JPH0378517A - Cooling structure of engine - Google Patents

Cooling structure of engine

Info

Publication number
JPH0378517A
JPH0378517A JP21262489A JP21262489A JPH0378517A JP H0378517 A JPH0378517 A JP H0378517A JP 21262489 A JP21262489 A JP 21262489A JP 21262489 A JP21262489 A JP 21262489A JP H0378517 A JPH0378517 A JP H0378517A
Authority
JP
Japan
Prior art keywords
liner
circumferential
wall surface
wall
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21262489A
Other languages
Japanese (ja)
Inventor
Hideaki Watanabe
英昭 渡辺
Hidetsugu Yamamoto
英継 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP21262489A priority Critical patent/JPH0378517A/en
Publication of JPH0378517A publication Critical patent/JPH0378517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To equalize a temperature distribution in the circumferential direction of a cylinder liner by changing, in the circumferential direction, a thickness of a liner wall between a groove bottom of a circumferential groove or the like, which is formed on an outer wall surface of the cylinder liner, and a liner inner wall surface. CONSTITUTION:A cylinder liner 16 is installed inside a bore part 18 formed in a crank case 12. On an outer wall surface of the cylinder liner 16, multiple circumferential grooves 30 are formed at the appropriate intervals in the cylinder axial direction. Lubricating oil for cooling supplied from an inlet side oil gallery 24, is discharged from an outlet side oil gallery 26 after circulating through the circumferential grooves 30. In this occasion, in the circumferential groove 30, a thickness of a liner wall between a groove bottom of the circumferential grooves 30 and an inner wall surface of the cylinder liner 16 is changed in the circumferential direction. For example, the thickness at the bore part 18 is formed smaller than that at other parts. It is thus possible to equalize a temperature distribution in the circumferential direction of the cylinder liner 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの冷却構造に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine cooling structure.

(従来の技術) 車両用ディーゼルエンジン等湿式ライナを具えたニンジ
ンにおいて、ライナの外壁面に多数の円周溝又は螺旋溝
を設け、同円周溝又は螺旋溝内に潤滑油等の冷却液体を
流通させるようにした冷却構造が既に提案されている。
(Prior art) In a vehicle equipped with a wet liner such as a diesel engine for a vehicle, a large number of circumferential grooves or spiral grooves are provided on the outer wall surface of the liner, and a cooling liquid such as lubricating oil is poured into the circumferential groove or spiral groove. Cooling structures that allow circulation have already been proposed.

この種の二/ソy冷却構造では、ライナ外壁面に比較的
密に円周溝又は螺旋溝が配置され、これらの溝内に冷却
液体が強制的に流通されるので、ライナ各部の温度分布
が比較的均一になる特徴があり、温度分布の著しい不均
等に基づくライナの過大変形や大きな熱応力の発生を効
果的に回避し得る利点がある。
In this type of bi/soy cooling structure, circumferential grooves or spiral grooves are arranged relatively densely on the outer wall surface of the liner, and the cooling liquid is forced to flow through these grooves, so the temperature distribution in each part of the liner is improved. This has the advantage that excessive deformation of the liner and generation of large thermal stress due to markedly uneven temperature distribution can be effectively avoided.

(発明が解決しようとする課題) 上述したライナ外壁面の円周溝又は螺旋溝の深さは、従
来は円周方向全周にわたり実質的に均一である。このた
め隣接するシリンダから流れてくる熱の影響をうけてデ
ア間におけるライナ壁の温度が、他の部分のライナ壁の
温度より若干高くなる傾向がある。
(Problems to be Solved by the Invention) Conventionally, the depth of the circumferential groove or spiral groove on the outer wall surface of the liner is substantially uniform over the entire circumferential direction. Therefore, the temperature of the liner wall between the cylinders tends to be slightly higher than the temperature of the liner wall in other parts due to the influence of heat flowing from adjacent cylinders.

本発明は、上記事実に鑑み創案されたもので、ライナの
外壁面に形成される円周溝又は螺旋溝の形状に工夫を加
えることによって、ライナ壁の温度を全周にわたシ従来
よシ均等ならしめることができるようにしたエンジンの
冷却構造を提供することを目的とするものである。
The present invention has been devised in view of the above-mentioned facts, and by adding innovation to the shape of the circumferential groove or spiral groove formed on the outer wall surface of the liner, the temperature of the liner wall can be improved over the entire circumference compared to the conventional one. The object of the present invention is to provide an engine cooling structure that can achieve uniform cooling.

(課題を解決するための手段) 上記目的を達成するため、本発明に係る二/ジンの冷却
構造は、クランクケースのシリンダがア部にライナを嵌
装し、同うイチの外壁面に冷却液体を流通させる円周溝
又は螺旋溝を設けたものにおいて、上記円周溝又は螺旋
溝の溝底とライナ内壁面との間のライナ壁の厚さを円周
方向に変化させたことを特徴とするものである。
(Means for Solving the Problem) In order to achieve the above object, the cooling structure of the second engine according to the present invention is such that the cylinder of the crankcase is fitted with a liner in the part A, and the cylinder is cooled on the outer wall surface of the same one. A device provided with a circumferential groove or a spiral groove for flowing liquid, characterized in that the thickness of the liner wall between the bottom of the circumferential groove or the spiral groove and the inner wall surface of the liner is varied in the circumferential direction. That is.

(作用) 本発明によれば、ライナの外壁面に形成される円周溝又
は螺旋溝の深さを円周方向に関し変化させること1例え
ば上述したボア間部分の溝の深さを他の部分より大きく
し、ビア間部分のライナ壁の厚さを薄くすることによっ
て、この部分の熱放散を増大させることができ、この結
果円周方向のライナ壁温度の一層の均等化が達成される
(Function) According to the present invention, the depth of the circumferential groove or the spiral groove formed on the outer wall surface of the liner can be changed in the circumferential direction. By making the liner wall larger and reducing the thickness of the liner wall in the inter-via section, heat dissipation in this section can be increased, resulting in greater uniformity of circumferential liner wall temperature.

(実施例) 以下本発明の実施例を添付図面について具体的に説明す
る。図中符号10はトラック用の直接噴射式ディーゼル
エンジ/を総括的に示し、12は同エンジンのクランク
ケース、14はシリンダヘッド、16は上記クランクケ
ース12に形成されたデア部18内に嵌装されたシリン
ダライナ。
(Example) Examples of the present invention will be specifically described below with reference to the accompanying drawings. In the figure, reference numeral 10 generally indicates a direct injection diesel engine for trucks, 12 is a crankcase of the engine, 14 is a cylinder head, and 16 is fitted into a dere part 18 formed in the crankcase 12. cylinder liner.

20はシリンダライナ16内に嵌装されたピストン、2
2はコネクティングロッド、24はクランクケース12
内にクランク軸線方向に延在して形成された入口側オイ
ルギヤラリ、26は同クランクケース12内にクランク
軸線方向に延在して形成された出口側オイルギヤラリ、
28は上記シリンダヘッド14に装着された燃料噴射ノ
ズルである。
20 is a piston fitted in the cylinder liner 16;
2 is the connecting rod, 24 is the crankcase 12
An inlet oil gear lary 26 is formed within the crankcase 12 and extends in the crank axial direction;
28 is a fuel injection nozzle attached to the cylinder head 14.

上記ライナ16の外壁面には1図示の実施例の場合、シ
リンダ軸線方向に適宜の間隔を存して多数の円周溝30
が形成され、これらの円周溝30は、ライナ16の外壁
面にシリンダ軸線方向に延在して形成された自体周知の
連通溝(図示せず)によって適数の群に区分され、上記
入口側オイルギヤラリ24から供給された冷却用潤滑油
は群別された円周溝30内を順次流れて出口側オイルギ
ヤラリ26から排出される。
In the case of the embodiment shown in FIG. 1, the outer wall surface of the liner 16 has a large number of circumferential grooves 30 at appropriate intervals in the cylinder axis direction.
These circumferential grooves 30 are divided into an appropriate number of groups by well-known communication grooves (not shown) formed on the outer wall surface of the liner 16 extending in the cylinder axial direction, and The cooling lubricating oil supplied from the side oil gearing 24 sequentially flows through the grouped circumferential grooves 30 and is discharged from the outlet side oil gearing 26.

上記円周溝30は、夫々隣接するシリンダのデア間部分
即ちクランク軸線方向O−0の深さす、が。
The circumferential groove 30 has a depth in the portion between the cylinders adjacent to each other, that is, in the crank axis direction O-0.

クランク軸線に対し直角方向の深さb2よシ大きく形成
されている。換言すれば、上記円周溝30の溝底とライ
ナ16の内壁面との間のライナ壁の厚さが、デア間部分
において他の部分より小さく形成されている。通常の場
合、隣接するシリンダ内で行なわれる爆発燃焼のために
、ライナ16のボア間部分に熱が停滞し易く他の部分よ
り高温になる傾向があるが、上記のように円周溝30の
深さをボア間において深くして間部のライナ壁の厚さを
他の部分より小さくすることによって、27間のライナ
壁から冷却液体即ち潤滑油に伝達される熱(t’に他の
部分より大きくシ、この結果、27間におけるライナ壁
の温度上昇を防止し又は効果的に低減してライナ16の
円周方向の温度分布を従来より均等化することができ、
ライナ16の半径方向の熱変形を全周にわたり均等化し
て過大な熱応力の発生を抑止することができる。
The depth is larger than b2 in the direction perpendicular to the crank axis. In other words, the thickness of the liner wall between the groove bottom of the circumferential groove 30 and the inner wall surface of the liner 16 is smaller in the inter-diale portion than in other portions. Normally, heat tends to stagnate in the area between the bores of the liner 16 due to explosive combustion that occurs in adjacent cylinders, and the temperature tends to be higher than other areas. By increasing the depth between the bores so that the thickness of the liner wall there is smaller than elsewhere, the heat transferred from the liner wall between the bores to the cooling liquid or lubricating oil (t') As a result, it is possible to prevent or effectively reduce the temperature rise of the liner wall between the lines 16 and 27, making the temperature distribution in the circumferential direction of the liner 16 more uniform than before,
It is possible to equalize the thermal deformation in the radial direction of the liner 16 over the entire circumference, thereby suppressing the generation of excessive thermal stress.

なお図示の構成では、ボア間部分だけ円周溝30の深さ
blが大きく形成されているが、ライナ16を保持する
クランクケース12の構成如何によっては、ボア間以外
の部分にも熱の放散が悪く高温になり易い部分が存在す
ることがあり、この場合当該高温になシ易いライナ部分
の溝の深さを大きくすることが好ましい。また、図示の
実施例では円周溝30が例示されているが、ライナ16
の軸線の周りに螺旋状に形成された螺旋溝の場合も同様
に本発明を適用することができ、・更にライナ軸線方向
に多数並設された円周溝又は螺旋溝のすべてについて、
ライナ壁の厚さを円周方向に関し変化させる必要はな□
・ぐ、円周方向の温度分布の変動が著しいライナ部分の
円周溝又は螺旋溝のみに本発明を適用することができる
。なおまた、冷却液体として上記実施例に例示した潤滑
油に代え冷却水等地の冷却液体を使用することができ、
また上記円周溝又は螺旋溝内を流れてライナ16を冷却
した潤滑油を第1図に示されているように出口側オイル
ギヤラリ26に収容せず、直接ライナ16の外周下端部
分からオイルパン内に流下させることも勿論可能である
In the illustrated configuration, the depth bl of the circumferential groove 30 is formed to be large only in the portion between the bores, but depending on the configuration of the crankcase 12 that holds the liner 16, heat may be dissipated in portions other than between the bores. There may be a portion where the liner has a poor temperature and is easily exposed to high temperatures. In this case, it is preferable to increase the depth of the groove in the liner portion that is susceptible to high temperatures. Additionally, although the illustrated embodiment illustrates the circumferential groove 30, the liner 16
The present invention can be similarly applied to the case of a spiral groove formed in a spiral around the axis of the liner, and furthermore, for all of the circumferential grooves or spiral grooves arranged in parallel in the liner axis direction,
There is no need to vary the thickness of the liner wall in the circumferential direction.
- The present invention can be applied only to circumferential grooves or spiral grooves in the liner portion where the temperature distribution in the circumferential direction fluctuates significantly. Furthermore, as the cooling liquid, a cooling liquid such as cooling water can be used instead of the lubricating oil exemplified in the above embodiment.
Furthermore, the lubricating oil that has cooled the liner 16 by flowing through the circumferential groove or the spiral groove is not stored in the outlet side oil gear lary 26 as shown in FIG. Of course, it is also possible to allow the water to flow down.

(発明の効果) 叙上のように、本発明に係るエンジンの冷却構造は、ク
ランクケースのシリンダゲア部にライナを嵌装し、同う
イチの外壁面に冷却液体を流通させる円周溝又は螺旋溝
を設けたものにおいて、上記円周溝又は螺旋溝の溝底と
ライナ内壁面との間のライナ壁の厚さを円周方向に関し
変化させたことを特徴とし、ライナの円周方向における
温度分布を均一化して熱変形及び熱応力の発生を低減し
、ライナの耐久性及び信頼性を改善し得る効果を奏する
ものである。
(Effects of the Invention) As described above, the engine cooling structure according to the present invention includes a liner fitted to the cylinder gear part of the crankcase, and a circumferential groove or spiral for circulating the cooling liquid on the outer wall surface of the same. A grooved device is characterized in that the thickness of the liner wall between the bottom of the circumferential groove or the spiral groove and the inner wall surface of the liner is varied in the circumferential direction, and the temperature in the circumferential direction of the liner is This has the effect of making the distribution uniform, reducing the occurrence of thermal deformation and thermal stress, and improving the durability and reliability of the liner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略断面図、第2図は
第1図の■−■線に沿う断面図(ただしピストン20は
除去されている)、第3図は第2図の■−■線に沿う部
分的断面図、第4図は第2図のIV−IV線に沿う部分
的断面図でる。 10・・・エンジン、12・・・クランクケース、14
・・・シリ/ダヘッド、16−・・シリンダライナ、2
0・・・ピストン、 O・・・円周溝。 第1図 第2図
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1 (however, the piston 20 is removed), and FIG. FIG. 4 is a partial sectional view taken along line IV--IV in FIG. 2. FIG. 10...Engine, 12...Crankcase, 14
...Cylinder/da head, 16-...Cylinder liner, 2
0... Piston, O... Circumferential groove. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  クランクケースのシリンダボア部にライナを嵌装し、
同ライナの外壁面に冷却液体を流通させる円周溝又は螺
旋溝を設けたものにおいて、上記円周溝又は螺旋溝の溝
底とライナ内壁面との間のライナ壁の厚さを円周方向に
関し変化させたことを特徴とするエンジンの冷却構造。
Fit the liner into the cylinder bore of the crankcase,
In the case where the outer wall surface of the liner is provided with a circumferential groove or a spiral groove for circulating the cooling liquid, the thickness of the liner wall between the bottom of the circumferential groove or spiral groove and the inner wall surface of the liner is measured in the circumferential direction. An engine cooling structure characterized by changes in the following aspects.
JP21262489A 1989-08-18 1989-08-18 Cooling structure of engine Pending JPH0378517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21262489A JPH0378517A (en) 1989-08-18 1989-08-18 Cooling structure of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21262489A JPH0378517A (en) 1989-08-18 1989-08-18 Cooling structure of engine

Publications (1)

Publication Number Publication Date
JPH0378517A true JPH0378517A (en) 1991-04-03

Family

ID=16625761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21262489A Pending JPH0378517A (en) 1989-08-18 1989-08-18 Cooling structure of engine

Country Status (1)

Country Link
JP (1) JPH0378517A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342859A (en) * 1991-05-20 1992-11-30 Teikoku Piston Ring Co Ltd Cooling structure of cylinder liner
JPH0530443U (en) * 1991-09-25 1993-04-23 帝国ピストンリング株式会社 Cylinder liner cooling structure
US6679526B2 (en) 1999-08-27 2004-01-20 Sumitomo Metal Industries, Ltd. Threaded joint for an oil well pipe
US7866706B2 (en) 2004-04-06 2011-01-11 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipe
CN106988922A (en) * 2017-03-29 2017-07-28 江苏常发农业装备股份有限公司 A kind of single-cylinder air-cooled diesel engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342859A (en) * 1991-05-20 1992-11-30 Teikoku Piston Ring Co Ltd Cooling structure of cylinder liner
JPH0530443U (en) * 1991-09-25 1993-04-23 帝国ピストンリング株式会社 Cylinder liner cooling structure
US6679526B2 (en) 1999-08-27 2004-01-20 Sumitomo Metal Industries, Ltd. Threaded joint for an oil well pipe
US7866706B2 (en) 2004-04-06 2011-01-11 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipe
CN106988922A (en) * 2017-03-29 2017-07-28 江苏常发农业装备股份有限公司 A kind of single-cylinder air-cooled diesel engine

Similar Documents

Publication Publication Date Title
US5086733A (en) Cooling system for multi-cylinder engine
WO2016001988A1 (en) Internal combustion engine
US4683844A (en) Cylinder block and head assembly for internal combustion engines
JP4395002B2 (en) Cylinder block cooling structure
US4753201A (en) Crankshaft supporting structure for multicylinder internal combustion engines
US8689744B2 (en) Cooling device and insert for water jacket of internal combustion engine
GB2201197A (en) I.c. engine cylinder block water jacket
JPH0378517A (en) Cooling structure of engine
US11187181B2 (en) Combustion engine housing having cylinder cooling
JP2014231791A (en) Internal combustion engine
US2012739A (en) Cylinder block construction for air cooled engines
US4542719A (en) Engine cooling system
JPH06330808A (en) Cylinder block structure of water cooled engine
JPH0613861B2 (en) Two-cycle engine piston
JP2516800B2 (en) Multi-cylinder engine cooling system
US5176113A (en) Cylinder liner
JPS62253945A (en) Cylinder cooling structure of liquid-cooling internal combustion engine
JPH0378519A (en) Cooling device for engine
US2953126A (en) Engine coolant distribution
JP4297618B2 (en) Cylinder block cooling structure for internal combustion engine
KR100475811B1 (en) Cooling apparatus for cylinder liner
JPH0248658Y2 (en)
WO2016001987A1 (en) Internal combustion engine
JPH0378518A (en) Cooling structure for engine
JPS6210453Y2 (en)