex process that involves high-temperature heating, rapid cooling, and high-temperature heat setting, so slight fluctuations in heating, cooling, and balance can affect yarn properties, such as strength, elastic modulus, and shrinkage rate. The problem was that it was difficult to maintain a balance.

[発明が解決しようとする課題] 本発明は、通常の縮合重合反応で得られる重合度のポリ
エステル繊維を、低温プラズマ雰囲気中で延伸すること
により、高強力、高弾性率、高結晶性、低収縮性を同時
に満足させた繊維を提供することを目的とするものであ
る。
[Problems to be Solved by the Invention] The present invention aims to develop polyester fibers with high strength, high elastic modulus, high crystallinity, and low The purpose of this invention is to provide fibers that simultaneously satisfy shrinkage properties.

[課題を解決するための手段] 本発明は、上記目的を達成するために次の構成を有する
[Means for Solving the Problems] The present invention has the following configuration to achieve the above object.

(1)次の(イ)〜(ト)の特性を同時に満足すること
を特徴とするポリエステル系繊維。
(1) A polyester fiber characterized by simultaneously satisfying the following properties (a) to (g).

(イ)固有粘度二〇、8以下 (ロ)引張強度ニア、Og/d以上 (ハ)初期弾性率:140g/d以上 (ニ)X線回折から求めた長周期値が次の関係にある。(a) Intrinsic viscosity 20.8 or less (b) Tensile strength near, Og/d or more (c) Initial elastic modulus: 140 g/d or more (d) The long-period values obtained from X-ray diffraction have the following relationship.

De>Dm 但しDeは赤道線方向の長周期値 Dmは子午線方向の長周期値 (ホ)密度(g/coり  : 1. 3800以上(
へ)沸騰水収縮率=5%以下 0)150℃での乾熱収縮率−5%以下(2)ポリエス
テル系繊維が、ポリエチレンテレフタレートを主体とす
る繊維である(1)に記載のポリエステル系繊維。
De>Dm However, De is the long period value in the equatorial direction Dm is the long period value in the meridian direction (E) Density (g/cori: 1.3800 or more)
f) Boiling water shrinkage rate = 5% or less 0) Dry heat shrinkage rate at 150°C - 5% or less (2) The polyester fiber according to (1), wherein the polyester fiber is a fiber mainly composed of polyethylene terephthalate. .

本発明のポリエステル系繊維とは、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、あるいは、こ
れらに第3成分、たとえば、イソフタル酸スルホネート
、アジピン酸、イソフタル酸、ポリエチレングリコール
などを共重合またはブレンドして得られるものであり、
通常の方法によりチップ化された固有粘度0.8以下、
一般に衣料用として用いられる固有粘度0.7前後の繊
維化したものをいう。
The polyester fibers of the present invention are polyethylene terephthalate, polybutylene terephthalate, or those obtained by copolymerizing or blending these with a third component such as isophthalic acid sulfonate, adipic acid, isophthalic acid, polyethylene glycol, etc. can be,
Intrinsic viscosity 0.8 or less, chipped by a normal method,
It refers to fibers with an intrinsic viscosity of around 0.7 that are generally used for clothing.

本発明のポリエステル系繊維を得るには、固有粘度が0
.8以下であるポリエステルの未延伸糸、あるいは、半
延伸糸、延伸糸を、低温プラズマ雰囲気中で延伸を行な
うのである。低温プラズマにより、ポリエステル繊維内
のポリマー分子が著しく活性化し、極めて安定した延伸
が行なわれ、前述の特性を同時に満足した、優れた延伸
糸を得ることができる。かかるポリエステル系繊維は、
本発明者らによって初めて提供されるものである。
In order to obtain the polyester fiber of the present invention, the intrinsic viscosity is 0.
.. Undrawn yarn, semi-drawn yarn, or drawn yarn of polyester having a molecular weight of 8 or less is stretched in a low-temperature plasma atmosphere. The low-temperature plasma significantly activates the polymer molecules within the polyester fibers, resulting in extremely stable drawing, making it possible to obtain an excellent drawn yarn that satisfies the above-mentioned properties at the same time. Such polyester fibers are
This is provided for the first time by the present inventors.

本発明のポリエステル系繊維の特徴の一つは、固有粘度
が0.8以下であることである。
One of the characteristics of the polyester fiber of the present invention is that it has an intrinsic viscosity of 0.8 or less.

固有粘度とはポリエステル繊維ポリマーの重合の程度を
便宜的に表わすものであり、一般に高い重合度のものほ
ど高い固有粘度を示す。固有粘度を高(するには重合時
間を長くしたり、または固相重合などを行なうのが一般
的である。それに比例して製造コストも高くなるのが普
通である。特に固有粘度が0.8を越えると急激に製造
コストが高くなる。
Intrinsic viscosity is a convenient expression of the degree of polymerization of a polyester fiber polymer, and generally, the higher the degree of polymerization, the higher the intrinsic viscosity. In order to increase the intrinsic viscosity, it is common to lengthen the polymerization time or perform solid phase polymerization.The production cost also increases proportionately.In particular, when the intrinsic viscosity is 0. When the value exceeds 8, the manufacturing cost increases rapidly.

本発明の目的は、高強力、高弾性、低収縮性のポリエス
テル繊維を安価に提供することにあることから、本発明
で得られるポリエステル繊維の固有粘度は0. 8以下
、好ましくは0. 7以下とする必要がある。
Since the purpose of the present invention is to provide a polyester fiber with high strength, high elasticity, and low shrinkage at a low cost, the intrinsic viscosity of the polyester fiber obtained by the present invention is 0. 8 or less, preferably 0. Must be 7 or less.

さらに、本発明のポリエステル系維の特徴は、固有粘度
0. 8以下であるにもかかわらず引張強度7.0g/
d以上、初期弾性率140g/dと極めて高い引張り特
性を示すと同時に、沸騰水収縮率5%以下、150℃で
の乾熱収縮率5%以下と、極めて高い寸法安定性を示す
ことにある。この、引張り特性と寸法安定性とは反比例
的な関係にあるのが普通である。すなわち、高強力、高
弾性を得るためには、高倍率の延伸が一般に行なわれる
が、このようにして得られたポリエステル系繊維は高い
沸とう水収縮率あるいは乾熱収縮率を示すのが普通であ
る。また逆に、収縮率を低く押さえるためには、一般に
弛緩熱処理が行なわれるが、この場合は低い強度、低い
初期弾性を示すポリエステル繊維しか得られないのが普
通である。
Furthermore, the polyester fiber of the present invention is characterized by an intrinsic viscosity of 0. Tensile strength 7.0g/despite being less than 8
d or more, and exhibits extremely high tensile properties with an initial elastic modulus of 140 g/d, as well as extremely high dimensional stability with a boiling water shrinkage rate of 5% or less and a dry heat shrinkage rate of 5% or less at 150°C. . There is usually an inversely proportional relationship between tensile properties and dimensional stability. In other words, in order to obtain high strength and high elasticity, a high stretching ratio is generally performed, but the polyester fibers obtained in this way usually exhibit a high boiling water shrinkage rate or dry heat shrinkage rate. It is. Conversely, in order to keep the shrinkage rate low, relaxation heat treatment is generally performed, but in this case, only polyester fibers that exhibit low strength and low initial elasticity are usually obtained.

本発明はこのように、従来技術では排他的であった高い
引張り特性と高い寸法安定性を同時に満足するポリエス
テル系繊維を安価に提供できるのである。
In this manner, the present invention can provide at a low cost a polyester fiber that simultaneously satisfies high tensile properties and high dimensional stability, which were exclusive to the prior art.

さらに本発明のポリエステル系繊維は密度が1゜380
0g/cn1以上を示すのが特徴である。この密度以下
では、固有粘度0.8以下のポリエステル繊維では前述
の高い引張り特性は得られない。
Furthermore, the polyester fiber of the present invention has a density of 1°380.
It is characterized by exhibiting 0 g/cn1 or more. Below this density, polyester fibers with an intrinsic viscosity of 0.8 or less cannot obtain the above-mentioned high tensile properties.

加えて、本発明のポリエステル系繊維は、X線回折から
求めた結晶の赤道方向の長周期値Deが子午線方向の長
周期値Dmより大きいことにある。
In addition, in the polyester fiber of the present invention, the long period value De of the crystal in the equatorial direction determined by X-ray diffraction is larger than the long period value Dm in the meridian direction.

固有粘度が0.8以下のポリエステル系繊維は、Deが
Dmより小さいのが普通であり、本発明のポリエステル
系繊維が優れた引張り特性を示す一つの理由は、この結
晶構造の特異性にあるものと思われる。
Polyester fibers with an intrinsic viscosity of 0.8 or less usually have De smaller than Dm, and one reason why the polyester fibers of the present invention exhibit excellent tensile properties is the specificity of this crystal structure. It seems to be.

本発明の低温プラズマとは、特定のガスを封入した減圧
容器内で、高電圧を印加することにより発生するもので
、かかる放電は、火花放電、コロナ放電、グロー放電な
ど種々の形態のものがあるが、放電が均一で活性化作用
に優れたグロー放電が特に好ましい。放電周波数は、低
周波、高周波、マイクロ波を用いることができ、また直
流も用いることができる。
The low-temperature plasma of the present invention is generated by applying a high voltage in a reduced-pressure container filled with a specific gas, and such discharge can take various forms such as spark discharge, corona discharge, and glow discharge. However, glow discharge is particularly preferred because of its uniform discharge and excellent activation effect. As the discharge frequency, low frequency, high frequency, or microwave can be used, and direct current can also be used.

活性化を与えるガスとしては、例えば、Ar。Examples of the activation gas include Ar.

N2、He5CO2、C0102、N2oXCF4、N
H4、N2、空気などおよび、これらの混合された非重
合性のガスが好ましく、特に強いエツチング作用を有し
ないAr、I−(e、N2、空気、C01H20などが
好ましい。
N2, He5CO2, C0102, N2oXCF4, N
H4, N2, air, etc., and non-polymerizable gases mixed therewith are preferred, and Ar, I-(e, N2, air, C01H20, etc.), which do not have a particularly strong etching effect, are preferred.

本発明のポリエステル繊維表面は、当然のことながら表
面分子に種々の基が結合する。例えばカルボニル基、カ
ルボキシル基、ヒドロオキシ基、ヒドロオキシパーオキ
サイド基等の酸素含有基が付与される。
As a matter of course, various groups are bonded to surface molecules on the surface of the polyester fiber of the present invention. For example, an oxygen-containing group such as a carbonyl group, carboxyl group, hydroxyl group, or hydroxyperoxide group is added.

また使用するガスの種類によっては、窒素含有基などが
生成し、SR性能、吸水性能が同時に付与される。
Also, depending on the type of gas used, nitrogen-containing groups and the like may be generated, imparting SR performance and water absorption performance at the same time.

02F4、トリメトキシシランのような重合性のガスは
、プラスチックの表面に重合膜を形成するため、延伸性
を疎外する場合があり、撥水性などの機能を付与する場
合以外の使用は好まL <ない。
Polymerizable gases such as 02F4 and trimethoxysilane form a polymer film on the surface of plastics, which may impair stretchability, and are therefore preferably used for purposes other than imparting functions such as water repellency. do not have.

本発明のポリエステル系繊維を得るための低温プラズマ
処理は、0.01〜5 Q Torr、好ましくは0.
5〜2QTorrの圧力下で実施することが、放電安定
性の面から好ましい。
The low temperature plasma treatment to obtain the polyester fiber of the present invention is performed at a temperature of 0.01 to 5 Q Torr, preferably 0.01 to 5 Q Torr.
It is preferable to carry out under a pressure of 5 to 2 QTorr from the viewpoint of discharge stability.

プラズマ処理を実施する装置は、特に限定されるもので
はなく、真空容器内に、延伸装置を組み入れたバッチ式
型のもの、またはシール方式を取り入れた連続式型のも
のを使用することができ、プラズマ延伸ゾーンの前後に
、必要に応じて熱板、ホットローラーなどを接続しても
よい。
The apparatus for performing the plasma treatment is not particularly limited, and a batch type device incorporating a stretching device in a vacuum container or a continuous type device incorporating a sealing method can be used. A hot plate, hot roller, etc. may be connected before and after the plasma stretching zone, if necessary.

以下実施例により、本発明を説明するが、本発明はこれ
らに限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

なお、実施例、比較例に示す物性値は次の方法で測定し
た。
Note that the physical property values shown in Examples and Comparative Examples were measured by the following method.

[実施例] 次に実施例に基づいて説明するが、本発明に係る繊維特
性及び繊維構造パラメータの測定法は次の通りである。
[Example] Next, the method for measuring fiber properties and fiber structure parameters according to the present invention will be described based on Examples.

(イ)強度T/D、伸度E1及び初期引張抵抗度(弾性
率)Mi JIS−L1017によった。試料をかせ状にとり、2
0℃、65%RHの温湿度調節された部屋に24時間以
上放置後、“テンシロン UTL−4L”型引張試験機
(東洋ボールドウィン■製)を用い、試長25cm、引
張速度30cm/minで測定した。
(a) Strength T/D, elongation E1, and initial tensile resistance (modulus of elasticity) Mi according to JIS-L1017. Take the sample in a skein shape,
After being left in a temperature and humidity controlled room at 0°C and 65% RH for more than 24 hours, it was measured using a "Tensilon UTL-4L" type tensile tester (manufactured by Toyo Baldwin) with a sample length of 25 cm and a tensile speed of 30 cm/min. did.

(ロ)沸騰水収縮率ΔS 試料をかせ状にとり、20℃、65%RHの温湿度調節
室で24時間以上放置した後、試料の0゜1g/dに相
当する荷重を掛けて測定した長さLOの試料を布袋に入
れ、無緊張状態で沸騰水中30分間処理する。処理後の
サンプルを風乾し、上記温湿度調節室で24時間以上放
置し、再び上記荷重をかけて測定した長さしから次式に
よって算出した。
(b) Boiling water shrinkage rate ΔS A sample was taken in the shape of a skein, and after being left in a temperature and humidity controlled room at 20°C and 65% RH for more than 24 hours, the length was measured by applying a load equivalent to 0°1 g/d of the sample. The LO sample was placed in a cloth bag and treated in boiling water for 30 minutes under no tension. The sample after treatment was air-dried, left in the above-mentioned temperature and humidity control room for 24 hours or more, and the above-mentioned load was applied again, and the measured length was calculated using the following formula.

ΔS(%)−(Lo−L)/LoX100(ハ)乾熱収
縮率 試料をかぜ状にとり、20℃、65%RHり温湿度調節
室で24時間以上放置した後、試料の0゜1g/dに相
当する荷重を掛けて測定した長さLOの試料を無緊張状
態で150℃のオーブン中で30分間処理する。処理後
のサンプルを風乾し、上記温湿度調節室で24時間以上
放置し、再び上記荷重をかけて測定した長さしから次式
によって算出した。
ΔS (%) - (Lo-L) / LoX100 (c) Dry heat shrinkage rate A sample was taken in the form of a cold and left in a temperature and humidity control room at 20°C and 65% RH for more than 24 hours. A sample of length LO measured under a load corresponding to d is processed in an oven at 150° C. for 30 minutes without tension. The sample after treatment was air-dried, left in the above-mentioned temperature and humidity control room for 24 hours or more, and the above-mentioned load was applied again, and the measured length was calculated using the following formula.

ΔS(%)= (Lo−L)/Lox100(ニ)固有
粘度(IV) 試料をオルソクロロフェノール溶液に溶解し、オストワ
ルド粘度計を用いて25℃で測定した。
ΔS (%) = (Lo−L)/Lox100 (d) Intrinsic viscosity (IV) A sample was dissolved in an orthochlorophenol solution and measured at 25° C. using an Ostwald viscometer.

(ホ)複屈折 日本光学工業■製POH型偏光顕微鏡を用い、D線を光
源として通常のベレックコンペンセーター法により求め
た。
(e) Birefringence Birefringence was determined using a POH type polarizing microscope manufactured by Nippon Kogaku Kogyo (■) using the D line as a light source and the usual Berek compensator method.

(へ)密度 四塩化炭素を重液、n−ヘプタンを軽液として作成した
密度勾配管を用い、25℃で測定した。
(f) Density The density was measured at 25° C. using a density gradient tube prepared with carbon tetrachloride as a heavy liquid and n-heptane as a light liquid.

(ト)長周期() 小角X線散乱写真から、赤道線方向(De)及び子午線
方向(Dm)の大きさを求めた。
(g) Long period () The size in the equatorial direction (De) and meridian direction (Dm) was determined from the small-angle X-ray scattering photograph.

小角X線散乱写真撮影 X線発生装置 理学電機社製 Rυ−200型X 線源
:CuKα線 (Niフィルター使用) 出     カニ 50kV  150mAスリット系
:0.3mmφ 撮影条件 カメラ半径 400mm 露出時間 120分 フィルム Kodak DEF−5 [実施例コ 実施例1〜6.比較例1〜4 ポリエステルチップを公知の溶融紡糸法により紡糸速度
3000m/分で140デニール、24フイラメントの
半延伸糸を得た。該糸の固有粘度は0.635であった
。この糸を両端にシール機構を施した連続加工式プラズ
マ処理機で、次の雰囲気で延伸を実施した。
Small-angle X-ray scattering photography X-ray generator manufactured by Rigaku Denki Co., Ltd. Rυ-200 type DEF-5 [Examples Examples 1 to 6. Comparative Examples 1 to 4 Semi-drawn yarns of 140 denier and 24 filaments were obtained from polyester chips using a known melt spinning method at a spinning speed of 3000 m/min. The intrinsic viscosity of the yarn was 0.635. This yarn was drawn in the following atmosphere using a continuous processing plasma processing machine equipped with a sealing mechanism at both ends.

(低温プラズマ条件) 使用ガス:空  気 周波数:110KHz 処理圧カニ 8. 10Torr 印加電圧:3,4KV 次にプラズマ雰囲気中で延伸した延伸糸の物性を第1表
に示す。
(Low temperature plasma conditions) Gas used: Air Frequency: 110KHz Processing pressure Crab 8. 10 Torr Applied voltage: 3.4 KV Table 1 shows the physical properties of the drawn yarn drawn in a plasma atmosphere.

比較例として、プラズマ雰囲気中で延伸することなく9
0℃及び150℃の熱板を用いて延伸したもの(比較例
1.2)、熱板を用いないで冷延伸したもの(比較例3
)、また10Torrの減圧下で延伸したもの(比較例
4)(いずれも各々限界延伸倍率で延伸)各糸の物性を
第1表に示す。
As a comparative example, 9 without stretching in a plasma atmosphere.
Stretched using hot plates at 0°C and 150°C (Comparative Example 1.2), cold stretched without using a hot plate (Comparative Example 3)
), and one drawn under a reduced pressure of 10 Torr (Comparative Example 4) (all drawn at the respective limit stretching ratios). Table 1 shows the physical properties of each yarn.

プラズマ雰囲気中で延伸した糸は、高重合度原料使いの
糸なみに高強力、高弾性率を示し、高結晶性、低収縮性
の特性を兼ね備えた高品質の糸が達成されている。また
プラズマ雰囲気中で行なう延伸は、延伸性が飛躍的に向
上する。
The yarn drawn in a plasma atmosphere exhibits high strength and high elastic modulus comparable to yarn made from highly polymerized raw materials, and has achieved high quality yarn with high crystallinity and low shrinkage characteristics. Furthermore, stretching performed in a plasma atmosphere dramatically improves stretchability.

[発明の効果] 本発明のポリエステル系繊維は、衣料用グレードの固有
粘度の原料で高強力、高弾性率、高結晶性、低収縮性を
有し、従来のポリエステル系繊維では存在しない極めて
優れた上記物性を同時に満足する繊維である。したがっ
て、衣料用、産業用など汎用性に著しく優れる。
[Effects of the Invention] The polyester fiber of the present invention is a raw material with a clothing-grade intrinsic viscosity and has high strength, high elastic modulus, high crystallinity, and low shrinkage, and has extremely excellent properties that do not exist in conventional polyester fibers. It is a fiber that simultaneously satisfies the above physical properties. Therefore, it has excellent versatility in applications such as clothing and industrial use.

Claims (2)

【特許請求の範囲】[Claims] (1)次の(イ)〜(ト)の特性を同時に満足すること
を特徴とするポリエステル系繊維。 (イ)固有粘度:0.8以下 (ロ)引張強度:7.0g/d以上 (ハ)初期弾性率:140g/d以上 (ニ)X線回折から求めた長周期値が次の関係にある。 De>Dm 但しDeは赤道線方向の長周期値 Dmは子午線方向の長周期値 (ホ)密度(g/cm^3):1.3800以上(ヘ)
沸騰水収縮率:5%以下 (ト)150℃での乾熱収縮率:5%以下
(1) A polyester fiber characterized by simultaneously satisfying the following properties (a) to (g). (a) Intrinsic viscosity: 0.8 or less (b) Tensile strength: 7.0 g/d or more (c) Initial elastic modulus: 140 g/d or more (d) Long-period values determined from X-ray diffraction have the following relationship. be. De>Dm However, De is the long period value in the equatorial direction Dm is the long period value in the meridian direction (E) Density (g/cm^3): 1.3800 or more (F)
Boiling water shrinkage rate: 5% or less (g) Dry heat shrinkage rate at 150°C: 5% or less
(2)ポリエステル系繊維が、ポリエチレンテレフタレ
ートを主体とする繊維である請求項(1)に記載のポリ
エステル系繊維。
(2) The polyester fiber according to claim (1), wherein the polyester fiber is a fiber mainly composed of polyethylene terephthalate.
JP1136838A 1989-05-30 1989-05-30 Polyester fiber Expired - Lifetime JP2555730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136838A JP2555730B2 (en) 1989-05-30 1989-05-30 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136838A JP2555730B2 (en) 1989-05-30 1989-05-30 Polyester fiber

Publications (2)

Publication Number Publication Date
JPH03811A true JPH03811A (en) 1991-01-07
JP2555730B2 JP2555730B2 (en) 1996-11-20

Family

ID=15184687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136838A Expired - Lifetime JP2555730B2 (en) 1989-05-30 1989-05-30 Polyester fiber

Country Status (1)

Country Link
JP (1) JP2555730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090166A1 (en) * 2022-10-26 2024-05-02 大日本印刷株式会社 Outer packaging material for vacuum thermal insulation materials, vacuum thermal insulation material, and article with vacuum thermal insulation material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716915A (en) * 1980-07-03 1982-01-28 Asahi Chem Ind Co Ltd Production of polyester fiber
JPS6024852A (en) * 1983-07-20 1985-02-07 中尾 隆造 Refuge tool with speed reducer
JPS60228545A (en) * 1984-04-06 1985-11-13 Toray Ind Inc Preparation of polymer resin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716915A (en) * 1980-07-03 1982-01-28 Asahi Chem Ind Co Ltd Production of polyester fiber
JPS6024852A (en) * 1983-07-20 1985-02-07 中尾 隆造 Refuge tool with speed reducer
JPS60228545A (en) * 1984-04-06 1985-11-13 Toray Ind Inc Preparation of polymer resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090166A1 (en) * 2022-10-26 2024-05-02 大日本印刷株式会社 Outer packaging material for vacuum thermal insulation materials, vacuum thermal insulation material, and article with vacuum thermal insulation material

Also Published As

Publication number Publication date
JP2555730B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JPH04504284A (en) Dimensionally stable polyester yarn for high tenacity treated cords
JPH03811A (en) Polyester yarn
US6156425A (en) Polyester filaments and method for manufacturing same
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JPS5818409A (en) Production of polyphenylene sulfide fiber
US5302452A (en) Drawn plastic product and a method for drawing a plastic product
JP2560837B2 (en) Polyamide fiber
JPH0536528B2 (en)
KR0161506B1 (en) Drawn plastic product and the method for drawing the plastic product
JP3144003B2 (en) Manufacturing method of polyester fiber
JPH038814A (en) Production of high-strength and high-modulus polyester-based fiber dyed in deep color
JP2776003B2 (en) Method for producing polyester fiber
JPH03279414A (en) High-strength polyester fiber excellent in heat resistance and production thereof
JP3039060B2 (en) Method for producing polyhexamethylene adipamide fiber
KR950000716B1 (en) Polyester fiber for industrial use and manufacturing method thereof
JPH0268321A (en) Production of polyester fiber having different shrinkage and different dyeability
JPH01162819A (en) Production of novel polyethylene fiber
JPH02130125A (en) Production of polyester film
JPH03137218A (en) Polyester fiber
JPH03137219A (en) Production of polyester fiber
JPH03199421A (en) Polyhexamethylene adipamide fiber
JPH03269112A (en) High-strength polyamide monofilament and production thereof
JPH03199420A (en) High-strength polyhexamethylene adipamide fiber
JPS62184115A (en) Production of polyamide fiber
JPH08260239A (en) Highly oriented amorphous polyester yarn and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13