JPH0380970B2 - - Google Patents

Info

Publication number
JPH0380970B2
JPH0380970B2 JP59231214A JP23121484A JPH0380970B2 JP H0380970 B2 JPH0380970 B2 JP H0380970B2 JP 59231214 A JP59231214 A JP 59231214A JP 23121484 A JP23121484 A JP 23121484A JP H0380970 B2 JPH0380970 B2 JP H0380970B2
Authority
JP
Japan
Prior art keywords
bypass
air supply
pipe
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59231214A
Other languages
Japanese (ja)
Other versions
JPS61112730A (en
Inventor
Masami Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP59231214A priority Critical patent/JPS61112730A/en
Publication of JPS61112730A publication Critical patent/JPS61112730A/en
Publication of JPH0380970B2 publication Critical patent/JPH0380970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 過給器を備えるガソリンエンジンは、過給器に
おいて圧縮されて高温となつた給気を冷却する必
要があるが、過冷すると、気化器に氷結現象が発
生するので、過度の冷却は避けねばならない。
Detailed Description of the Invention (Industrial Application Field) A gasoline engine equipped with a supercharger needs to cool the charge air that has become high temperature due to being compressed in the supercharger. Excessive cooling must be avoided as freezing may occur.

また過給器には、通常、エンジンの排気により
駆動されるターボ圧縮器が使用されるが、この圧
縮器の回転速度は、エンジンの排気量、すなわち
出力に左右されるので、給気の量と冷却前の温度
も、エンジンの出力に左右され、エンジンが高出
力の時ほど、給気が高圧となつて、その量が多
く、かつ温度が高くなる。
Additionally, a turbo compressor that is normally driven by engine exhaust gas is used in a supercharger, but the rotational speed of this compressor depends on the engine displacement, or output, so the amount of air supplied is The temperature before cooling also depends on the output of the engine; the higher the engine output, the higher the pressure of the intake air, the larger the amount, and the higher the temperature.

本発明は、このように変動する給気の温度を、
エンジンの出力に影響されずに、常時、ほぼ一定
の適温にまで低下させるようにした、冷却装置の
改良に関するものである。
The present invention can reduce the temperature of supply air that fluctuates in this way.
This invention relates to an improvement to a cooling system that is capable of always lowering the temperature to a nearly constant temperature without being affected by engine output.

(従来の技術) 給気を適温に冷却するには、通常、放熱器の入
口に、バイパス弁を設けて、自動的に給気が多量
で高温の時は、バイパス弁を閉じて、給気の全部
を放熱器に導き、給気が少量で低温の時は、バイ
パス弁を開いて、給気の一部または全部をバイパ
スさせ、冷却された給気とバイパスされた高温の
給気を混合し、適温としてエンジンに供給するよ
うになつている。
(Prior art) In order to cool the supply air to an appropriate temperature, a bypass valve is usually provided at the inlet of the radiator, and when the supply air is large and hot, the bypass valve is automatically closed and the supply air is cooled down. When the supply air is small and low temperature, open the bypass valve to bypass some or all of the supply air and mix the cooled supply air with the bypassed high temperature supply air. The temperature is then supplied to the engine at an appropriate temperature.

バイパス弁を自動的に開閉する手段としては、
給気の温度を温度センサーにより検知し、電気的
に制御する装置や、給気の圧力を圧力センサーに
より検知して、機械的に制御する装置が、既に実
用されている。
As a means of automatically opening and closing the bypass valve,
Devices that detect the temperature of supply air with a temperature sensor and control it electrically, and devices that detect the pressure of supply air with a pressure sensor and control it mechanically, are already in practical use.

(本発明が解決しようとする問題点) しかし、従来の装置は、いずれも構成が複雑で
あるため、高価となり、かつ故障を起こす恐れが
あつた。
(Problems to be Solved by the Present Invention) However, all conventional devices have complicated configurations, are expensive, and have a risk of failure.

(問題点を解決するための手段) 本発明は、温度制御弁を給気導入管の側面要所
に、給気出口を切設するとともに、導入管に、給
気出口を閉塞しうる長さの摺動筒を内嵌した放熱
弁部と、導入管の一端に、同方向に向けて気密に
接続した、それより小径のバイパス管の接続端部
に、上記摺動筒より小径の、有底の受圧筒を摺動
自在に内嵌して、その底部を、摺動筒の端部に連
結するとともに、摺動筒との間にバイパス孔を設
け、かつ、受圧筒の遊端部にバイパス溝を設けた
バイパス弁部と、受圧筒に負荷される。導入管に
流入する給気の圧力が低い時は、摺動筒が導入管
の給気出口を閉塞するとともに、導入管とバイパ
ス管が、バイパス孔とバイパス溝を介して連通
し、受圧筒に負荷される給気の圧力が高い時は、
摺動筒が給気出口を開口するとともに、受圧筒が
導入管とバイパス管の連通を断つように、摺動筒
を付勢する、摺動筒とバイパス管の間に介設され
たばねとより構成することにより、上述の問題点
の解決を図つたものである。
(Means for Solving the Problems) The present invention provides a temperature control valve with an air supply outlet cut at a key point on the side of the air supply introduction pipe, and a length that can block the air supply outlet in the introduction pipe. A heat dissipation valve part with a sliding tube fitted inside, and a bypass tube with a smaller diameter than the above-mentioned sliding tube, which is airtightly connected to one end of the inlet tube in the same direction. The pressure receiving cylinder at the bottom is slidably fitted inside, and the bottom part is connected to the end of the sliding cylinder, and a bypass hole is provided between the sliding cylinder and the free end of the pressure receiving cylinder. The load is applied to the bypass valve section provided with the bypass groove and the pressure receiving cylinder. When the pressure of the air supply flowing into the introduction pipe is low, the sliding tube closes the air supply outlet of the introduction pipe, and the introduction pipe and the bypass pipe communicate through the bypass hole and the bypass groove, and the pressure receiving cylinder is closed. When the supply air pressure is high,
A spring interposed between the sliding tube and the bypass pipe biases the sliding tube so that the sliding tube opens the air supply outlet and the pressure receiving tube cuts off communication between the inlet pipe and the bypass pipe. This configuration is intended to solve the above-mentioned problems.

(作用) 本発明によると、過給器の回転速度が変動し
て、給気の量が変動すると、その量に対応して、
受圧筒の受ける圧力が変動することにより、放熱
弁とバイパス弁が、その一方が開く時には他方が
閉じるように連動して、放熱器を通過する給気と
バイパスされる給気の量を自動的に調節し、エン
ジンへの給気温度を適宜に保つ。
(Function) According to the present invention, when the rotational speed of the supercharger fluctuates and the amount of air supply fluctuates, the
As the pressure applied to the pressure cylinder changes, the heat radiation valve and bypass valve are linked so that when one opens, the other closes, automatically adjusting the amount of supply air that passes through the heat radiator and the amount of supply air that is bypassed. to maintain the temperature of the supply air to the engine at an appropriate level.

(実施例) 第1図において、Aは放熱器、1は気化器、2
はエンジン、3は、エンジン2の排気により駆動
される過給器である。
(Example) In Fig. 1, A is a radiator, 1 is a vaporizer, 2
is an engine, and 3 is a supercharger driven by the exhaust gas of the engine 2.

4は放熱器Aのコア、5は入口タンク、6は出
口タンクで、入口タンク5には、第2図〜第4図
に示す温度制御弁Bが内設されている。
4 is the core of the radiator A, 5 is an inlet tank, 6 is an outlet tank, and the inlet tank 5 is provided with a temperature control valve B shown in FIGS. 2 to 4.

入口タンク5の第1図左側板(以下方向は図面
についていう)には、給気導入管7が貫設され、
その内端には、導入管7と同軸をなしてそれより
小径のバイパス管8の内端が、環状板9を介して
気密に連結され、バイパス管8は、入口タンク5
の右側板を貫通している。
A supply air introduction pipe 7 is installed through the left side plate of the inlet tank 5 in FIG. 1 (hereinafter the direction refers to the drawing).
The inner end of a bypass pipe 8 which is coaxial with the inlet pipe 7 and has a smaller diameter is airtightly connected to the inner end thereof via an annular plate 9.
It passes through the right side plate.

導入管7の下面における入口タンク5の内方要
所には、給気出口10が切設され、導入管7内に
は摺動筒11が嵌合し、導入管7と摺動筒1は、
摺動筒11の側方移動により出口10を開閉する
放熱弁部12を形成している。
An air supply outlet 10 is cut at a key point inside the inlet tank 5 on the lower surface of the introduction pipe 7. A sliding cylinder 11 is fitted into the introduction pipe 7, and the introduction pipe 7 and the sliding cylinder 1 are connected to each other. ,
A heat radiation valve section 12 is formed that opens and closes the outlet 10 by lateral movement of the sliding tube 11.

バイパス管8の内端部には、有底筒状の受圧筒
13が、その開口部をバイパス管8の方に向け
て、摺動自在に内嵌されている。受圧筒13の開
口側には、軸線方向を向く複数のバイパス溝15
が切込まれ、バイパス溝15の間には、案内片1
4が形成されている。
A bottomed cylindrical pressure receiving cylinder 13 is slidably fitted into the inner end of the bypass pipe 8 with its opening facing toward the bypass pipe 8 . A plurality of bypass grooves 15 facing in the axial direction are provided on the opening side of the pressure receiving cylinder 13.
is cut into the bypass groove 15, and a guide piece 1 is inserted between the bypass grooves 15.
4 is formed.

受圧筒13の底部は、上記摺動筒11の内端
に、複数の支持片16をもつて連結され、受圧筒
13と摺動筒11との間には、バイパス孔17が
形成されている。
The bottom of the pressure receiving cylinder 13 is connected to the inner end of the sliding cylinder 11 through a plurality of support pieces 16, and a bypass hole 17 is formed between the pressure receiving cylinder 13 and the sliding cylinder 11. .

バイパス管8と受圧筒13は、受圧筒13の側
方移動により、バイパス管8の内端を開閉するバ
イパス弁部18を形成している。
The bypass pipe 8 and the pressure cylinder 13 form a bypass valve section 18 that opens and closes the inner end of the bypass pipe 8 by lateral movement of the pressure cylinder 13.

上述の放熱弁12とバイパス弁18は、共に、
上記摺動筒11と環状板9の間に設けた圧縮ばね
19により、導入管7の外端方向に向けて付勢さ
れており、第2図に示すように、導入管7に流入
する給気の圧力が低く、従つて給気の量が少い時
は、圧縮ばね19が伸長して、放熱弁部12を閉
じるとともに、バイパス弁部18が開き、また、
第4図に示すように、給気の圧力が高く、従つて
給気の量が多い時は、その静圧と動圧により、圧
縮ばね19を圧縮して、放熱弁部12が開くとと
もに、バイパス弁部18が閉じるようになつてい
る。
The above-mentioned heat radiation valve 12 and bypass valve 18 are both
A compression spring 19 provided between the sliding tube 11 and the annular plate 9 biases the introduction tube 7 toward the outer end, and as shown in FIG. When the air pressure is low and therefore the amount of supplied air is small, the compression spring 19 expands and closes the heat dissipation valve section 12, and the bypass valve section 18 opens.
As shown in FIG. 4, when the pressure of the supply air is high and therefore the amount of supply air is large, the compression spring 19 is compressed by the static pressure and dynamic pressure, and the heat radiation valve part 12 opens. Bypass valve section 18 is adapted to close.

従つて、過給器3の回転が低速で、給気の圧力
と温度が低く、給気の量が少い時は、導入管7に
流入した給気の大部分が、バイパス孔17とバイ
パス溝15とバイパス管8を通過して冷却されず
に、また一部が、出口10を経て放熱器Aを通過
する間に冷却され、両径路を経た給気が合流し
て、エンジン2に供給される。
Therefore, when the rotation speed of the supercharger 3 is low, the pressure and temperature of the supply air are low, and the amount of supply air is small, most of the supply air flowing into the inlet pipe 7 flows through the bypass hole 17 and the bypass. The air is not cooled after passing through the groove 15 and the bypass pipe 8, and a portion of the air is cooled while passing through the outlet 10 and the radiator A, and the supply air that has passed through both paths joins and is supplied to the engine 2. be done.

過給器3の回転が高速となつて、給気の圧力と
温度が上昇するとともに、給気の量が増加するに
従い、自動的に次第に、放熱器Aを通過する給気
の量が増加するとともに、バイパスされる給気の
量が減少し、エンジン2へは、過給器3の回転速
度に影響されずに、適温の給気が供給される。
As the rotation of the supercharger 3 becomes faster, the pressure and temperature of the supply air rises, and the amount of the supply air increases, the amount of the supply air passing through the radiator A automatically gradually increases. At the same time, the amount of intake air that is bypassed is reduced, and intake air at an appropriate temperature is supplied to the engine 2 without being affected by the rotational speed of the supercharger 3.

なお、上述の実施例においては、温度調節弁B
を放熱器Aの入口タンク5内に一体に組込んであ
るが、調節弁Bを別体として、その出口10を、
パイプをもつて入口タンク5に接続してもよい。
In addition, in the above-mentioned embodiment, the temperature control valve B
is integrated into the inlet tank 5 of the radiator A, but the control valve B is separated and its outlet 10 is
It may be connected to the inlet tank 5 with a pipe.

(本発明の効果) 本発明の給気冷却装置は、エンジンの出力と無
関係にほぼ一定温度の給気をエンジンへ供給しう
る点は、従来の装置と同様であるが、従来のもの
に比して、構成が著しく簡単であるため、小型と
することができるとともに、容易に放熱器に組込
むことができ、かつ安価に製作することができ、
しかも故障の恐れが少い。
(Effects of the present invention) The charge air cooling device of the present invention is similar to conventional devices in that it can supply charge air at a substantially constant temperature to the engine regardless of the engine output, but compared to the conventional devices. Since the structure is extremely simple, it can be made small, easily incorporated into a heat sink, and manufactured at low cost.
Moreover, there is less risk of failure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の装置の一実施例と給気の径
路を示す正面図、第2図は、エンジン小出力時に
おける温度調節弁の中央縦断正面図、第3図は、
第2図の−線における断面図、第4図は、エ
ンジン大出力時における温度調節弁の中央縦断正
面図である。 A……放熱器、B……温度調節弁、1……気化
器、2……エンジン、3……過給器、4……コ
ア、5……入口タンク、6……出口タンク、7…
…導入管、8……バイパス管、9……環状板、1
0……給気出口、11……摺動筒、12……放熱
弁部、13……受圧筒、14……案内片、15…
…バイパス溝、16……支持片、17……バイパ
ス孔、18……バイパス弁部、19……圧縮ば
ね。
Fig. 1 is a front view showing an embodiment of the device of the present invention and the air supply path, Fig. 2 is a central longitudinal sectional front view of the temperature control valve at low engine output, and Fig. 3 is
2 is a sectional view taken along the - line in FIG. 2, and FIG. 4 is a central longitudinal sectional front view of the temperature control valve when the engine is at high output. A... Heat radiator, B... Temperature control valve, 1... Carburizer, 2... Engine, 3... Supercharger, 4... Core, 5... Inlet tank, 6... Outlet tank, 7...
...Introduction pipe, 8 ... Bypass pipe, 9 ... Annular plate, 1
0... Air supply outlet, 11... Sliding tube, 12... Heat radiation valve section, 13... Pressure receiving tube, 14... Guide piece, 15...
... Bypass groove, 16 ... Support piece, 17 ... Bypass hole, 18 ... Bypass valve part, 19 ... Compression spring.

Claims (1)

【特許請求の範囲】[Claims] 1 給気導入管の側面要所に、給気出口を切設す
るとともに、導入管に、給気出口を閉塞しうる長
さの摺動筒を内嵌した放熱弁部と、導入管の一端
に、同方向に向けて気密に接続した、それより小
径のバイパス管の接続端部に、上記摺動筒より小
径の、有底の受圧筒を摺動自在に内嵌して、その
底部を、摺動筒の端部に連結するとともに、摺動
筒との間にバイパス孔を設け、かつ、受圧筒の遊
端部にバイパス溝を設けたバイパス弁部と、受圧
筒に負荷される、導入管に流入する給気の圧力が
低い時は、摺動筒が導入管の給気出口を閉塞する
とともに、導入管とバイパス管が、バイパス孔と
バイパス溝を介して連通し、受圧筒に負荷される
給気の圧力が高い時は、摺動筒が給気出口を開口
するとともに、受圧筒が導入管とバイパス管の連
通を断つように、摺動筒を付勢する、摺動筒とバ
イパス管の間に介設されたばねとよりなる温度調
節弁の、給気出口を放熱器の給気入口に連通さ
せ、さらに、バイパス管の他端を、放熱器の給気
出口に接結したことを特徴とする過給器用給気冷
却装置。
1. An air supply outlet is cut at a key point on the side of the air supply introduction pipe, and a heat dissipation valve part is fitted in the introduction pipe with a sliding tube long enough to block the air supply outlet, and one end of the introduction pipe. Then, a pressure receiving cylinder with a bottom and a diameter smaller than that of the sliding cylinder is slidably fitted into the connecting end of a bypass pipe of a smaller diameter that is airtightly connected in the same direction. , a bypass valve part that is connected to the end of the sliding tube, has a bypass hole between it and the sliding tube, and has a bypass groove in the free end of the pressure-receiving tube; When the pressure of the air supply flowing into the introduction pipe is low, the sliding tube closes the air supply outlet of the introduction pipe, and the introduction pipe and the bypass pipe communicate through the bypass hole and the bypass groove, and the pressure receiving cylinder is closed. When the pressure of the supplied air to be loaded is high, the sliding tube opens the air supply outlet and urges the sliding tube so that the pressure receiving tube cuts off communication between the inlet pipe and the bypass pipe. The air supply outlet of a temperature control valve consisting of a spring interposed between the bypass pipe and the air supply valve is connected to the air supply inlet of the radiator, and the other end of the bypass pipe is connected to the air supply outlet of the radiator. A charge air cooling device for a supercharger, which is characterized by:
JP59231214A 1984-11-05 1984-11-05 Supply air cooling device for supercharger Granted JPS61112730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231214A JPS61112730A (en) 1984-11-05 1984-11-05 Supply air cooling device for supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231214A JPS61112730A (en) 1984-11-05 1984-11-05 Supply air cooling device for supercharger

Publications (2)

Publication Number Publication Date
JPS61112730A JPS61112730A (en) 1986-05-30
JPH0380970B2 true JPH0380970B2 (en) 1991-12-26

Family

ID=16920114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231214A Granted JPS61112730A (en) 1984-11-05 1984-11-05 Supply air cooling device for supercharger

Country Status (1)

Country Link
JP (1) JPS61112730A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242010A1 (en) * 1992-12-12 1994-06-16 Man Nutzfahrzeuge Ag Process for regulating the charge air temperature, and device for carrying it out
DE19507961A1 (en) * 1995-03-07 1996-09-12 Daimler Benz Ag Internal combustion engine with an exhaust gas turbocharger
KR101694070B1 (en) * 2015-10-28 2017-01-09 현대자동차주식회사 Cooling water circulation apparatus for turbocharger
CN111810288B (en) * 2020-06-24 2021-05-11 东风商用车有限公司 Controllable formula engine intercooler assembly of cooling temperature

Also Published As

Publication number Publication date
JPS61112730A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4385496A (en) Intake system for internal combustion engine provided with supercharger
US3712282A (en) Temperature control system for supercharged internal combustion engine
EP0871102A2 (en) Thermostat for an automotive engine cooling system
JPH0768897B2 (en) Engine cooling system
US3621825A (en) Exhaust gas recirculation control valve
US5488937A (en) Temperature control system for keeping temperature of an element of an internal combustion engine at a constant value
US6439467B2 (en) Thermostatic device with two levels of regulation operated selectively
JPH0380970B2 (en)
US5924299A (en) Monobloc component for a refrigerant fluid circuit, in particular for air conditioning the cabin of a motor vehicle
US4484541A (en) Cooling system for automotive internal combustion engine
US2667154A (en) Choke device
JPS61237998A (en) Radiator for supercharger incorporating supercharged air bypassing device
JPH1113548A (en) Regulator for gas fuel engine
JPS63246463A (en) Fuel regulator
JPS5818549A (en) Fuel feeder for internal combustion engine
GB2063998A (en) I.C. Engine Exhaust Brake for Motor Vehicles
JPS5819310Y2 (en) Exhaust gas relief valve device
US3796408A (en) Exhaust control valve
CA1076435A (en) Exhaust gas recirculation system
JPH04262052A (en) Fuel feeding device for internal combustion engine
US2289635A (en) Heat control valve for internal combustion engines
US5317994A (en) Engine cooling system and thermostat therefor
US1944396A (en) Heat control for manifolds
JPS61101617A (en) Thermostat for use in cooling water
SU653487A1 (en) Microrefrigerator