JPH0378339B2 - - Google Patents

Info

Publication number
JPH0378339B2
JPH0378339B2 JP4144983A JP4144983A JPH0378339B2 JP H0378339 B2 JPH0378339 B2 JP H0378339B2 JP 4144983 A JP4144983 A JP 4144983A JP 4144983 A JP4144983 A JP 4144983A JP H0378339 B2 JPH0378339 B2 JP H0378339B2
Authority
JP
Japan
Prior art keywords
scraping
section
amount
bucket
cargo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4144983A
Other languages
Japanese (ja)
Other versions
JPS59167417A (en
Inventor
Isao Myazawa
Muneharu Konda
Yoshiki Inoe
Shintaro Shimamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4144983A priority Critical patent/JPS59167417A/en
Publication of JPS59167417A publication Critical patent/JPS59167417A/en
Publication of JPH0378339B2 publication Critical patent/JPH0378339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/02Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads
    • B65G65/06Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads with endless scraping or elevating pick-up conveyors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/08Dredgers; Soil-shifting machines mechanically-driven with digging elements on an endless chain
    • E02F3/12Component parts, e.g. bucket troughs
    • E02F3/16Safety or control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Ship Loading And Unloading (AREA)

Description

【発明の詳細な説明】 本発明はアンローダの荷役量制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of cargo handled by an unloader.

アンローダは、船舶の積荷を陸揚げするための
装置であるが、船倉から石炭、鉱石等のバラ物や
粉体などを掻き出すために、バケツトコンベヤを
用いたものが知られており、第1図に示す如く船
倉a内の石炭等のバラ物bは、バケツトコンベヤ
c下端の掻取部dにより掘削ないし掻き取られて
後、船外上方へと搬送され、更に後続のコンベヤ
e等により送られて陸揚げされる。しかし、この
種連続式のアンローダにおいては、バラ物等の被
搬送物の比重、安息角、あるいは運転方法等によ
つて荷役量が変動する。荷役量の変動の幅が大き
いと、これに対応すべくバケツトコンベヤc後方
のコンベヤe、スタツカ等の設備の能力を大きく
とつておかねばならず設備が大型化する。そこ
で、従来にあつては、荷役量の変動幅をできるだ
け小さく抑えるために、次のような定量荷役運転
方法が提案されている。
An unloader is a device for unloading a ship's cargo, and one that uses a bucket conveyor is known to scrape loose materials such as coal and ore and powder from a ship's hold, as shown in Figure 1. As shown in Figure 2, loose materials b such as coal in the hold a are excavated or scraped off by the scraping section d at the lower end of the bucket conveyor c, and then transported to the upper part of the ship, and further conveyed by the subsequent conveyor e, etc. The ship is brought ashore. However, in this type of continuous unloader, the amount of cargo handled fluctuates depending on the specific gravity, angle of repose, operating method, etc. of the objects to be transported, such as bulk materials. If the range of fluctuation in the amount of cargo handling is large, the capacity of equipment such as the conveyor e and stacker behind the bucket conveyor c must be increased to accommodate this, resulting in an increase in the size of the equipment. Therefore, conventionally, the following quantitative cargo handling operation method has been proposed in order to suppress the fluctuation range of the cargo handling amount as small as possible.

バケツトコンベヤからの荷を移送する後続の
コンベヤに流量計を設けて移送される荷役量を
検出し、この検出値に基づきバケツトコンベヤ
のバケツト送り速度やバケツトコンベヤの走
行、旋回等の運転速度を増減変更する方法。
A flow meter is installed on the subsequent conveyor that transfers the load from the bucket conveyor to detect the amount of cargo being transferred, and based on this detected value, the bucket conveyor's bucket feed speed and operations such as traveling and turning of the bucket conveyor are controlled. How to increase or decrease speed.

バケツトコンベヤの駆動力を検出し、これを
予め設定された設定値(この値は、荷を持ち上
げるバケツトコンベヤの負荷側の全バケツトに
均等に荷が積載されているときの値である)に
近づけるべく、バケツトコンベヤの送り速度等
を制御する方法。
Detects the driving force of the bucket conveyor and sets it to a preset value (this value is the value when all the buckets on the load side of the bucket conveyor that lifts the load are loaded evenly) A method of controlling the feed speed of a bucket conveyor in order to approach the

しかしながら、上記,の方法にあつては、
応答が遅く、適切な制御ができない。特に、バケ
ツトの数が多く、掻取りから放出までの時間が長
くかかる場合には、タイムラグが大きくなつて定
量荷役制御は不可能である。また、の方法にお
いては、掻き取られた荷が負荷側の全てのバケツ
トに荷が載つていないと制御ができない。即ち、
掻取り始めや終りに一部のバケツトのみ荷が積れ
ているときには、バケツトコンベヤ駆動力は小さ
いので、バケツトの送り速度を早くしたり、掻取
部の掘削深さを深くするように制御することとな
り、制御系が発散するおそれがある。更に、船の
揺動等により各バケツトの積載量の変動が大きい
場合にも、これを検出することができない。
However, in the above method,
Response is slow and proper control is not possible. In particular, when there are many buckets and it takes a long time from scraping to discharge, the time lag becomes large and quantitative cargo handling control is impossible. Further, in the method (2), control cannot be performed unless the scraped load is placed on all buckets on the load side. That is,
When only a part of the buckets are loaded at the beginning or end of scraping, the driving force of the bucket conveyor is small, so the bucket conveyor speed is increased or the excavation depth of the scraping section is increased. This may cause the control system to diverge. Furthermore, even if there is a large variation in the loading capacity of each bucket due to the rocking of the ship or the like, this cannot be detected.

本発明は以上の従来の問題点を有効に解決すべ
く創案されたものである。本発明の目的は、船倉
内のバラ物等の被搬送物の状況等が変動しても、
タイムラグなしにこれに即応してバケツトコンベ
ヤの荷役量の調整ができ、定量荷役を実現し得る
アンローダの荷役量制御方法を提供することにあ
る。
The present invention has been devised to effectively solve the above-mentioned conventional problems. The purpose of the present invention is to provide a system that can
It is an object of the present invention to provide a method for controlling the amount of cargo handled by an unloader, which can adjust the amount of cargo handled by a bucket conveyor in immediate response without time lag and realizes quantitative cargo handling.

上記目的を達成するために本発明は、鉛直方向
に配設されたエレベータ部と、その下端部に保持
用シリンダを介して懸垂保持されると共に径方向
に伸縮用シリンダを介して延出され、バラ物等の
被搬送物を掻き取る掻取部とを有するバケツトコ
ンベヤを備えたアンローダにおいて、上記掻取部
の垂直荷重P2と掻取部にその長手方向に作用す
る伸縮荷重P1とを保持用シリンダと伸縮用シリ
ンダの油圧から検出し、これらP2,P1を垂直方
向および水平方向の力の釣合いから求めた式に
代入してR−wを求める演算と、このR−wを予
め求めた実測データの近似式の両辺からwを減
じた式に代入してwを求める演算と、このwを
荷役量算出式に代入して荷役量Qを算出する演
算とをアンローダの演算装置により行い、その求
められた荷役量に応じてバケツトコンベヤの掻取
速度を変えて荷役量を一定に制御することを特徴
とする。
In order to achieve the above object, the present invention includes an elevator section disposed vertically, a lower end of which is suspended and held via a holding cylinder, and extends in the radial direction via a telescopic cylinder. In an unloader equipped with a bucket conveyor having a scraping section for scraping off objects such as loose objects, the vertical load P2 of the scraping section, the expansion load P1 acting on the scraping section in its longitudinal direction, and is detected from the oil pressure of the holding cylinder and the telescopic cylinder, and these P 2 and P 1 are substituted into the equation obtained from the balance of forces in the vertical and horizontal directions to obtain R-w, and this R-w The unloader calculates w by subtracting w from both sides of the approximation formula for actual measurement data obtained in advance, and substituting w into the cargo handling amount calculation formula to calculate the cargo handling amount Q. The method is characterized in that the amount of cargo handled is controlled to be constant by changing the scraping speed of the bucket conveyor according to the determined amount of cargo handled.

R−w=P2−P1+W−S …… R=aw2+bw+c …… R−w=aw2+(b−1)w+c …… Q=w×V/l …… 但し、Rは掻取抵抗力、wは掻取部バケツト内
の被搬送物総重量、Wは掻取部の重量、Sは掻取
部が被搬送物から垂直上方向に受ける反力、abc
は係数、Vは掻取速度、lは掻取部の長さであ
る。
R-w=P 2 -P 1 +W-S... R=aw 2 +bw+c... R-w=aw 2 +(b-1)w+c... Q=w×V/l... However, R is Picking resistance force, w is the total weight of the transported objects in the scraping section bucket, W is the weight of the scraping section, S is the reaction force that the scraping section receives vertically upward from the transported objects, abc
is a coefficient, V is the scraping speed, and l is the length of the scraping section.

以下に、本発明の好適一実施例を添付図面に従
つて詳述する。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第2図は、アンローダの全体構成を示すもので
あつて、図示する如く、アンローダは、荷の積卸
しを行う埠頭に走行自在に設けられた走行部1
と、走行部1に水平面上に旋回自在に且つ俯仰自
在に設けられたブーム2と、ブーム2の先端部に
設けられたトツプ支持フレーム3と、トツプ支持
フレーム3に回転自在に支持されると共に鉛直方
向に垂下された筒体状のエレベータケーシング4
と、エレベータケーシング4に支持され、エレベ
ータケーシング4内にこれに沿つて配設されたエ
レベータ部5aとエレベータ部5a下端より水平
方向に延出された掻取部5bとを有するバケツト
コンベヤ5とから主に構成されている。
Figure 2 shows the overall configuration of the unloader.
, a boom 2 provided on the traveling section 1 so as to be able to freely turn on a horizontal plane and to be able to rise and fall; a top support frame 3 provided at the tip of the boom 2; and a boom 2 rotatably supported by the top support frame 3. Cylindrical elevator casing 4 hanging vertically
and a bucket conveyor 5, which is supported by the elevator casing 4 and has an elevator section 5a disposed along the inside of the elevator casing 4, and a scraping section 5b extending horizontally from the lower end of the elevator section 5a. It is mainly composed of.

バケツトコンベヤ5は、第2図ないし第3図に
示すように、その頂部に駆動用スプロケツト6を
有し、また掻取部5bの先端部と基端部とには、
それぞれ従動用スプロケツト7,8が設けられて
いる。更にエレベータ部5a下端より水平に延出
される掻取部5bの形状を形成保持すべく、エレ
ベータ部5a下端部から掻取部5bの基端部側に
わたつてL字形のフロータ9が設けられている。
フロータ9のエレベータ部5a側の上部とエレベ
ータケーシング4下端部との間には、フロータ9
を懸垂保持する保持用シリンダ10が介設されて
いる。また、フロータ9の屈曲部には、従動用の
スプロケツト8が取り付けられると共に、フロー
タ9の掻取部5b側の先端部と従動用スプロケツ
ト7との間には、従動用スプロケツト7を掻取部
5bの長手方向に沿つて伸縮駆動するための伸縮
用シリンダ11が介設されている。更に、駆動用
スプロケツト6及び従動用スプロケツト7,8間
には、無端環状のチエーン12が掛け渡されると
共に、チエーン12には、これに沿つて適宜間隔
にバケツト13が取り付けられている。
As shown in FIGS. 2 and 3, the bucket conveyor 5 has a driving sprocket 6 at the top thereof, and a distal end and a base end of the scraping section 5b.
Driven sprockets 7 and 8 are provided respectively. Furthermore, in order to form and maintain the shape of the scraping part 5b extending horizontally from the lower end of the elevator part 5a, an L-shaped floater 9 is provided extending from the lower end of the elevator part 5a to the proximal end of the scraping part 5b. There is.
A floater 9 is provided between the upper part of the floater 9 on the elevator part 5a side and the lower end of the elevator casing 4.
A holding cylinder 10 that suspends and holds the is interposed. Further, a driven sprocket 8 is attached to the bent portion of the floater 9, and between the tip of the floater 9 on the side of the scraping portion 5b and the driven sprocket 7, the driven sprocket 7 is attached to the scraping portion. A telescopic cylinder 11 is interposed to extend and contract 5b along the longitudinal direction. Further, an endless annular chain 12 is stretched between the driving sprocket 6 and the driven sprockets 7 and 8, and bucket belts 13 are attached to the chain 12 at appropriate intervals.

次に本実施例の作用について述べる。 Next, the operation of this embodiment will be described.

保持用シリンダ10、伸縮用シリンダ11の一
方あるいは双方を伸長させることにより、駆動用
スプロケツト6、従動用スプロケツト7及び8間
に掛け渡されたチエーン12を引張し、更に、駆
動スプロケツト6を作動してチエーン12及びこ
れに取り付けられたバケツト13を循環移送す
る。そうして、バケツト13を循環移送しつつエ
レベータケーシング4とともにバケツトコンベヤ
5を旋回させて、船倉内の石炭等のバラ物mを、
これに臨む掻取部5b底部のバケツト13により
掻き取つてゆく(なお、ブーム2を水平面上を旋
回させて掻取部5bをバラ物m上を走行させるよ
うにしてもよい)。掻取部5bで掻き取られたバ
ラ物mは、エレベータ部5aへと搬入されて持ち
上げられ、エレベータ部5a上方の搬出端からブ
ーム2に設けられたコンベヤ14に落され、更に
コンベヤ14から走行部1に設けられたコンベヤ
15へと移送され埠頭に陸揚げされることにな
る。
By extending one or both of the holding cylinder 10 and the telescopic cylinder 11, the chain 12 stretched between the driving sprocket 6 and the driven sprockets 7 and 8 is pulled, and the driving sprocket 6 is further actuated. The chain 12 and the bucket cart 13 attached thereto are circulated and transferred. Then, while circulating the bucket 13, the bucket conveyor 5 is rotated together with the elevator casing 4, and bulk materials m such as coal in the hold are removed.
The bucket 13 at the bottom of the scraping section 5b facing the scraping section 5b scrapes the scraped material (the boom 2 may be rotated on a horizontal surface to cause the scraping section 5b to travel over the bulk material m). The loose material m scraped off by the scraping section 5b is carried into the elevator section 5a, lifted up, dropped onto the conveyor 14 provided on the boom 2 from the discharging end above the elevator section 5a, and further transported from the conveyor 14 to the conveyor 14 provided on the boom 2. It will be transferred to the conveyor 15 provided in section 1 and unloaded at the wharf.

本発明の特長とするところは、現在、掻取部5
bにおいて掻き取つているバラ物mの重量を検出
し得、この検出値に基づきバケツト13の速り速
度等を調整して荷役量を制御している点にある。
The feature of the present invention is that currently, the scraping section 5
The weight of the bulk material m being scraped off in step b can be detected, and based on this detected value, the speed of the bucket cart 13, etc. is adjusted to control the amount of cargo to be handled.

次には、掻取部5bが現在、掻き取つているバ
ラ物mの重量を検出する方法について説明する。
Next, a method for detecting the weight of the bulk material m currently being scraped by the scraping section 5b will be described.

まず、掻取部5bの各部に働いている力につい
て考えてみると、第3図に示す如く、P1,P2
W,w,S,Rがある。P1は伸縮用シリンダ1
1に加わる外力、P2は保持用シリンダ10に加
わる外力、wは掻取部5b(フロータ9、従動ス
プロケツト7,8、伸縮用シリンダ11、チエー
ン12、バケツト13など)の重量、wは掻取部
5bのバケツト13内のバラ物mの総重量、Sは
掻取部5bのバケツト13がバラ物mから垂直上
方向に受ける反力、Rは掻取部5bのバケツト1
3がバラ物mを掻き取つていくときの抵抗力であ
る。また、第4図には、掻取部5bのチエーン1
2に作用している張力の分布を示す。図中、T1
は掻き取り末期の位置のチエーン12の張力、
T2は従動スプロケツト7に巻回されているチエ
ーン12の張力である。エレベータ部5aにおけ
るチエーン12の張力t1,t2は、バケツト13や
バラ物mの自重が加わりT1,T2より増加する。
First, when considering the forces acting on each part of the scraping part 5b, as shown in FIG. 3, P 1 , P 2 ,
There are W, w, S, and R. P 1 is telescopic cylinder 1
1, P2 is the external force applied to the holding cylinder 10, w is the weight of the scraping part 5b (floater 9, driven sprockets 7, 8, telescopic cylinder 11, chain 12, bucket 13, etc.), and w is the scraping force. The total weight of the bulk materials m in the bucket 13 of the scraping section 5b, S is the reaction force that the bucket 13 of the scraping section 5b receives vertically upward from the bulk materials m, and R is the weight of the bulk materials m in the bucket 13 of the scraping section 5b.
3 is the resistance force when scraping off the loose material m. Furthermore, in FIG. 4, the chain 1 of the scraping section 5b is shown.
The distribution of tension acting on 2 is shown. In the figure, T 1
is the tension of chain 12 at the final stage of scraping,
T 2 is the tension in the chain 12 wound around the driven sprocket 7. The tensions t 1 and t 2 of the chain 12 in the elevator section 5a are increased from T 1 and T 2 due to the addition of the weight of the bucket 13 and the bulk material m.

掻取部5bにおける垂直方向の力の釣合いを考
える。W,w,Sはチエーン12と保持用シリン
ダ10のみによつて支えられているので次式が成
り立つ。
Consider the balance of forces in the vertical direction in the scraping section 5b. Since W, w, and S are supported only by the chain 12 and the holding cylinder 10, the following equation holds true.

T1+T2=P2+W+w−S ……(1) また、掻取部5bの水平方向(長手方向)の力
の釣合いを考えると、T1はT2より抵抗力R分だ
け大きく、またT2は伸縮用シリンダ11の推力
の半分にあたるから、 T1=T2+R ……(2) P1=2T2 ……(3) となる。故に、(1),(2),(3)式からT1,T2を消去
すると次式が得られる。
T 1 +T 2 =P 2 +W+w-S... (1) Also, considering the balance of forces in the horizontal direction (longitudinal direction) of the scraping part 5b, T 1 is larger than T 2 by the resistance force R, and Since T 2 corresponds to half of the thrust of the telescopic cylinder 11, T 1 =T 2 +R (2) P 1 =2T 2 (3). Therefore, by eliminating T 1 and T 2 from equations (1), (2), and (3), the following equation is obtained.

R−w=P2−P1+W−S ……(4) (4)式において、掻取部5bの重量Wは既知の量
であつて、反力Sは非常に小さく、また掻取部5
bを下に下げない限り一定とみなしてよいから、
外力P1,P2を検知することにより、R−wを求
めることができる。
R−w=P 2 −P 1 +W−S (4) In equation (4), the weight W of the scraping part 5b is a known amount, the reaction force S is very small, and the scraping part 5
As long as b is not lowered, it can be considered constant, so
Rw can be determined by detecting the external forces P 1 and P 2 .

ところで、荷役量Qは次式で与えられる。 By the way, the cargo handling amount Q is given by the following formula.

Q=w×V/l ……(5) 但し、Vは掻取速度、lは掻取部の長さであ
り、いずれも実測できる。
Q=w×V/l (5) However, V is the scraping speed and l is the length of the scraping part, both of which can be measured.

一方、荷役量wと掻取抵抗Rの間には、wが増
せばRも増加するという単調増加の関係が成立す
る。そこで、各取扱物に対する実測データを二次
曲線(精度を上げるためにはn次曲線とすること
が好ましい)で近似すれば、 R=aw2+bw+c ……(6) となり、この両辺からwを減じれば、 R−w=aw2+(b−1)w+c ……(7) となる。
On the other hand, there is a monotonically increasing relationship between the cargo handling amount w and the scraping resistance R, in which as w increases, R also increases. Therefore, if the actual measurement data for each handled item is approximated by a quadratic curve (preferably an n-dimensional curve to improve accuracy), R = aw 2 + bw + c ... (6), and w can be calculated from both sides. If subtracted, R-w= aw2 +(b-1)w+c...(7).

この(7)式に(4)式から求めたR−wの値を代入し
てwを求め、このwの値を(5)式に代入すれば、荷
役量Qが求まる。結局P1,P2を検出すれば現在
掻取部5bが掻き取つている荷役量Qを算出でき
ることになる。
By substituting the value of R-w obtained from equation (4) into equation (7) to obtain w, and substituting this value of w into equation (5), the cargo handling amount Q can be obtained. After all, if P 1 and P 2 are detected, the cargo handling amount Q currently being scraped by the scraping section 5b can be calculated.

本実施例では、外力P1(掻取部5bの長手方向
の伸縮荷重)及びP2(掻取部5bの垂直荷重)を
シリンダ10,11の油圧から検出し、この検出
値からアンローダの運転室に設けられた演算装置
(マイクロコンピユータ)により、今、掻取部5
bが掻き取つている荷役量Qを演算し、この演算
された荷役量Qをフイードバツクしてバケツトコ
ンベヤ5の掻取速度を変え、荷役量を一定に制御
する。この荷役量制御方法は、タイムラグがほと
んどなく極めて応答性がよい。従つて、バケツト
13の数が多くバラ物の掻き取りから放出にまで
時間が長くかかる場合にも、適切な制御ができ、
たとえ、積荷の状況等が変化しても、荷役量を常
に一定に維持することができる。また、掻取り始
めや終りにおいてエレベータ部5aの荷巻上げ側
のバケツト13の一一部にのみしか荷が積れてい
ないときにも、的確な制御ができる。更に、船の
揺動等により各バケツト13の積載量の変動が大
きいときにも、これを検出でき、また各時刻の掻
き取つた積載量を記憶しておけば積載量分布もわ
かる。
In this embodiment, external forces P 1 (longitudinal expansion/contraction load of the scraping part 5b) and P 2 (vertical load of the scraping part 5b) are detected from the oil pressure of the cylinders 10 and 11, and the unloader operation is determined based on these detected values. A computing device (microcomputer) installed in the chamber now allows the scraping section 5 to
The cargo handling amount Q being scraped by b is calculated, and the calculated cargo handling amount Q is fed back to change the scraping speed of the bucket conveyor 5 to control the cargo handling amount to be constant. This cargo handling amount control method has almost no time lag and has extremely good responsiveness. Therefore, even if there are a large number of buckets 13 and it takes a long time to scrape off and discharge loose materials, appropriate control can be achieved.
Even if cargo conditions change, the amount of cargo handled can always be maintained constant. Moreover, accurate control can be performed even when only a part of the bucket 13 on the hoisting side of the elevator section 5a is loaded with cargo at the beginning or end of scraping. Furthermore, even when there is a large variation in the loading capacity of each bucket 13 due to the rocking of the ship, this can be detected, and if the loaded capacity scraped at each time is memorized, the distribution of the loaded capacity can also be known.

なお、上記実施例において、保持用シリンダ1
0、伸縮用シリンダ11にアキユムレータを接続
したり、シリンダ10,11をフリーにしたりす
ることによつて、より正確な荷重検出ができるの
で、更に精度の高い荷役量の検知も可能である。
上記実施例のバケツトコンベヤ5は伸縮自在なL
型のものであるが、最近本発明者らが提案してい
る掻取部が俯仰自在に構成されている型式のバケ
ツトコンベヤにも適用できる。
In addition, in the above embodiment, the holding cylinder 1
0. By connecting an accumulator to the telescopic cylinder 11 or by leaving the cylinders 10 and 11 free, more accurate load detection can be achieved, so it is also possible to detect the cargo handling amount with even higher accuracy.
The bucket conveyor 5 of the above embodiment has a telescopic L
However, it is also applicable to a type of bucket conveyor recently proposed by the present inventors, in which the scraping section is configured to be able to move up and down.

以上要するに、本発明によれば次のような優れ
た効果が得られる。
In summary, according to the present invention, the following excellent effects can be obtained.

(1) 掻取部の垂直荷重および伸縮荷重を検出する
だけで簡単に掻取部が掻き取つている被搬送物
の荷役量を算出するため、タイムラグなく極め
て応答性よく荷役量を検出することができる。
従つて、船倉内の被搬送物の積載状況等が変動
しても、これに即応した定量荷役が可能とな
る。
(1) The amount of cargo to be transported that has been scraped by the scraping section can be easily calculated by simply detecting the vertical load and expansion/contraction load of the scraping section, so the amount of cargo to be handled can be detected with extremely high responsiveness without any time lag. I can do it.
Therefore, even if the loading status of objects to be transported in the hold changes, it is possible to carry out quantitative loading and unloading in a timely manner.

(2) 定量荷役が可能となるため、バケツトコンベ
ヤ後続のコンベヤ、スタツカ等の能力を低減で
き、それらの設備を小型化し得る。
(2) Since quantitative cargo handling is possible, the capacity of conveyors, stackers, etc. following the bucket conveyor can be reduced, and these equipment can be downsized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のアンローダの運転方法を説明
するための説明図、第2図は本発明方法を実施す
るためのアンローダの一例を示す概略構成図、第
3図は同バケツトコンベヤ部分の拡大断面図、第
4図は第3図のバケツトコンベヤの掻取部におけ
るチエーンの張力を示す張力分布図である。 図中、4はエレベータケーシング、5はバケツ
トコンベヤ、5aはエレベータ部、5bは掻取
部、6は駆動用スプロケツト、7,8は従動用ス
プロケツト、9はフロータ、10は保持用シリン
ダ、11は伸縮用シリンダ、12はチエーン、1
3はバケツト、P1は伸縮用シリンダに加わる外
力(伸縮荷重)、P2は保持用シリンダに加わる外
力(垂直荷重)、mはバラ物である。
Fig. 1 is an explanatory diagram for explaining a conventional unloader operation method, Fig. 2 is a schematic configuration diagram showing an example of an unloader for carrying out the method of the present invention, and Fig. 3 is a diagram of the bucket conveyor section. The enlarged sectional view of FIG. 4 is a tension distribution diagram showing the tension of the chain in the scraping section of the bucket conveyor of FIG. 3. In the figure, 4 is an elevator casing, 5 is a bucket conveyor, 5a is an elevator part, 5b is a scraping part, 6 is a driving sprocket, 7 and 8 are driven sprockets, 9 is a floater, 10 is a holding cylinder, 11 is a telescopic cylinder, 12 is a chain, 1
3 is a bucket, P 1 is an external force (expandable load) applied to the telescoping cylinder, P 2 is an external force (vertical load) applied to the holding cylinder, and m is a bulk item.

Claims (1)

【特許請求の範囲】 1 鉛直方向に配設されたエレベータ部と、その
下端部に保持用シリンダを介して懸垂保持される
と共に径方向に伸縮用シリンダを介して延出さ
れ、バラ物等の被搬送物を掻き取る掻取部とを有
するバケツトコンベヤを備えたアンローダにおい
て、上記掻取部の垂直荷重P2と掻取部にその長
手方向に作用する伸縮荷重P1とを保持用シリン
ダと伸縮用シリンダの油圧から検出し、これら
P2,P1を垂直方向および水平方向の力の釣合い
から求めた式に代入してR−wを求める演算
と、このR−wを予め求めた実測データの近似式
の両辺からwを減じた式に代入してwを求め
る演算と、このwを荷役量算出式に代入して荷
役量Qを算出する演算とをアンローダの演算装置
により行い、その求められた荷役量に応じてバケ
ツトコンベヤの掻取速度を変えて荷役量を一定に
制御することを特徴とするアンローダの荷役量制
御方法。 R−w=P2−P1+W−S …… R=aw2+bw+c …… R−w=aw2+(b−1)w+c …… Q=w×V/l …… 但し、Rは掻取抵抗力、wは掻取部バケツト内
の被搬送物総重量、Wは掻取部の重量、Sは掻取
部が被搬送物から垂直上方向に受ける反力、abc
は係数、Vは掻取速度、lは掻取部の長さであ
る。
[Scope of Claims] 1. An elevator section disposed in the vertical direction, suspended from the lower end of the elevator section via a holding cylinder, and extended in the radial direction via an extensible cylinder, for storing loose objects, etc. In an unloader equipped with a bucket conveyor having a scraping section for scraping off objects to be conveyed, the vertical load P 2 of the scraping section and the elastic load P 1 acting on the scraping section in its longitudinal direction are transferred to a holding cylinder. Detected from the hydraulic pressure of the telescopic cylinder and these
A calculation is performed to obtain R-w by substituting P 2 and P 1 into the equation obtained from the balance of forces in the vertical and horizontal directions, and w is subtracted from both sides of the approximation equation based on the measured data obtained in advance. The calculation device of the unloader performs the calculation to calculate w by substituting it into the equation for calculating the cargo handling amount, and the calculation to calculate the cargo handling amount Q by substituting this w into the cargo handling amount calculation formula. A method for controlling the amount of cargo handled by an unloader, characterized by controlling the amount of cargo handled at a constant level by changing the scraping speed of a conveyor. R-w=P 2 -P 1 +W-S... R=aw 2 +bw+c... R-w=aw 2 +(b-1)w+c... Q=w×V/l... However, R is Picking resistance force, w is the total weight of the transported objects in the scraping section bucket, W is the weight of the scraping section, S is the reaction force that the scraping section receives vertically upward from the transported objects, abc
is a coefficient, V is the scraping speed, and l is the length of the scraping section.
JP4144983A 1983-03-15 1983-03-15 Unloader operation method Granted JPS59167417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4144983A JPS59167417A (en) 1983-03-15 1983-03-15 Unloader operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4144983A JPS59167417A (en) 1983-03-15 1983-03-15 Unloader operation method

Publications (2)

Publication Number Publication Date
JPS59167417A JPS59167417A (en) 1984-09-20
JPH0378339B2 true JPH0378339B2 (en) 1991-12-13

Family

ID=12608679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4144983A Granted JPS59167417A (en) 1983-03-15 1983-03-15 Unloader operation method

Country Status (1)

Country Link
JP (1) JPS59167417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028651A1 (en) 2007-08-29 2009-03-05 Mani, Inc. Bending method and bending apparatus for medical suturing needle
KR101452549B1 (en) * 2007-07-27 2014-10-21 마니 가부시키가이샤 Bending method of medical suture neddle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1108816A3 (en) * 1999-12-14 2003-05-02 Rainer Maurer Process and apparatus for the cleaning of sand
JP2014034458A (en) * 2012-08-09 2014-02-24 Sumitomo Heavy Industries Material Handling Systems Co Ltd Continuous unloader

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452549B1 (en) * 2007-07-27 2014-10-21 마니 가부시키가이샤 Bending method of medical suture neddle
WO2009028651A1 (en) 2007-08-29 2009-03-05 Mani, Inc. Bending method and bending apparatus for medical suturing needle

Also Published As

Publication number Publication date
JPS59167417A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US4268204A (en) Continuous ship unloader
US4039086A (en) Load balance, double bucket cable stay crane with load sensing means
JPH0378339B2 (en)
US1396193A (en) Elevator, conveyer, and crane
JP3329420B2 (en) Excavation depth control method for continuous unloader
JPH08268517A (en) Last shoot of unloader
US2939570A (en) Ship unloading apparatus
JP3495477B2 (en) Handling control method for continuous unloader
US2513696A (en) Loading or charging gear
JP3910661B2 (en) Quantitative scraping device for continuous unloader
JPH06501902A (en) Unloading equipment for bulk cargo
JPH11116066A (en) Rake hoist for rake device
JP2019214468A (en) Carrier device and method of controlling balance
JPS59167418A (en) Unloader operation method
JP3987717B2 (en) Watering device for bulk material conveyance path
JP3492074B2 (en) Detection method of horizontal excavation force in continuous unloader and continuous unloader using the detection method
CN213949609U (en) Conveying device for static material metering
JP6648602B2 (en) Continuous unloader
JP2875161B2 (en) Control method and apparatus for continuous unloader
JPS6320289A (en) Cargo handling device for bulk carrier
SU1175822A1 (en) Charging device for belt conveyer
JP2556043Y2 (en) Bulk cargo handling equipment
JP2853363B2 (en) Unloader handling method
JPH02125025A (en) Earth lifting device for sediment dumped in dam
JPS6175741A (en) Apparatus for recovering dropped material in unloader