JPH0380966B2 - - Google Patents

Info

Publication number
JPH0380966B2
JPH0380966B2 JP60042127A JP4212785A JPH0380966B2 JP H0380966 B2 JPH0380966 B2 JP H0380966B2 JP 60042127 A JP60042127 A JP 60042127A JP 4212785 A JP4212785 A JP 4212785A JP H0380966 B2 JPH0380966 B2 JP H0380966B2
Authority
JP
Japan
Prior art keywords
volume chamber
intake
volume
cylinder
engine speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60042127A
Other languages
Japanese (ja)
Other versions
JPS61201819A (en
Inventor
Mitsuo Hitomi
Fumio Hitase
Kazuhiko Ueda
Yasuhiro Yuzuriha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60042127A priority Critical patent/JPS61201819A/en
Publication of JPS61201819A publication Critical patent/JPS61201819A/en
Publication of JPH0380966B2 publication Critical patent/JPH0380966B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果により出力の向上を
図るようにしたエンジンの吸気装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an intake system for an engine that aims to improve output through the dynamic effect of intake air.

(従来技術) 従来からエンジンの吸気装置においては、吸気
開始に伴つて生じる負圧液が吸気通路上流側の大
気または拡大室への開口端で反射されて正圧波と
なつて吸気ポート方向に戻されることを利用し、
上記正圧波が吸気弁の閉弁の寸前に吸気ポートに
達して吸気が吸い込まれるようにして、いわゆる
吸気の慣性効果で吸気の充填効率を高めるように
したものがある。このような技術を用いようとす
る場合に、吸気通路の形状が一定であると、吸気
通路に生じる圧力波の振動周期と吸気弁開閉周期
とがマツチングして慣性効果が高められるのは特
定速度域に限られる。
(Prior art) Conventionally, in engine intake systems, negative pressure fluid generated at the start of intake is reflected at the open end of the intake passageway to the atmosphere or to the enlarged chamber, forming a positive pressure wave and returning toward the intake port. Take advantage of the fact that
There is a system in which the positive pressure wave reaches the intake port just before the intake valve closes and the intake air is sucked in, thereby increasing the filling efficiency of the intake air due to the so-called inertia effect of the intake air. When trying to use such technology, if the shape of the intake passage is constant, the oscillation period of the pressure wave generated in the intake passage matches the intake valve opening/closing period, and the inertia effect is enhanced only at a certain speed. limited to the area.

このため、特開昭56−115819号公報に見られる
ように、エンジンの回転数に応じて吸気通路の長
さを変えるようにし、例えば、各気筒別の吸気通
路を上流部で分岐させて長い通路と短い通路とを
形成し、これらの通路の上流側を吸気拡大室等に
開口させるとともに、短い通路に開閉弁を設け
て、高速域でこの開閉弁を開くことにより吸気通
路の有効長を短縮するようにし、こうして低速域
と高速域とでそれぞれ吸気の慣性効果を高めるよ
うにした吸気装置も提案されている。
For this reason, as seen in Japanese Patent Application Laid-open No. 56-115819, the length of the intake passage is changed depending on the engine speed. A passage and a short passage are formed, and the upstream sides of these passages are opened to an intake expansion chamber, etc., and an on-off valve is provided in the short passage, and the effective length of the intake passage is increased by opening this on-off valve at high speeds. An intake system has also been proposed in which the length is shortened, thereby increasing the inertia effect of intake air in both the low speed range and the high speed range.

ところで、上記装置においては、低速域では各
気筒と容積部との間の気筒別吸気通路の有効長を
長くすることによつて、この通路内に生じる圧力
振動が気筒に有効に作用するようにしているが、
この振動によつて大きな慣性効果の得られる回転
域は比較的高回転寄りであるため、より低回転側
において、上記振動とは異なる吸気圧力振動を利
用することができれば、吸気充填効率をより一層
向上することが期待できる。
By the way, in the above device, by increasing the effective length of the intake passage for each cylinder between each cylinder and the volume part in the low speed range, the pressure vibrations generated in this passage are made to effectively act on the cylinder. Although,
The rotation range where a large inertial effect can be obtained by this vibration is relatively high rotation, so if it is possible to utilize intake pressure vibration, which is different from the vibration mentioned above, at lower rotation speeds, the intake air filling efficiency can be further improved. We can expect it to improve.

また、上記装置によると、高速域では各気筒別
の吸気通路の有効長が短縮されることにより、単
に各気筒と上記吸気通路の上流側開口端との圧力
伝播による慣性効果が高められるにすぎないが、
他の気筒に生じる圧力波をも有効に利用すること
ができれば、充填効率をより一層向上することが
期待できる。
Furthermore, according to the above device, in the high speed range, the effective length of the intake passage for each cylinder is shortened, so that the inertial effect due to pressure propagation between each cylinder and the upstream opening end of the intake passage is simply increased. No, but
If pressure waves generated in other cylinders can also be effectively utilized, it is expected that the filling efficiency will be further improved.

さらに、エンジン回転数の変動に対して最適な
容積部の容積は変化し、エンジン回転数の上昇に
対して容積部の容積が小さくなるように変化させ
ることができれば、さらに、充填効率を向上する
ことが期待できるものである。
Furthermore, the optimal volume of the volume section changes as the engine speed changes, and if the volume of the volume section can be changed to become smaller as the engine speed increases, the filling efficiency can be further improved. This is something that can be expected.

(発明の目的) 本発明は上記事情に鑑み、低速域から高速域に
までわたり、吸気通路に生じる圧力振動を利用し
て吸気充填効率を高めるとともに、特に、低速域
での吸気充填効率を従来のこの種の装置よりもさ
らに高めることができ、しかも高速域では、各気
筒間でも互いに他の気筒に生じる圧力波が有効に
作用し合うようにして吸気充填効率をより一層高
め、さらに、容積変化により吸気充填効率を高め
て、出力を向上するようにしたエンジンの吸気装
置を提供することを目的とするものである。
(Purpose of the Invention) In view of the above circumstances, the present invention aims to increase the intake air filling efficiency by utilizing pressure vibrations generated in the intake passage from low speed ranges to high speed ranges, and in particular improve the intake air filling efficiency in the low speed range compared to the conventional one. Furthermore, in the high-speed range, the pressure waves generated in each cylinder interact effectively with each other, further increasing the intake air filling efficiency, and further increasing the volume. It is an object of the present invention to provide an intake device for an engine that can increase intake air filling efficiency and improve output through changes.

(発明の構成) 本発明の吸気装置は、サージタンクを可動区画
部材によつて容積が可変な第1容積室と第2容積
室とに区画し、第1容積室と各気筒とを比較的長
い吸気通路で接続し、第2容積室と各吸気通路の
途中とをこれらの吸気通路を相互に連通して接続
し、上記第1容積室と第2容積室とを連通路によ
つて連通させるとともに、上記第2容積室に吸気
導入通路を接続し、この第2容積室と上記各吸気
通路との間にエンジン回転数が設定値以上の高速
域で開く開閉弁を設け、さらに、前記区画部材を
低速域ではエンジン回転数の上昇に応じて第1容
積室の容積を低減する方向に、高速域では第2容
積室の容積をエンジン回転数の上昇に応じて低減
する方向に移動操作する駆動装置を設けたことを
特徴とするものである。
(Structure of the Invention) The intake device of the present invention divides the surge tank into a first volume chamber and a second volume chamber whose volumes are variable by a movable partition member, and relatively separates the first volume chamber from each cylinder. The first volume chamber and the second volume chamber are connected by a long intake passage, the second volume chamber and the middle of each intake passage are connected by communicating with each other, and the first volume chamber and the second volume chamber are communicated with each other by a communication passage. At the same time, an intake introduction passage is connected to the second volume chamber, and an on-off valve is provided between the second volume chamber and each of the intake passages, which opens in a high speed range where the engine speed is equal to or higher than a set value. Operation of moving the partition member in a direction that reduces the volume of the first volume chamber as the engine speed increases in a low speed range, and in a direction that reduces the volume of the second volume chamber as the engine speed increases in a high speed range. The invention is characterized in that it is provided with a drive device that does the following.

(発明の効果) 本発明によれば、エンジン回転数が設定値未満
の低速域では、各気筒と第1容積室との間の比較
的長い吸気通路に吸気圧力振動が生じるととも
に、この第1容積室とこれに連通路を介して接続
された第2容積室との間の部分にも吸気圧力振動
を起すことにより、両者によつて高い充填効率が
得られるものである。
(Effects of the Invention) According to the present invention, in a low speed range where the engine speed is less than a set value, intake pressure vibration occurs in the relatively long intake passage between each cylinder and the first volume chamber, and By causing suction pressure oscillations also in the portion between the volume chamber and the second volume chamber connected thereto via the communication path, high filling efficiency can be obtained by both.

また、エンジン回転数が上昇し開閉弁が開いた
高速域では、第2容積室により各気筒から伝播す
る負圧波を正圧の圧力波に反転して反射させ、各
気筒と第2容積室の間の比較的短い通路に吸気圧
力振動が生じて、高速域での慣性効果が高められ
るとともに、第2容積室を介して他の気筒からの
圧力波を伝播させて、これらの圧力波の相乗作用
で充填効率を高めることができるものである。
In addition, in high-speed ranges when the engine speed increases and the on-off valve opens, the second volume chamber inverts the negative pressure waves propagating from each cylinder into positive pressure waves and reflects them. Intake pressure oscillations occur in the relatively short passage between the cylinders, increasing the inertia effect at high speeds, and also propagating pressure waves from other cylinders through the second volume chamber, creating a synergistic effect of these pressure waves. This function can increase filling efficiency.

また第1容積室と第2容積室とを区画する区画
部材を可動として、第1容積室と第2容積室の容
積を可変とし、駆動装置によつてエンジン回転数
に対応して容積を変化させるようにしたことによ
り、開閉弁の開閉に対応して容積を最適にして、
さらに吸気充填効率の向上が図れるものである。
しかも、サージタンクを区画部材で区画し、この
区画部材を移動させて第1および第2容積室の容
積を変化させるようにしたことにより、上記容積
可変構造がコンパクトに形成できるものである。
In addition, the partitioning member that partitions the first volume chamber and the second volume chamber is movable, so that the volumes of the first volume chamber and the second volume chamber are variable, and the volume is changed by the drive device in accordance with the engine rotation speed. This allows the volume to be optimized in response to the opening and closing of the on-off valve.
Furthermore, the intake air filling efficiency can be improved.
Moreover, by dividing the surge tank with a partition member and moving the partition member to change the volumes of the first and second volume chambers, the variable volume structure can be formed compactly.

(実施例) 以下、図面により本発明の実施例を説明する。
第1図はこの実施例の吸気装置を備えたエンジン
の断面正面図、第2図は概略平面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional front view of an engine equipped with an intake system of this embodiment, and FIG. 2 is a schematic plan view.

この実施例のエンジンは4気筒4サイクルエン
ジンであつて、シリンダブロツク2およびシリン
ダヘツド3からなるエンジン本体1に、4つの気
筒4a〜4dが形成されている。この各気筒4a
〜4dにはそれぞれピストン5の上方に燃焼室6
が形成され、この燃焼室6に吸気ポート7および
排気ポート8が開口し、これらのポート7,8に
動弁機構11によつて所定のタイミングで開閉す
る吸気弁9および排気弁10が装備されている。
The engine of this embodiment is a four-cylinder four-cycle engine, and an engine body 1 consisting of a cylinder block 2 and a cylinder head 3 has four cylinders 4a to 4d formed therein. Each cylinder 4a
~4d, each has a combustion chamber 6 above the piston 5.
An intake port 7 and an exhaust port 8 are opened in this combustion chamber 6, and these ports 7 and 8 are equipped with an intake valve 9 and an exhaust valve 10 that are opened and closed at predetermined timing by a valve mechanism 11. ing.

上記各気筒4d〜4dの各吸気ポート7には、
互いに独立した気筒別の吸気通路12a〜12d
が連通している。これらの吸気通路12a〜12
dの上流端は、ある程度の容量を有する第1容積
室13に接続されており、また、各吸気通路12
a〜12dの途中箇所にはこれらの吸気通路12
a〜12dを相互に連通する第2容積室14が接
続されている。
Each intake port 7 of each of the cylinders 4d to 4d has
Intake passages 12a to 12d for each cylinder independent of each other
are communicating. These intake passages 12a to 12
The upstream end of d is connected to the first volume chamber 13 having a certain capacity, and each intake passage 12
These intake passages 12 are located midway between a and 12d.
A second volume chamber 14 that communicates a to 12d with each other is connected.

上記第1容積室13および第2容積室14は、
吸気弁に介装したサージタンク15を区画部材1
6で分割することにより、このサージタンク15
内にそれぞれ区画形成され、第2容積室14の下
端に各吸気通路12a〜12dの途中箇所からの
分岐した連通孔17を開口させるとともに、この
連通孔17よりも上流側で各吸気通路12a〜1
2dを湾曲させて、その上流側を第1容積室13
の側方に開口させている。なお、上記各吸気通路
12a〜12dの上流側湾曲部分はサージタンク
15の第2容積室14の壁部を利用して一体に形
成されている。また、上記区画部材16は、一端
が枢支されて回動自在に取付けられ、その先端部
はサージタンク15内壁に摺接して移動し、両側
の第1容積室13および第2容積室14の容積が
可変なように構成されている。
The first volume chamber 13 and the second volume chamber 14 are
The surge tank 15 installed in the intake valve is partitioned into the partition member 1.
By dividing this by 6, this surge tank 15
A communication hole 17 is opened at the lower end of the second volume chamber 14 and is branched from a midway point of each intake passage 12a to 12d. 1
2d is curved, and its upstream side is connected to the first volume chamber 13.
It opens on the side. Note that the upstream curved portions of each of the intake passages 12a to 12d are integrally formed using the wall portion of the second volume chamber 14 of the surge tank 15. Further, the partitioning member 16 is rotatably attached with one end being pivoted, and its tip portion moves in sliding contact with the inner wall of the surge tank 15, and the partitioning member 16 is attached to the first volume chamber 13 and the second volume chamber 14 on both sides. It is configured to have a variable volume.

上記第2容積室14と各吸気通路12a〜12
dとの間の連通孔17には、それぞれ開閉弁19
が設けられている。この各開閉弁19は回動シヤ
フト19aに一体に連接され、該回動シヤフト1
9aの端部に駆動装置21の第1アクチユエータ
20が連接されて各気筒のものが連係して開閉作
動され、エンジン回転数が設定値未満の低速域で
は閉じられ、エンジン回転数が設定値以上の高速
域で開くように制御される。
The second volume chamber 14 and each intake passage 12a to 12
An on-off valve 19 is provided in each communication hole 17 between the
is provided. Each of the on-off valves 19 is integrally connected to a rotating shaft 19a.
The first actuator 20 of the drive device 21 is connected to the end of 9a, and each cylinder is opened and closed in conjunction with each other, and is closed in the low speed range where the engine speed is less than the set value, and when the engine speed is higher than the set value. It is controlled to open at high speeds.

また、上記第1容積室13と第2容積室14と
の間には、各吸気通路12a〜12dとは別に、
上記両容積室13,14を連通する連通路18が
設けられ、この実施例では前記区画部材16に連
通路18が開口形成されている。そして、上記区
画部材16には、この区画部材16を回動操作す
る駆動装置21の第2アクチユエータ23(第2
図では図示省略)が接続され、矢印a方向への区
画部材16の回動によつて第1容積室13の容積
を低減する一方、第2容積室14の容積を拡大
し、逆方向への回動によつて第2容積室14の容
積を低減する一方、第1容積室13の容積を拡大
するものである。
Moreover, between the first volume chamber 13 and the second volume chamber 14, apart from each intake passage 12a to 12d,
A communication passage 18 is provided that communicates both the volume chambers 13 and 14, and in this embodiment, the communication passage 18 is formed as an opening in the partition member 16. The partition member 16 is provided with a second actuator 23 (second
(not shown in the figure) is connected, and by rotating the partition member 16 in the direction of the arrow a, the volume of the first volume chamber 13 is reduced, while the volume of the second volume chamber 14 is expanded, and the volume of the second volume chamber 14 is expanded. The rotation reduces the volume of the second volume chamber 14 while expanding the volume of the first volume chamber 13.

さらに、上記第2容積室14の一端部には上流
側の吸気導入通路26が接続されており、この吸
気導入通路26にはスロツトル弁27が配設さ
れ、その上流端は図示しないエアフローメータ等
を介してエアクリーナに接続される。前記各吸気
通路12a〜12dの下流端近傍には、燃料通路
28に接続された燃料噴射弁29が配設されてい
る。
Furthermore, an upstream intake introduction passage 26 is connected to one end of the second volume chamber 14, and a throttle valve 27 is disposed in this intake introduction passage 26, and the upstream end thereof is connected to an air flow meter (not shown), etc. Connected to the air cleaner via. A fuel injection valve 29 connected to the fuel passage 28 is disposed near the downstream end of each of the intake passages 12a to 12d.

前記駆動装置21における第1および第2アク
チユエータ20,23は、エンジンコントロール
ユニツト37(ECU)からの制御信号が出力さ
れてその作動が制御され、該エンジンコントロー
ルユニツト37には回転数センサー38によるエ
ンジン回転数の検出信号が入力される。なお、図
において、40は排気マニホールドである。
The operation of the first and second actuators 20 and 23 in the drive device 21 is controlled by outputting a control signal from an engine control unit 37 (ECU). A rotation speed detection signal is input. In addition, in the figure, 40 is an exhaust manifold.

上記駆動装置21による開閉弁19の開閉と区
画部材16の作動は第3図A,Bに示すように、
エンジン回転数の設定値N0において、開閉弁1
9の開閉を行うものであつて、この設定値N0
満の低速域で開閉弁19を閉じ、設定値N0以上
の高速域で開閉弁19を開くものである。また、
区画部材16は、開閉弁19が閉じる低速域にお
いては、エンジン回転数の上昇に対応して第1容
積室13の容積が徐々に減少するようにa方向に
回動操作する一方、開閉弁19が開いている高速
域においては、エンジン回転数の上昇に対応して
第2容積室14の容積が徐々に減少するように逆
a方向に回動操作するものである。
The opening/closing of the on-off valve 19 and the operation of the partition member 16 by the driving device 21 are as shown in FIGS. 3A and 3B.
At the engine speed set value N 0 , the on-off valve 1
9, the on-off valve 19 is closed in a low speed range below the set value N 0 and opened in a high speed range above the set value N 0 . Also,
In the low speed range where the on-off valve 19 closes, the partitioning member 16 is rotated in the direction a so that the volume of the first volume chamber 13 gradually decreases in response to the increase in engine speed. In a high speed range where the engine speed is open, the second volume chamber 14 is rotated in the opposite direction a so that the volume of the second volume chamber 14 gradually decreases in response to the increase in engine speed.

そして、上記エンジン回転数が設定値N0にあ
つて、開閉弁19が開動作動される状態すなわち
区画部材16が第1図の鎖線の位置にあるとき
は、第1容積室13の容積V1および第2容積室
14の容積V2はこのエンジン回転数におけるそ
れぞれの適値に設けられ、また、区画部材16が
実線の位置にある逆a方向に回動する時は、エン
ジン回転数の低下に対して第1容積室13の容積
が適値に、エンジン回転数の上昇に対して第2容
積室14の容積が適値になるようにそれぞれ設定
されている。すなわち、区画部材16は開閉弁1
9の閉じた最低回転域からのエンジン回転数の上
昇に対して、図の実線の位置からa方向に回動し
て、回転数が設定値N0に達すると鎖線の位置と
なり、開閉弁19が開いてさらに回転数が上昇す
ると、この鎖線の位置から逆a方向に回動して、
最高回転数では実線の位置付近となり、エンジン
回転数の下降に対してはこれと逆に作動制御され
るものであり、上記設定値N0において区画部材
16の回動位置の変更を要しないように設定して
いる。
When the engine speed is at the set value N 0 and the on-off valve 19 is operated to open, that is, when the partition member 16 is in the position indicated by the chain line in FIG. 1, the volume of the first volume chamber 13 is V 1 . The volume V 2 of the second volume chamber 14 is set at an appropriate value for this engine speed, and when the partition member 16 rotates in the opposite direction a at the position indicated by the solid line, the engine speed decreases. The volume of the first volume chamber 13 is set to an appropriate value with respect to the increase in engine speed, and the volume of the second volume chamber 14 is set to an appropriate value with respect to the increase in engine speed. That is, the partition member 16 is the on-off valve 1
When the engine speed increases from the closed minimum speed range of 9, it rotates in the direction a from the position of the solid line in the figure, and when the speed reaches the set value N0 , it becomes the position of the chain line, and the on-off valve 19 rotates in the direction a. When it opens and the rotation speed increases further, it rotates from the position indicated by the chain line in the opposite direction of a.
At the maximum engine speed, the position is near the solid line, and when the engine speed decreases, the operation is controlled in the opposite way, so that it is not necessary to change the rotational position of the partition member 16 at the set value N 0 . It is set to .

なお、このようなエンジン回転数に応じた開閉
弁19および区画部材16の作動は、少なくとも
出力が要求される高負荷時において行われるよう
にすればよく、低負荷時にはエンジン回転数に関
係なく開閉弁19を開状態または閉状態に保つよ
うにしてもよい。
Note that the opening/closing valve 19 and the partition member 16 may be operated in accordance with the engine rotational speed at least during high loads that require output, and at low loads they may be opened and closed regardless of the engine rotational speed. The valve 19 may be kept open or closed.

上記実施例の装置において、エンジン回転数が
設定値N0未満の低回転域にある時には、開閉弁
19は閉じて各吸気通路12a〜12dと第2容
積室14との直接の連通が遮断されているため、
各気筒4a〜4dが各吸気通路12a〜12dの
全長にわたる比較的長い通路を介して第1容積室
13に接続されるとともに、第1容積室13の上
流に連通路18を介して第2容積室14が接続さ
れた状態である。
In the device of the above embodiment, when the engine speed is in a low speed range below the set value N0 , the on-off valve 19 closes and direct communication between each intake passage 12a to 12d and the second volume chamber 14 is cut off. Because
Each cylinder 4a to 4d is connected to the first volume chamber 13 via a relatively long passage spanning the entire length of each intake passage 12a to 12d, and a second volume chamber 13 is connected to the first volume chamber 13 via a communication passage 18 upstream of the first volume chamber 13. The chamber 14 is in a connected state.

従つて、各気筒4a〜4dの吸気行程で生じる
負圧液が各吸気通路12a〜12dを通して第1
容積室13に伝播され、第1容積室13で各気筒
4a〜4dに反射されて、各吸気通路12a〜1
2dに吸気圧力振動が生じる。そして、低回転域
内でのエンジン回転数の上昇に対応して吸気慣性
効果に最適な容積は徐々に小さくなることから、
上記第1容積室13の容積が徐々に低減するよう
に区画部材16が回動操作される。さらに、特に
エンジン回転数が比較的低いときは、各気筒4a
〜4dから第1容積室13に作用する圧力液によ
り、第1容積室13とその上流の第2容積室14
との間でも圧力波が生じて、この部分も吸気圧力
振動に関与する。つまり、両容積室13,14の
間でも、ある程度の有効長を持つた連通路18を
通して圧力伝播が行われることになる。この場
合、連通路18が両容積室13,14間の区画部
材16に開設されたものであつても、開口端補正
を加味すれば有効長はある程度の長さとなる。
Therefore, the negative pressure liquid generated during the intake stroke of each cylinder 4a to 4d passes through each intake passage 12a to 12d to the first
It propagates to the volume chamber 13, is reflected to each cylinder 4a-4d in the first volume chamber 13, and is transmitted to each intake passage 12a-12.
Intake pressure oscillation occurs at 2d. Furthermore, as the engine speed increases within the low speed range, the optimal volume for the intake inertia effect gradually decreases.
The partitioning member 16 is rotated so that the volume of the first volume chamber 13 is gradually reduced. Furthermore, especially when the engine speed is relatively low, each cylinder 4a
The pressure liquid acting on the first volume chamber 13 from ~4d causes the first volume chamber 13 and the second volume chamber 14 upstream thereof to
Pressure waves are also generated between the two, and this part also participates in intake pressure oscillations. In other words, pressure is propagated between both volume chambers 13 and 14 through the communication passage 18 which has a certain effective length. In this case, even if the communicating path 18 is opened in the partitioning member 16 between the two volume chambers 13 and 14, the effective length will be a certain length if the opening end correction is taken into consideration.

このため、各気筒4a〜4dと第1容積室13
との間の吸気通路12a〜12d内に生じる吸気
系の固有振動の周期と吸気弁開閉周期とがマツチ
ングするような低速側の各回転数で、各気筒4a
〜4dに作用する圧力が吸気行程終期に高めら
れ、充填効率が向上する。さらに、より低回転域
において、両容積室13,14間の固有振動数と
第1容積室13に生じる各気筒4a〜4dの吸気
行程に起因する圧力変動の周波数が一致したとき
に第1容積室13の圧力が大きくなり、この圧力
が吸気通路12a〜12dに作用し、充填効率が
高められる。
For this reason, each cylinder 4a to 4d and the first volume chamber 13
Each cylinder 4a is rotated at each rotation speed on the low speed side such that the cycle of the natural vibration of the intake system that occurs in the intake passages 12a to 12d between the
The pressure acting on ~4d is increased at the end of the intake stroke, improving filling efficiency. Further, in a lower rotation range, when the natural frequency between both volume chambers 13 and 14 and the frequency of pressure fluctuation caused by the intake stroke of each cylinder 4a to 4d occurring in the first volume chamber 13 match, the first volume The pressure in the chamber 13 increases, and this pressure acts on the intake passages 12a to 12d, increasing the filling efficiency.

このような作用により、前記開閉弁19が閉じ
られている状態での高負荷時におけるエンジン回
転数とトルクとの関係は第4図に曲線Aで示すよ
うになつて、低速域全体での吸気充填効率が高め
られてトルクが上昇し、単に1つの容積室と気筒
との間の圧力伝播を利用して慣性効果を高めるよ
うにした場合(この場合のトルクを曲線A′で示
す)と比べてより低速域で吸気充填効率の向上が
得られている。なお、比較トルク曲線A′はその
容積室の容積をエンジン回転数がN1の時にマツ
チングして設定してあり、実施例のものもこのエ
ンジン回転数N1では第1容積室13が同様の容
積となるように区画部材16が移動するものであ
る。
Due to this effect, the relationship between engine speed and torque at high load with the on-off valve 19 closed becomes as shown by curve A in FIG. The charging efficiency is increased and the torque increases compared to the case where the inertia effect is increased simply by utilizing pressure propagation between one volume chamber and the cylinder (the torque in this case is shown by curve A'). This results in improved intake air filling efficiency in the lower speed range. The comparison torque curve A' is set by matching the volume of the volume chamber when the engine speed is N 1 , and the first volume chamber 13 of the example is also set at the same engine speed N 1 . The partitioning member 16 moves so as to increase the volume.

一方、前記エンジン回転数が設定値N0以上の
高回転域にある時には、開閉弁19が開いて各吸
気通路12a〜12dと第2容積室14とが連通
孔17によつて直接連通され、各気筒4a〜4d
が第2容積室14との間の各吸気通路12a〜1
2dによる比較的短い通路長さを介して第2容積
室14に接続されるとともに、第1容積室13も
吸気通路12a〜12dの下流側部分を介して各
気筒4a〜4dと連通し、吸気が補給される。
On the other hand, when the engine speed is in a high speed range equal to or higher than the set value N0 , the on-off valve 19 is opened and each of the intake passages 12a to 12d and the second volume chamber 14 are directly communicated with each other through the communication hole 17. Each cylinder 4a to 4d
and the second volume chamber 14, each of the intake passages 12a to 1
2d is connected to the second volume chamber 14 via a relatively short passage length, and the first volume chamber 13 also communicates with each cylinder 4a to 4d via the downstream portion of the intake passages 12a to 12d, and will be replenished.

この状態では、吸気行程で生じる負圧液が前記
第2容積室14で反射されて、この負圧波および
反射波の伝播に供される通路長さが短くなること
により、高速域で吸気慣性効果が高められるとと
もに、この高速域でのエンジン回転数の上昇に対
応して吸気慣性効果に最適な容積は徐々に小さく
なることから、第2容積室14の容積が徐々に減
少するように区画部材16が回動操作され、より
一層吸気慣性効果が高められる。さらに、この運
転域では他の気筒から伝播される圧力波も有効に
作用し、その際、第2容積室14の容積の低減に
より、他の気筒からの圧力波の減衰が少なく充填
効率の向上が図れる。この高速時における高負荷
時のエンジン回転数とトルクとの関係は第4図の
曲線Bで示すようになり、従来のように単に吸気
通路を短縮させて慣性効果を高めるようにした場
合の曲線B′と比べて、容積変化および気筒間の
圧力伝播作用で充填効率がより一層高められ、ト
ルクが上昇するものである。なお、比較トルク曲
線B′は、その容積室の容積をエンジン回転数が
N2の時にマツチングして設定してあり、実施例
のものもこのエンジン回転数N2では第2容積室
14が同様の容積となるように区画部材16が移
動するものである。
In this state, the negative pressure liquid generated during the intake stroke is reflected by the second volume chamber 14, and the passage length provided for the propagation of the negative pressure wave and the reflected wave is shortened, resulting in an intake inertia effect in the high speed range. is increased, and the optimal volume for the intake inertia effect gradually decreases in response to the increase in engine speed in this high-speed range. 16 is rotated to further enhance the intake inertia effect. Furthermore, in this operating range, pressure waves propagated from other cylinders also act effectively, and at this time, by reducing the volume of the second volume chamber 14, pressure waves from other cylinders are less attenuated, improving charging efficiency. can be achieved. The relationship between engine speed and torque under high load at high speeds is shown by curve B in Figure 4, which is the curve when the intake passage is simply shortened to increase the inertia effect as in the conventional case. Compared to B', the filling efficiency is further improved due to the volume change and the pressure propagation effect between the cylinders, and the torque is increased. In addition, the comparative torque curve B' shows that the volume of the volume chamber is equal to the engine speed.
It is set to match when the engine speed is N2 , and in the embodiment, the partitioning member 16 moves so that the second volume chamber 14 has the same volume at this engine speed N2 .

従つて、少なくとも高負荷時に、上記両曲線A
とBが交差する点に相当する回転数N0が、前記
開閉弁19を開閉する設定値N0であり、これよ
り低速側で閉じて高速側で開くものであり、全回
転数域の吸気充填効率を高めて出力の向上を図る
ものである。
Therefore, at least at high loads, both curves A
The rotational speed N 0 corresponding to the intersection of B and B is the set value N 0 for opening and closing the on-off valve 19, which closes at lower speeds and opens at higher speeds. The aim is to increase filling efficiency and improve output.

以上の実施例は4気筒エンジンに本発明装置を
適用した場合について示したが、他の多気筒エン
ジン、例えば5気筒エンジンや6気筒エンジンに
も適用することができる。
Although the above embodiments have been described with reference to the case where the device of the present invention is applied to a four-cylinder engine, it can also be applied to other multi-cylinder engines, such as a five-cylinder engine or a six-cylinder engine.

また、上記実施例における第1容積室13と第
2容積室14を連通する連通路18は、区画部材
16に形成するようにしているが、別途に両容積
室13,14を連通する通路を形成するようにし
てもよく、上記両容積室13,14は別体に形成
するようにしてもよい。
Furthermore, although the communication passage 18 that communicates the first volume chamber 13 and the second volume chamber 14 in the above embodiment is formed in the partition member 16, a passage that communicates both volume chambers 13 and 14 is separately provided. Alternatively, both volume chambers 13 and 14 may be formed separately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における吸気装置を
備えたエンジンの断面正面図、第2図はその概略
平面図、第3図A,Bはエンジン回転数に対する
開閉弁および区画部材の作動を示す説明図、第4
図はエンジン回転数に応じたトルク特性を示す特
性図である。 1……エンジン本体、4a〜4d……気筒、1
2a〜12d……吸気通路、13……第1容積
室、14……第2容積室、16……区画部材、1
7……連通孔、18……連通路、19……開閉
弁、21……駆動装置、26……吸気導入通路。
Fig. 1 is a cross-sectional front view of an engine equipped with an intake system according to an embodiment of the present invention, Fig. 2 is a schematic plan view thereof, and Figs. Explanatory diagram showing, No. 4
The figure is a characteristic diagram showing torque characteristics according to engine speed. 1...Engine body, 4a to 4d...Cylinder, 1
2a to 12d...Intake passage, 13...First volume chamber, 14...Second volume chamber, 16...Dividing member, 1
7...Communication hole, 18...Communication passage, 19...Opening/closing valve, 21...Drive device, 26...Intake introduction passage.

Claims (1)

【特許請求の範囲】[Claims] 1 サージタンクを可動区画部材によつて容積が
可変な第1容積室と第2容積室とに区画し、第1
容積室と各気筒とを互いに独立した比較的長い気
筒別の吸気通路で接続し、第2容積室と上記気筒
別の各吸気通路の途中とをそれぞれ接続して各吸
気通路を短い経路で相互に連通し、一方、上記第
1容積室と第2容積室とを上記気筒別の各吸気通
路とは別に各吸気通路より短く設けた連通路によ
つて連通させるとともに、上記第2容積室に吸気
導入通路を接続し、この第2容積室と上記各吸気
通路との間に、少なくとも高負荷時にエンジン回
転数が設定値未満の低速域では閉じて設定値以上
の高速域で開く開閉弁を設け、さらに、前記区画
部材を低速域ではエンジン回転数の上昇に応じて
第1容積室の容積を低減する方向に、高速域では
第2容積室の容積をエンジン回転数の上昇に応じ
て低減する方向に移動操作する駆動装置を設けた
ことを特徴とするエンジンの吸気装置。
1 The surge tank is divided into a first volume chamber and a second volume chamber whose volumes are variable by a movable partition member, and the first
The volume chamber and each cylinder are connected to each other by a relatively long independent intake passage for each cylinder, and the second volume chamber is connected to the middle of each intake passage for each cylinder, so that each intake passage is connected to each other by a short path. On the other hand, the first volume chamber and the second volume chamber are communicated with each other by a communication passage provided separately from each intake passage for each cylinder and shorter than each intake passage, and the second volume chamber is connected to the second volume chamber. The intake air introduction passage is connected, and an on-off valve is provided between the second volume chamber and each of the intake passages, at least when the engine speed is high load and closes in a low speed range where the engine speed is less than a set value, and opens in a high speed range where the engine speed is equal to or higher than the set value. Further, the partitioning member is configured to reduce the volume of the first volume chamber as the engine speed increases in a low speed range, and reduce the volume of the second volume chamber as the engine speed increases in a high speed range. 1. An engine intake device characterized in that it is provided with a drive device that moves and operates in a direction in which
JP60042127A 1985-03-04 1985-03-04 Air intake device for engine Granted JPS61201819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60042127A JPS61201819A (en) 1985-03-04 1985-03-04 Air intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60042127A JPS61201819A (en) 1985-03-04 1985-03-04 Air intake device for engine

Publications (2)

Publication Number Publication Date
JPS61201819A JPS61201819A (en) 1986-09-06
JPH0380966B2 true JPH0380966B2 (en) 1991-12-26

Family

ID=12627270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60042127A Granted JPS61201819A (en) 1985-03-04 1985-03-04 Air intake device for engine

Country Status (1)

Country Link
JP (1) JPS61201819A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730700B2 (en) * 1987-03-09 1995-04-10 本田技研工業株式会社 Internal combustion engine intake system
JP2778727B2 (en) * 1989-03-03 1998-07-23 ヤマハ発動機株式会社 Engine intake system

Also Published As

Publication number Publication date
JPS61201819A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US4671217A (en) Intake system for internal combustion engine
JPH0583737B2 (en)
JPH0380966B2 (en)
JPS6256325B2 (en)
JPS6291623A (en) Intake-air device of engine
JPH0663455B2 (en) Engine intake system
JPH0578651B2 (en)
JPH0568612B2 (en)
JPH0380967B2 (en)
JPH044442B2 (en)
JPS60240822A (en) Suction system for engine
JPS61157716A (en) Air intake device of multicylinder engine
JPH0353453B2 (en)
JPH0578646B2 (en)
JPS61218721A (en) Intake device of engine
JPH0364688B2 (en)
JPH0553931B2 (en)
JPS6287613A (en) Suction device for engine
JPH0578647B2 (en)
JPH0745811B2 (en) Engine intake system
JPH0551046B2 (en)
JPS60159333A (en) Suction device for engine
JPS6361713A (en) Intake device for engine
JPH0545769B2 (en)
JPH0583738B2 (en)