JPH0379467B2 - - Google Patents

Info

Publication number
JPH0379467B2
JPH0379467B2 JP61289965A JP28996586A JPH0379467B2 JP H0379467 B2 JPH0379467 B2 JP H0379467B2 JP 61289965 A JP61289965 A JP 61289965A JP 28996586 A JP28996586 A JP 28996586A JP H0379467 B2 JPH0379467 B2 JP H0379467B2
Authority
JP
Japan
Prior art keywords
fibers
pva
spinning
sheet
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61289965A
Other languages
Japanese (ja)
Other versions
JPS63145465A (en
Inventor
Yoshiteru Matsuo
Shinji Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61289965A priority Critical patent/JPS63145465A/en
Publication of JPS63145465A publication Critical patent/JPS63145465A/en
Publication of JPH0379467B2 publication Critical patent/JPH0379467B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高電圧を利用して紡糸したポリビニル
アルコール系微細繊維の緻密かつ均一な薄膜状シ
ート状物及びその製造方法に関するものである。 (従来の技術) 微細繊維を得る方法は高速紡糸や複合紡糸など
各種あるが、シート状に得るにはメルトプローン
のように強い熱風により吹き飛ばす方法があり、
ナイロン、ポリプロピレン、ポリエステル等熱溶
融性ポリマーに用いられている。しかし繊維直径
は平均して1ミクロン(μ)前後にはなるもの
の、そのバラツキの巾が大きく、かつまた空気流
に依存するため薄膜シート状に得るには、繊維の
存在密度に疎密があり、均一薄膜状のシートは得
られなかつた。 1μ以下の極細の微細繊維からなる均一かつ緻
密な平面シート状物はフイルター分野やメデイカ
ル分野に強いニーズがあるにもかかわらず、1μ
以下という細さでかつ1μ2以下の細かな開口部を
有する均質なシート状物は得られておらずその要
求に答えられていなかつた。 一方高電圧を利用して微細繊維を得る方法は特
公昭48−1466号公報に開示されているが、ポリマ
ーがアクリロニトリルに関するものであり、繊維
直径や、繊維の均斉さ及び得られたシート中の繊
維間の均一性を制御するため条件については開示
されていない。 (発明が解決しようとする問題点) 菌透過防止や、抗原、抗体等蛋白質の高分子量
物を捕える薄膜状シート状としては、繊維直径が
1μ以下で開口部が1μ2以下という均斉な構造が要
求されるが、従来技術においては、これに合致す
る繊維状構造物を得ることができなかつた。 本発明は上記のような繊維状構造物を得んとす
るものである。 (問題点を解決するための手段) 本発明者等は、ポリビニルアルコール(PVA)
を用いて鋭意検討した結果、繊維直径や繊維の均
斉さ、及び得られたシート中の繊維間の均一性が
紡糸原液の濃度に極めて依存性の高いことを発見
した。しかもその濃度はポリマーの重合度に依存
し、上述の如き本発明の目的の繊維状構造物を得
るためには、ポリビニルアルコールの紡糸原液濃
度を重合度に応じて定められた範囲に調整する必
要があることが解つた。即ちポリマーとして
PVAもしくは変性PVAを用い、溶剤としては水
および/または水に有機溶剤、アルカリ、酸を加
えたものを用い、これにPVAもしくは変性PVA
を溶解し、均一に粒状ゲル物を無くして溶解した
ものを高温に保持された状態で紡糸原液とする。
加熱紡糸原液を紡糸ノズルから吐出させる場合、
ノズルを1ホール毎に突出させた口金とし、これ
に6KV以上好ましくは10KV以上の直流高電圧も
しくは陰陽片側のパルス波高電圧をかける。これ
により、紡糸ノズルから吐出された紡糸液が帯電
***され、ついで電場により液滴の一点からフア
イバーが連続的にひき出され分割された繊維が多
数拡散する。PVAの濃度が10%以下であつても
溶媒は繊維形成と細化の段階で乾燥しやすく、突
出したノズルより数cm〜数十cm離れた接地された
捕集用ベルトあるいはシートに堆積する。堆積と
共に半乾燥繊維は微膠着し、繊維間の移動を防止
し、新たな微細繊維が遂次堆積し、緻密なシート
となる。 この時の繊維形成と細化及び半乾燥で繊維間が
微膠着する好適な条件はポリマーの中でもPVA
が一番好ましい結果となり、またそのPVAの溶
解濃度も依存し、しかも濃度はポリマーの重合度
にも大きく依存することが判明したものである。
これは従来のPVAの乾式紡糸の濃度範囲とは著
しく異なる領域であることがわかつた。紡糸原液
の加熱は50℃以上200℃以下が望ましく、PVAの
重合度が濃度によつても変化するが、紡出の安定
性を見ながらコントロールするのが望ましい。特
に重要であつたのは、後述する如く、PVAの重
合度に応じて原液溶解濃度を決める必要があり、
PVAの平均重合度を(桜田式による)とする
と、好ましい溶解濃度Xwt%は、21.5−5logよ
り大きく、51.9−11.8logより小さい範囲でしか
も少くとも1wt%より高いポリマーの溶解濃度で
ある。上記濃度のPVAによつて微細繊維の緻密
なシート状物が得られたものである。 PVA繊維が半乾燥状態で堆積しシートの微細
開口部をうずめて開口部が1μ2以下となるには紡
出原液の吐出量を極力低目にすることが好ましく
1.5〜0.05g/cm2・min(面積:ノズル口内断面積)
とするのが良く、大きくすると微細化の範囲から
逸脱すると共に斑を生じやすくなる。シート状物
の形成を早めるため吐出量を多くすると繊維直径
が1μ以上の太い繊維が混じり繊維間の開口部が
2より大となるためメデイカル用フイルターと
して透過防止性が不良となり不適であつた。特に
蛋白質分離フイルターとしての性能が不十分とな
り使用することができなかつた。 ここで用いられるPVA系ポリマーとしては、
水溶性のものであればいずれでも良く、通常の
PVAの他にカルボキシル基変性PVA、スルホン
酸基変性PVA、リン酸基変性PVA等のアニオン
変性PVAまたはカチオン変性PVAあるいはエチ
レン、長鎖アルキル基を有するビニルエーテル、
ビニルエステル、(メタ)アクリルアミド、アル
フアオレフイン等を共重合したもの、シラン変性
したもの等、変性PVAも使用できる。ポリマー
を溶解する溶媒としては水の他ジメチルスルホキ
シド、エチレングリコール、グリセリン、トリエ
チレングリコール等有機溶媒を混合しても良く、
必要に応じてホウ酸や苛性ソーダ等を添加しても
良い。 以下図面の装置により本発明を説明する。 第1図において、PVAを溶解した紡糸原液は
ギヤーポンプ1により計量送液され、分配整流ブ
ロツク2により均一な圧力と液量となるように分
配され口金部3に送られる。口金部では中空針状
の1ホール毎に突出させた口金4が取りつけられ
電気絶縁部5によつて電気が口金部3全体に洩れ
るのを防止している。導電材料で作られた突出し
た口金4は無端コンベヤからなる形成シート引取
り装置7の進行方向に直角方向に多数並列に垂直
下向きに取りつけられ、直流高電圧発生電源の一
方の出力端子を該突出した口金4に取りつけ、各
突出口金4は導線により印加を可能にしている。
形成シート引取り装置の無端コンベヤにはアース
をとつた導電性部材8が取付けられ、印加された
電位が中和できるようになつている。口金部3よ
り突出口金4に圧送された紡糸原液は帯電***さ
れついで電場により液滴の1点からフアイバーが
連続的に引き出され分割された繊維が多数拡散
し、半乾燥の状態で形成シート引取装置7に取付
けられた導電性部材上に堆積し、該膠着が進み、
シート引取り装置により移動され、その移動と共
に次の突出口金の微細繊維の堆積をうけ、次々と
堆積を繰返しながら緻密かつ均一な薄膜状シート
が形成される。得られたシートは必要により熱処
理、強乾燥を加えてシートとして引取る。 第2図にはPVAを用いた微細繊維の緻密かつ
均一な薄膜シート状物の好適な例の走査型電子顕
微鏡写真を模写した図を示す。繊維間の開口部と
は走査型電子顕微鏡(SEM)を用いて10000倍〜
30000倍の写真により観察される繊維の存在の認
められない部分を指し、その部分が1μ2より越え
る場合がフイルター特性として不十分であると評
価されている。また繊維直径とは繊維が2〜5本
膠着束になつていても明らかに元の太さが認めら
れる場合のその最小単位を指し、膠着後の太さで
はない。第2図の繊維の平均直径は約0.2μであり
繊維間の開空部は最大0.8μ2であつた。 以下更に実施例により本発明を詳述する。 実施例 PVAの重合度を1700、3500、5000、12500、
16200と5種を用い、溶解濃度を各々変えて以下
の条件で紡出した。得られた繊維直径とシートの
開口部面積を調べた。 ノズル内径 0.5mmφ EP加電圧 10KV ノズル吐出量 0.1g/min 突出ノズル先端からアース金網面までの距離 50
mm コンベア速度 10cm/min
(Industrial Application Field) The present invention relates to a dense and uniform thin film-like sheet made of polyvinyl alcohol fine fibers spun using high voltage, and a method for producing the same. (Prior art) There are various ways to obtain fine fibers, such as high-speed spinning and composite spinning, but to obtain them in sheet form, there is a method of blowing them with strong hot air, such as with a melt blower.
Used in heat-melting polymers such as nylon, polypropylene, and polyester. However, although the fiber diameter is around 1 micron (μ) on average, it varies widely and also depends on airflow, so the density of the fibers must be uneven to obtain a thin film sheet. A uniform thin film-like sheet could not be obtained. Although there is a strong need in the filter and medical fields for uniform and dense planar sheets made of ultra-fine microfibers of 1μ or less,
A homogeneous sheet-like material having a fine opening of 1μ2 or less has not been obtained, and this demand has not been met. On the other hand, a method for obtaining fine fibers using high voltage is disclosed in Japanese Patent Publication No. 48-1466, but the polymer is acrylonitrile, and the fiber diameter, uniformity of the fibers, and Conditions for controlling fiber-to-fiber uniformity are not disclosed. (Problem to be solved by the invention) As a thin film-like sheet that prevents bacterial permeation and captures high molecular weight substances such as antigens and antibodies, fibers with a diameter of
Although a uniform structure with a diameter of 1 μm or less and an opening size of 1 μm or less is required, it has not been possible to obtain a fibrous structure that meets this requirement using conventional techniques. The present invention aims to obtain a fibrous structure as described above. (Means for Solving the Problems) The present inventors have discovered that polyvinyl alcohol (PVA)
As a result of intensive investigation using the method, it was discovered that the fiber diameter, fiber uniformity, and uniformity among the fibers in the obtained sheet were extremely dependent on the concentration of the spinning dope. Moreover, its concentration depends on the degree of polymerization of the polymer, and in order to obtain the fibrous structure as described above, it is necessary to adjust the concentration of the spinning solution of polyvinyl alcohol within a predetermined range depending on the degree of polymerization. It turns out that there is. i.e. as a polymer
Use PVA or modified PVA, use water and/or water with an organic solvent, alkali, or acid as the solvent, and add PVA or modified PVA to this.
The resulting solution is kept at a high temperature and used as a spinning dope.
When discharging heated spinning dope from a spinning nozzle,
A nozzle is formed into a cap that protrudes from each hole, and a DC high voltage of 6 KV or more, preferably 10 KV or more, or a pulse wave high voltage on one side of the positive and negative sides is applied to the nozzle. As a result, the spinning solution discharged from the spinning nozzle is charged and split, and then fibers are continuously pulled out from one point of the droplet by an electric field, and a large number of split fibers are dispersed. Even if the concentration of PVA is less than 10%, the solvent tends to dry out during the fiber formation and thinning stage, and is deposited on a grounded collection belt or sheet located several centimeters to tens of centimeters away from the protruding nozzle. As they are deposited, the semi-dry fibers become slightly agglomerated, preventing movement between the fibers, and new fine fibers are successively deposited to form a dense sheet. Among polymers, PVA is the most suitable condition for fiber formation, thinning, and semi-drying to cause slight adhesion between fibers.
gave the most favorable results, and it was found that the dissolved concentration of PVA also depended on it, and the concentration also depended largely on the degree of polymerization of the polymer.
This was found to be a significantly different concentration range from that of conventional PVA dry spinning. The heating of the spinning dope is preferably 50°C or more and 200°C or less, and although the degree of polymerization of PVA changes depending on the concentration, it is desirable to control it while checking the stability of spinning. What was particularly important was that, as described later, it was necessary to determine the concentration in the stock solution depending on the degree of polymerization of PVA.
Assuming the average degree of polymerization of PVA (according to the Sakurada formula), a preferable dissolved concentration Xwt% is a dissolved concentration of the polymer in a range of greater than 21.5-5 log and smaller than 51.9-11.8 log, and at least higher than 1 wt%. A dense sheet of fine fibers was obtained using PVA at the above concentration. In order for PVA fibers to accumulate in a semi-dry state and fill the fine openings of the sheet, resulting in openings of 1μ2 or less, it is preferable to keep the discharge rate of the spinning stock solution as low as possible.
1.5 to 0.05g/cm 2・min (area: cross-sectional area inside the nozzle mouth)
It is better to make it larger, and if it is made larger, it will deviate from the range of miniaturization and will tend to cause spots. If the discharge rate is increased to speed up the formation of a sheet-like material, thick fibers with a fiber diameter of 1μ or more will be mixed in and the openings between the fibers will become smaller.
Since it was larger than 1 μ 2 , it was unsuitable as a medical filter due to its poor permeation prevention properties. In particular, its performance as a protein separation filter was insufficient and it could not be used. The PVA-based polymer used here is
Any water-soluble one is fine, and regular
In addition to PVA, anion-modified PVA or cation-modified PVA such as carboxyl group-modified PVA, sulfonic acid group-modified PVA, phosphoric acid group-modified PVA, ethylene, vinyl ether having a long-chain alkyl group,
Modified PVA such as those copolymerized with vinyl ester, (meth)acrylamide, alpha olefin, etc., and those modified with silane can also be used. In addition to water, organic solvents such as dimethyl sulfoxide, ethylene glycol, glycerin, and triethylene glycol may be mixed as a solvent for dissolving the polymer.
Boric acid, caustic soda, etc. may be added as necessary. The present invention will be explained below using the apparatus shown in the drawings. In FIG. 1, a spinning stock solution in which PVA is dissolved is metered and sent by a gear pump 1, distributed by a distribution and rectification block 2 so as to have a uniform pressure and liquid volume, and sent to a spinneret part 3. In the cap part, a protruding cap 4 is attached to each hollow needle-like hole, and an electrically insulating part 5 prevents electricity from leaking to the entire cap part 3. A large number of protruding caps 4 made of a conductive material are attached vertically downward in parallel in a direction perpendicular to the direction of movement of a forming sheet take-up device 7 consisting of an endless conveyor, and one output terminal of a DC high voltage generating power source is connected to the protruding caps 4. The protruding caps 4 are attached to the caps 4, and each of the protruding caps 4 is capable of applying voltage through a conductive wire.
A grounded conductive member 8 is attached to the endless conveyor of the formed sheet take-up device, so that the applied potential can be neutralized. The spinning dope, which is force-fed from the mouthpiece 3 to the protruding mouthpiece 4, is charged and split, and then fibers are continuously pulled out from one point of the droplet by an electric field, and a large number of split fibers are dispersed, forming a semi-dry sheet. It is deposited on the conductive member attached to the device 7, and the adhesion progresses.
The sheet is moved by a sheet take-up device, and as it moves, fine fibers from the next ejected die are deposited, and as the deposition is repeated one after another, a dense and uniform thin film-like sheet is formed. The obtained sheet is subjected to heat treatment and strong drying if necessary, and then taken as a sheet. FIG. 2 shows a reproduction of a scanning electron micrograph of a preferred example of a dense and uniform thin film sheet made of fine fibers using PVA. The openings between fibers are 10,000 times larger using a scanning electron microscope (SEM).
This refers to the area where the presence of fibers is not observed as observed in a 30,000x photograph, and if the area exceeds 1μ2 , it is evaluated that the filter properties are insufficient. Furthermore, the fiber diameter refers to the smallest unit of fibers in which the original thickness is clearly recognized even when 2 to 5 fibers are bundled together, and is not the thickness after sticking. The average diameter of the fibers in Figure 2 was approximately 0.2μ, and the open spaces between the fibers were at most 0.8μ2 . The present invention will be further explained in detail with reference to Examples below. Example The degree of polymerization of PVA is 1700, 3500, 5000, 12500,
16200 and 5 types were used, and the dissolved concentrations were changed respectively, and spinning was carried out under the following conditions. The obtained fiber diameter and the opening area of the sheet were investigated. Nozzle inner diameter 0.5mmφ EP applied voltage 10KV Nozzle discharge amount 0.1g/min Distance from the protruding nozzle tip to the earth wire mesh surface 50
mm Conveyor speed 10cm/min

【表】【table】

【表】 ×粒状物あり不調
表1の結果を、ヨコ軸にPVAの平均重合度
(桜田式による)を対数にとりタテ軸をPVAの濃
度をとつて、繊維紡出性が良好でかつ繊維直径が
1μ以下でかつ繊維間の開口部が1μ2以下となるも
のを○印で、それらどちらかを越えるものや紡出
性の不調なものを×印でプロツトしたのが第3図
である。この図よりPVAの平均重合度と好適
なPVA濃度の関係を導き出し、第3図の斜線の
部分となることが明らかとなつた。なおPVAの
重合度が500未満になると曳糸性が悪く不調であ
り、濃度が1%未満になると溶解の均一性の面で
問題を生じたため、好ましい範囲から除外した。 PVA重合度が低いと得られたシートの強度は
低いものとなりがちであつたがPVAの重合度が
高くなると、良好な微細繊維薄膜シートを得るた
めの好適濃度範囲はせまくなるが得られたシート
の強さや引裂けにくさが良くなるという特徴が認
められた。
[Table] ×Unsatisfactory due to particulate matter The results in Table 1 are expressed as logarithms of the average degree of polymerization of PVA (according to the Sakurada formula) on the horizontal axis and the concentration of PVA on the vertical axis. but
Figure 3 plots those with a diameter of 1μ or less and an opening between fibers of 1μ2 or less with a circle, and those with a diameter exceeding either of these or with poor spinnability as an x. From this figure, the relationship between the average degree of polymerization of PVA and a suitable PVA concentration was derived, and it became clear that it corresponds to the shaded area in Figure 3. It should be noted that when the degree of polymerization of PVA is less than 500, the stringiness is poor and the result is poor, and when the concentration is less than 1%, a problem arises in terms of uniformity of dissolution, so this was excluded from the preferred range. If the degree of PVA polymerization was low, the strength of the sheet obtained tended to be low; however, if the degree of polymerization of PVA was high, the suitable concentration range for obtaining a good fine fiber thin film sheet became narrower, but the strength of the obtained sheet tended to be low. The characteristics of improved strength and tear resistance were observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の概略図
を示し第2図は本発明の微細繊維シート状物の
10000倍の走査型電子顕微鏡写真を模写した図、
第3図はPVAの平均重合度とPVA濃度との相関
図で好適な範囲を示した図である。
FIG. 1 shows a schematic diagram of an apparatus for carrying out the present invention, and FIG. 2 shows a fine fiber sheet of the present invention.
A copy of a 10,000x scanning electron micrograph,
FIG. 3 is a correlation diagram between the average degree of polymerization of PVA and the PVA concentration, showing a suitable range.

Claims (1)

【特許請求の範囲】 1 繊維直径が1ミクロン以下の連続した微細繊
維が相互に積層交差してなり、繊維間の開口部が
1平方ミクロン以下である薄膜状のポリビニルア
ルコール系微細繊維シート状物。 2 紡糸原液を吐出するノズルを1ホール毎に突
出させた口金に6KV以上の電圧を印加し、前記
ノズル孔部より流出させる紡糸原液を帯電させ
て、該紡糸原液を高電界の作用で微細繊維化する
に際し、該紡糸原液としてポリビニルアルコール
系の紡糸原液を用い、かつその濃度Xを、ポリビ
ニルアルコールの平均重合度との関係において
下記(1)式で表わされる範囲に調整して吐出するこ
とを特徴とするポリビニルアルコール系微細繊維
シート状物の製造方法。 21.5−5・log≦Xwt%≦51.9−11.8・log
……(1) 3 突出させた口金は交互に等間隔でシート進行
方向に直角に1列もしくは平行多数列、あるいは
千鳥足状多数列配置し、原液の溶媒が水であるこ
とを特徴とする特許請求の範囲第2項記載のポリ
ビニルアルコール系微細繊維シート状物の製造方
法。
[Scope of Claims] 1. A thin film-like polyvinyl alcohol-based fine fiber sheet consisting of continuous fine fibers with a fiber diameter of 1 micron or less that are laminated and intersected with each other, and in which the openings between the fibers are 1 square micron or less. . 2 A voltage of 6 KV or more is applied to a nozzle from which a nozzle for discharging the spinning dope protrudes from each hole, and the spinning dope that flows out from the nozzle hole is charged, and the spinning dope is transformed into fine fibers by the action of a high electric field. In this process, a polyvinyl alcohol-based spinning stock solution is used as the spinning stock solution, and its concentration A method for producing a polyvinyl alcohol-based fine fiber sheet material. 21.5−5・log≦Xwt%≦51.9−11.8・log
...(1) 3 A patent characterized in that the protruding caps are alternately arranged at regular intervals in one row, in parallel rows, or in multiple rows in a staggered manner, and the solvent of the stock solution is water. A method for producing a polyvinyl alcohol-based fine fiber sheet according to claim 2.
JP61289965A 1986-12-04 1986-12-04 Polyvinyl alcohol fine fiber sheet like article and its production Granted JPS63145465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289965A JPS63145465A (en) 1986-12-04 1986-12-04 Polyvinyl alcohol fine fiber sheet like article and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289965A JPS63145465A (en) 1986-12-04 1986-12-04 Polyvinyl alcohol fine fiber sheet like article and its production

Publications (2)

Publication Number Publication Date
JPS63145465A JPS63145465A (en) 1988-06-17
JPH0379467B2 true JPH0379467B2 (en) 1991-12-18

Family

ID=17750019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289965A Granted JPS63145465A (en) 1986-12-04 1986-12-04 Polyvinyl alcohol fine fiber sheet like article and its production

Country Status (1)

Country Link
JP (1) JPS63145465A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200427889A (en) 2003-03-31 2004-12-16 Teijin Ltd Non-woven fabric and process for producing the same
EP1911864A4 (en) 2005-07-29 2010-03-31 Toyo Boseki Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
JP2008002011A (en) 2006-06-22 2008-01-10 Toyobo Co Ltd Polyimide nonwoven fabric and method for producing the same
RU2471901C2 (en) 2008-11-14 2013-01-10 Кокен Лтд. Sheet based on microfibre structure and method and device for its production
JP2010242063A (en) * 2009-03-17 2010-10-28 Kuraray Co Ltd Cellulose nanofiber compound polyvinyl alcohol-based polymer composition

Also Published As

Publication number Publication date
JPS63145465A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
EP1834020B1 (en) Improved electroblowing web formation process
Dadol et al. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications
US7931456B2 (en) Electroblowing web formation
JP5776114B2 (en) Electrospinning of polyamide nanofibers
EP1522620B1 (en) Nonwoven fabric or nonwoven web comprising ultra-fine continuous fibres, and production process and applications thereof
KR101290019B1 (en) Improved Electroblowing Fiber Spinning Process
DE69728423T2 (en) METHOD AND DEVICE FOR PRODUCING COMPOSITE FILTER MATERIALS
US20070042069A1 (en) Fiber charging apparatus
CN1518619A (en) Method and device for manufacturing electret processed product
EP1766110A1 (en) Improved electroblowing web formation process
JPH0424458B2 (en)
CN111575917B (en) High-specific-surface-area honeycomb-like structure nanofiber material and preparation method thereof
EP2084312B1 (en) Method for producing nano- and mesopolymer fibers by electrospinning polyelectrolytes of opposite charge
KR101078245B1 (en) Method For Production of Alumina Fiber Aggregate
JPH0379467B2 (en)
JP2005131485A (en) High performance air filter
JP2004316022A (en) Insolubilized polyvinyl alcohol fiber assembly and method for producing the same
JPH076126B2 (en) Manufacturing method and device for unidirectionally arranged nonwoven fabric
CN108842223A (en) A kind of preparation method of polyvinylidene fluoride nanometer fabric nonwoven cloth
JP3273667B2 (en) Method for producing melt-blown thermoplastic nonwoven fabric
JP2004162215A (en) Fiber structure of polyglycolic acid and method for producing the same
JPH0892856A (en) Production of nonwoven fabric excellent in flexibility
CN113005535A (en) Polyvinyl alcohol nanofiber with controllable diameter and preparation method thereof
JPH05253416A (en) Production of electret filter
JP2004011061A (en) Method for producing ultrafine fiber nonwoven fabric