JPH0376159A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH0376159A
JPH0376159A JP1212147A JP21214789A JPH0376159A JP H0376159 A JPH0376159 A JP H0376159A JP 1212147 A JP1212147 A JP 1212147A JP 21214789 A JP21214789 A JP 21214789A JP H0376159 A JPH0376159 A JP H0376159A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
electrode
capacitive element
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1212147A
Other languages
Japanese (ja)
Inventor
Hideharu Nakajima
中嶋 英晴
Hideaki Kuroda
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1212147A priority Critical patent/JPH0376159A/en
Publication of JPH0376159A publication Critical patent/JPH0376159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To perform a stable operation by forming other electrode in a tunnellike cavity of one electrode of a capacity element to increase the capacity of the element. CONSTITUTION:An SiO2 film 12 is formed on an Si substrate 11, an SiO2 film 13 is formed, and a polycrystalline Si film 14 to become a word line and an SiO2 film 15 to become an interlayer insulating film are sequentially deposited. Then, after n-type regions 16a-16c are formed in the substrate, the sidewall of an SiO2 film 17 is formed on the films 14, 15, and a polycrystalline Si film 18 is deposited. After n<+> type regions 21a-21c are formed in the substrate 1, an SiO2 film 22 is deposited on the whole surface, and etched back to allow the film 22 to remain only on a low region on the film 18. Thereafter, a polycrystalline Si film 23 is deposited, etched by RIE, the film 22 is removed by wet etching, and the film 18 is etched by RIE. Then, a tunnellike cavity 25 is formed. Subsequently a dielectric film 26 of a capacity element is formed, and a polycrystalline Si film 27 is deposited. As a result, the capacity of the element can be increased, and a stable operation can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野°〕 本願の発明は、積層容量型DRAMと称されている半導
体メモリに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor memory called a stacked capacitor DRAM.

〔発明の概要〕[Summary of the invention]

請求項1の発明は、上記の様な半導体メモリにおいて、
容量素子の一方の電極のトンネル状の空洞部内にも他方
の電極を形成して容量素子の容量を大きくすることによ
って、安定な動作が可能である様にしたものである。
The invention according to claim 1 provides a semiconductor memory as described above,
Stable operation is made possible by forming the other electrode within the tunnel-shaped cavity of one electrode of the capacitive element to increase the capacitance of the capacitive element.

請求項2の発明は、上記の様な半導体メモリにおいて、
容量素子の一方の電極のトンネル状の空洞部内及び一方
の電極の下面下にも他方の電極を形成して容量素子の容
量を更に大きくすることによって、更に安定な動作が可
能である様にしたものである。
The invention according to claim 2 provides a semiconductor memory as described above,
By forming the other electrode in the tunnel-shaped cavity of one electrode of the capacitive element and under the lower surface of one electrode to further increase the capacitance of the capacitive element, more stable operation is possible. It is something.

請求項3の発明は、上記の様な半導体メモリにおいて、
スイッチングトランジスタのゲート電極上の絶縁膜に突
起部を設け、この突起部を容量素子の一方の電極で覆い
、更にこの一方の電極を他方の電極で覆って容量素子の
容量を大きくすることによって、安定な動作が可能であ
る様にしたものである。
The invention according to claim 3 provides a semiconductor memory as described above,
By providing a protrusion on the insulating film on the gate electrode of the switching transistor, covering this protrusion with one electrode of the capacitor, and then covering this one electrode with the other electrode to increase the capacitance of the capacitor, This allows for stable operation.

〔従来の技術〕[Conventional technology]

容量素子とスイッチングトランジスタとでメモリセルが
構成されている半導体メモリであるいわゆるDRAMが
安定に動作するためには、容量素子が大きな容量を有し
ている必要がある。
In order for a so-called DRAM, which is a semiconductor memory in which a memory cell is constituted by a capacitive element and a switching transistor, to operate stably, the capacitive element must have a large capacity.

このため、容量素子のうちのスイッチングトランジスタ
に接続されている一方の電極をスイッチングトランジス
タのゲート電極上へ延ばして一方の電極と他方の電極と
の対向面積を大きくした、いわゆる積層容量型DRAM
が考えられている(例えば「月刊Semtconduc
tor World Jブレスジャーナル社(1988
,2)p、31〜36)。
For this reason, a so-called multilayer capacitive DRAM in which one electrode of the capacitive element connected to the switching transistor is extended over the gate electrode of the switching transistor to increase the opposing area of one electrode and the other electrode.
(For example, "Monthly Semtconduc
tor World J Breath Journal Co., Ltd. (1988
, 2) p, 31-36).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の様な積層容量型DRAMでも、特に、微
細化された場合は、トレンチ容量型DRAMに比べて容
量素子の容量が小さく、α線によるソフトエラー等に対
して必ずしも強くない。
However, even in the above-mentioned stacked capacitor type DRAM, especially when miniaturized, the capacitance of the capacitor element is smaller than that of the trench capacitor type DRAM, and it is not necessarily resistant to soft errors caused by α rays.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1の半導体メモリでは、容量素子35.36の一
方の電極18.23がトンネル状の空洞部25を有する
と共にこの一方の電極18.23の上面が略平坦に形成
されており、少なくとも前記空洞部25内と前記上面上
とに誘電体膜26を介して前記容量素子35.36の他
方の電極27が形成されている。
In the semiconductor memory according to the first aspect, one electrode 18.23 of the capacitive element 35.36 has a tunnel-shaped cavity 25, and the upper surface of this one electrode 18.23 is formed substantially flat. The other electrode 27 of the capacitive element 35, 36 is formed in the cavity 25 and on the upper surface with a dielectric film 26 interposed therebetween.

請求項2の半導体メモリでは、請求項1の半導体メモリ
の構成に加えて、容量素子35.36の前記一方の電極
18.23の下面下にも前記誘電体膜26を介して前記
他方の電極27が形成されている。
In addition to the structure of the semiconductor memory of claim 1, in the semiconductor memory of claim 2, the other electrode is also provided under the lower surface of the one electrode 18.23 of the capacitive element 35.36 via the dielectric film 26. 27 is formed.

請求項3の半導体メモリでは、スイッチングトランジス
タ33.34のゲート電極14上の絶縁膜15.17が
突起部17aを有しており、容量素子35.36の一方
の電極18.45が少なくとも前記突起部17aを覆っ
ており、前記容量素子35.36の他方の電極27が誘
電体膜26を介して前記一方の電極18.45を覆って
いる。
In the semiconductor memory according to the third aspect, the insulating film 15.17 on the gate electrode 14 of the switching transistor 33.34 has a protrusion 17a, and one electrode 18.45 of the capacitive element 35.36 has at least the protrusion. The other electrode 27 of the capacitive element 35.36 covers the one electrode 18.45 with the dielectric film 26 in between.

〔作用〕[Effect]

請求項1の半導体メモリでは、容量素子35.36の一
方の電極18.23の上面上のみならず空洞部25内に
も他方の電極27が形成されているので、一方の電極1
8.23と他方の電極27との対向面積が大きく、容量
素子35.36の容量が大きい。
In the semiconductor memory according to the first aspect, since the other electrode 27 is formed not only on the upper surface of one electrode 18.23 of the capacitive element 35.36 but also inside the cavity 25, one electrode 18.
The opposing area between the electrode 8.23 and the other electrode 27 is large, and the capacitance of the capacitive element 35.36 is large.

また、空洞部25がトンネル状であるので、容量素子3
5.36の容量が大きいにも拘らず、パラツル状等の構
造に比べて、容量素子35.36の一方の電極18.2
3の力学的強度が大きい。
Furthermore, since the cavity 25 is tunnel-shaped, the capacitive element 3
Despite the large capacitance of capacitive element 35.36, one electrode 18.2 of capacitive element 35.36 is
3 has high mechanical strength.

また、一方の電極18.23の上面が略平坦であるので
、他方の電極27等の上層配線の平坦度が高い。
Further, since the upper surface of one electrode 18.23 is substantially flat, the flatness of the upper layer wiring such as the other electrode 27 is high.

請求項2の半導体メモリでは、容量素子35.36の一
方の電極18.23の下面下にも他方の電極27が形成
されているので、一方の電極18.23と他方の電極2
7との対向面積が更に大きく、容量素子35.36の容
量が更に大きい。
In the semiconductor memory according to the second aspect, since the other electrode 27 is also formed under the lower surface of one electrode 18.23 of the capacitive element 35.36, one electrode 18.23 and the other electrode 2
The opposing area with 7 is even larger, and the capacitance of capacitive elements 35 and 36 is even larger.

請求項3の半導体メモリでは、容量素子35.36の一
方の電極上8.45がゲート電極14上の絶縁膜15.
17の突起部17aを覆っている分だけ、この一方の電
極18.45の表面積が大きい。そして、この一方の電
極18.45を他方の電極27が覆っている。従って、
一方の電極18.45と他方の電極27との対向面積が
大きく、容量素子35.36の容量が大きい。
In the semiconductor memory according to the third aspect, the insulating film 15.45 on one electrode of the capacitive element 35.36 is on the gate electrode 14.
The surface area of this one electrode 18.45 is large by the extent that it covers the protrusion 17a of the electrode 17. This one electrode 18.45 is covered by the other electrode 27. Therefore,
The opposing area between one electrode 18.45 and the other electrode 27 is large, and the capacitance of the capacitive element 35.36 is large.

〔実施例〕〔Example〕

以下、本願の発明の第1〜第5実施例を、第1図〜第7
図を参照しながら説明する。
Hereinafter, the first to fifth embodiments of the invention of the present application will be described in Figures 1 to 7.
This will be explained with reference to the figures.

第1図及び第2図が、第1実施例及びその製造工程を示
している。この第1実施例を製造するには、第1A図に
示す様に、まず、p−型のSt基板11に素子分離用の
Sin、膜12を形成し、スイッチングトランジスタの
ゲート絶縁膜になる5iOz膜13を酸化によって形成
する。
1 and 2 show a first embodiment and its manufacturing process. To manufacture this first embodiment, as shown in FIG. 1A, first, a Si film 12 for element isolation is formed on a p-type St substrate 11, and a 5iOz film 12, which will become the gate insulating film of the switching transistor, is formed on a p-type St substrate 11. Film 13 is formed by oxidation.

そして、スイッチングトランジスタのゲート電極つまり
ワード線になる多結晶Si膜14と眉間絶縁膜になるS
iO□膜15とを、CVDによって順次に堆積させる。
Then, the polycrystalline Si film 14 becomes the gate electrode of the switching transistor, that is, the word line, and the S film becomes the insulating film between the eyebrows.
The iO□ film 15 is sequentially deposited by CVD.

なお、多結晶Si膜14の代りにポリサイド層等を用い
てもよい。
Note that a polycide layer or the like may be used instead of the polycrystalline Si film 14.

その後、ワード線のパターンのレジスト(図示せず)を
用いてSing膜15と多結晶Si膜14とを順次にパ
ターニングし、これらのSing膜15と多結晶Si膜
14とをマスクにしてSi基板ll中にn−領域16a
〜16cを形成する。
Thereafter, the Sing film 15 and the polycrystalline Si film 14 are sequentially patterned using a word line pattern resist (not shown), and the Sing film 15 and the polycrystalline Si film 14 are used as masks to form the Si substrate. n-region 16a in ll
~16c is formed.

そして、CVDによる5iOz膜17の堆積及びSiO
2膜17膜上7のエッチバックを行って多結晶Si膜1
4及びSiO2膜15にSiO□膜17の側壁を形成し
、更にCVDによって多結晶Si膜18を堆積させる。
Then, a 5iOz film 17 is deposited by CVD and a SiO
Polycrystalline Si film 1 is etched back on the film 17.
4 and the SiO2 film 15, and a polycrystalline Si film 18 is further deposited by CVD.

そして更に、SiO,膜15.17と多結晶Si膜14
とをマスクにしてSi基板ll中にn+領域21a〜2
1cを形成する。
Furthermore, SiO film 15.17 and polycrystalline Si film 14
N+ regions 21a to 21 are formed in the Si substrate 11 using the mask as a mask.
Form 1c.

その後、CVDによってSiO,膜22を全面に堆積さ
せ、このSiO□膜22全22チバックすることによっ
て、多結晶Si膜18上の低い領域にのみSiO□膜2
2全22゜なお、SiO!膜22膜化2にSOG膜やP
SG膜等を用いてもよい。
Thereafter, a SiO film 22 is deposited on the entire surface by CVD, and the entire SiO film 22 is chilled, so that the SiO film 22 is deposited only on the low region on the polycrystalline Si film 18.
2 Total 22°In addition, SiO! SOG film or P for film 22 film formation 2
An SG film or the like may also be used.

次に、第1B図に示す様に、CVDによって多結晶Si
膜23を堆積させるが、多結晶Si膜18上の低い領域
にはSiO□膜22全22れているので、多結晶Si膜
14同士の間の領域でも多結晶Si膜23は略平坦であ
る。
Next, as shown in FIG. 1B, polycrystalline Si is formed by CVD.
The film 23 is deposited, but since the entire SiO□ film 22 is deposited in the low region on the polycrystalline Si film 18, the polycrystalline Si film 23 is substantially flat even in the region between the polycrystalline Si films 14. .

そして、容量素子のうちでnゝ領域21b、21cに接
続される一方の電極のパターン等に、レジスト24をバ
ターニングする。
Then, the resist 24 is patterned into the pattern of one electrode of the capacitive element connected to the n regions 21b and 21c.

次に、第1C図に示す様に、レジスト24をマスクにし
て、SiO□膜22全22するまで、多結晶Si膜23
に対するRIBを行う。そして、レジスト24を残した
まま、ウェットエツチングによってSiO□膜22全2
2する。
Next, as shown in FIG. 1C, using the resist 24 as a mask, the polycrystalline Si film 23 is
Perform RIB for. Then, while leaving the resist 24, the entire 2 portions of the SiO□ film 22 are etched by wet etching.
Do 2.

そして更に、レジスト24をマスクにして多結晶Si膜
18に対するRIEを行い、その後にレジスト24を除
去する。従って、この時点で、多結晶Si膜18.23
によってトンネル状の空洞部25が形成されている。
Further, RIE is performed on the polycrystalline Si film 18 using the resist 24 as a mask, and then the resist 24 is removed. Therefore, at this point, the polycrystalline Si film 18.23
A tunnel-shaped cavity 25 is formed by this.

次に、第1D図に示す様に、容量素子の誘電体II!2
6を形成するが、この誘電体膜26は空洞部25の内表
面にも形成される。そして、容量素子の他方の電極にな
る多結晶5iWi!27をCVDによって堆積させるが
、この多結晶Si膜27も空洞部25を埋める様に堆積
する。
Next, as shown in FIG. 1D, the dielectric II of the capacitive element! 2
This dielectric film 26 is also formed on the inner surface of the cavity 25. Then, polycrystalline 5iWi! becomes the other electrode of the capacitive element! 27 is deposited by CVD, and this polycrystalline Si film 27 is also deposited so as to fill the cavity 25.

その後、多結晶Si膜27のうちでn 4 ’IN域2
1a近傍の部分を除去する様に、RIHによって多結晶
5iIl127のパターニングを行う。但し、RIEで
あるので、空洞部25内の多結晶Si膜27は除去され
ない。
After that, in the polycrystalline Si film 27, the n 4 'IN region 2
Polycrystalline 5iIl 127 is patterned by RIH so as to remove the portion near 1a. However, since this is RIE, the polycrystalline Si film 27 within the cavity 25 is not removed.

次に、第1E図に示す様に、PSG膜等の眉間絶縁膜2
8を堆積させ、第1E図及び第2図に示す様に、n″領
域21aに対応する多結晶Si膜23に達するコンタク
ト窓31を層間絶縁膜28及び誘電体11126に形成
する。
Next, as shown in FIG. 1E, a glabellar insulation film 2 such as a PSG film is formed.
As shown in FIGS. 1E and 2, a contact window 31 reaching the polycrystalline Si film 23 corresponding to the n'' region 21a is formed in the interlayer insulating film 28 and the dielectric 11126.

そして、Affi膜32膜堰2させ、この^l膜32を
ピッ)lのパターンにバターニングする。以上の様にし
て、スイッチングトランジスタ33.34と容量素子3
5.36とを有する第I実施例が製造される。
Then, the Affi film 32 is formed into a film weir 2, and this ^l film 32 is patterned into a pattern of 1). As described above, the switching transistors 33 and 34 and the capacitive element 3
5.36 is manufactured.

この様な第1実施例では、空洞部25内にも蓄電可能で
あるので容量素子35.36の容量が大きいにも拘らず
、空洞部25がトンネル状であるので、パラツル状等の
構造に比べて多結晶Si膜18.23の力学的強度が大
きい。従って、製造工程の途中の超音波洗浄等でも破損
されにくい。
In the first embodiment, electricity can also be stored in the cavity 25, so despite the large capacitance of the capacitive elements 35 and 36, the cavity 25 is tunnel-shaped, so it is not possible to have a structure such as a parallel shape. In comparison, the mechanical strength of the polycrystalline Si films 18 and 23 is large. Therefore, it is unlikely to be damaged by ultrasonic cleaning or the like during the manufacturing process.

また、略平坦な多結晶Si膜23がコンタクト窓31の
位置にも形成されているので、このコンタクト窓31が
浅く、AJ膜32の段差被覆性がよい。
Further, since the substantially flat polycrystalline Si film 23 is also formed at the position of the contact window 31, the contact window 31 is shallow and the step coverage of the AJ film 32 is good.

なお、この第1実施例の様に空洞部25を形成しても多
結晶Si膜23の平坦度が低い場合は、第3図に示す様
に、更に多結晶Si膜37を堆積させて空洞部38を形
成するという工程を多段に繰り返してもよい。
Note that if the flatness of the polycrystalline Si film 23 is low even after forming the cavity 25 as in the first embodiment, a polycrystalline Si film 37 is further deposited to fill the cavity as shown in FIG. The process of forming the portion 38 may be repeated in multiple stages.

第4図は、第2実施例の製造工程を示している。FIG. 4 shows the manufacturing process of the second embodiment.

この第2実施例は、多結晶Si膜18の下面下にも誘電
体膜26と多結晶Si膜27とが形成されていることを
除いて、上述の第1実施例と実質的に同様の構成を有し
ている。従って、この第2実施例も平面的に見ると略第
2図の通りである。
This second embodiment is substantially the same as the first embodiment described above, except that a dielectric film 26 and a polycrystalline Si film 27 are also formed under the lower surface of the polycrystalline Si film 18. It has a structure. Therefore, this second embodiment is also approximately as shown in FIG. 2 when viewed from above.

この様な第2実施例を製造するには、第4A図に示す様
に、5in2膜17の側壁を形成した後で多結晶Si膜
18を堆積させる前に、薄いSiO□膜41及びSi3
Nm膜42と比較的厚いSiO□膜43とをCVDで順
次に堆積させ、n+領域21a、21b等に達するコン
タクト窓44a、44b等を膜41〜43に形成してお
く。
To manufacture such a second embodiment, as shown in FIG. 4A, after forming the sidewalls of the 5in2 film 17 and before depositing the polycrystalline Si film 18, a thin SiO□ film 41 and a Si3
A Nm film 42 and a relatively thick SiO□ film 43 are sequentially deposited by CVD, and contact windows 44a, 44b, etc. reaching the n+ regions 21a, 21b, etc. are formed in the films 41-43.

そして、第1実施例の場合と同様に多結晶Si膜18に
対するRIEまで行った後に、5i(h膜43に対する
ウェットエツチングを行う。この結果、第4B図に示す
様に、多結晶Si膜18とSi3N4膜42との間に空
隙が形成された状態で、多結晶Si膜18.23によっ
てトンネル状の空洞部25が形成される。
Then, as in the case of the first embodiment, after performing RIE on the polycrystalline Si film 18, wet etching is performed on the 5i(h film 43. As a result, as shown in FIG. 4B, the polycrystalline Si film 18 With a gap formed between the polycrystalline Si film 18 and the Si3N4 film 42, a tunnel-shaped cavity 25 is formed by the polycrystalline Si film 18.23.

なお、SiJ、膜42はSiO□膜43のウェットエツ
チングに対するストッパであり、5int膜41はSi
、N、膜42がSi基板11に直接に接して大きなスト
レスが生じるのを緩和するためのものである。
Note that the SiJ film 42 is a stopper for wet etching of the SiO□ film 43, and the 5-int film 41 is a
, N, is used to alleviate the large stress that occurs when the film 42 comes into direct contact with the Si substrate 11.

次に、第1実施例の場合と同様に誘電体膜26と多結晶
Si膜27とを形成するが、第4c図に示す様に、これ
らの膜26.27は多結晶Si膜18の下面下にも形成
される。
Next, a dielectric film 26 and a polycrystalline Si film 27 are formed in the same manner as in the first embodiment, but as shown in FIG. It is also formed below.

その後、第1実施例の場合と同様な工程を経て、この第
2実施例が製造される。
Thereafter, the second embodiment is manufactured through the same steps as in the first embodiment.

第5図は、第3実施例の製造工程を示している。FIG. 5 shows the manufacturing process of the third embodiment.

この第3実施例を製造するには、第5A図に示す様に、
SiO□膜15主15上多結晶Si膜45を堆積させ、
膜14.15.45をワード線のパターンにバターニン
グし、これらの膜14.15.45をマスクにしてn−
領域16a〜16cを形成するための不純物をSi基板
11中へイオン注入する。
To manufacture this third embodiment, as shown in FIG. 5A,
A polycrystalline Si film 45 is deposited on the main SiO□ film 15,
The films 14.15.45 were patterned into word line patterns, and these films 14.15.45 were used as masks to form n-
Impurity ions for forming regions 16a to 16c are implanted into Si substrate 11.

なお、SiO□膜15膜材5として、膜質のよい5tO
2膜を形成することができるTE01 (、テトラエチ
ルオルソシリケート)を用いれば、Sin、膜15は薄
くてもよい。従って、Sing膜15上に多結晶Si膜
45を堆積させても、n−,61域16a〜16Cに対
するコンタクト窓が従来よりも深くなることはない。
In addition, as the SiO□ film 15 film material 5, 5tO having good film quality is used.
If TE01 (tetraethyl orthosilicate), which can form two films, is used, the film 15 of Sin may be thin. Therefore, even if the polycrystalline Si film 45 is deposited on the Sing film 15, the contact window for the n-, 61 regions 16a to 16C does not become deeper than before.

その後、多結晶Si膜45.14及びSiO□膜15膜
材5ng膜17の側壁を形成する。従って、第5A図か
らも明らかな様に、SiO□膜15膜材5結晶Si膜1
4から見れば、多結晶Si膜45の膜厚に相当する分だ
けSin、膜17に突起部17aが形成されたことにな
る。
Thereafter, the side walls of the polycrystalline Si film 45.14, the SiO□ film 15 and the film 17 each having a film material of 5 ng are formed. Therefore, as is clear from FIG. 5A, the SiO□ film 15 film material 5 crystalline Si film 1
4, the protrusion 17a is formed on the Si film 17 by an amount corresponding to the thickness of the polycrystalline Si film 45.

次に、第5B図に示す様に、多結晶Si膜18の堆積と
n″領域21a〜21cを形成するための不純物のイオ
ン注入とイオン注入した不純物に対するアニールとを順
次に行う。
Next, as shown in FIG. 5B, the deposition of the polycrystalline Si film 18, the ion implantation of impurities for forming the n'' regions 21a to 21c, and the annealing of the implanted impurities are sequentially performed.

次に、第5C図に示す様に、SiO□膜15膜材5する
までRIHによって多結晶Si膜18.45のバターニ
ングを行う。この時、多結晶Si膜18.45とSiO
□膜15膜材5ツチング選択比が大きいので、多結晶S
i膜18.45に対するオーバエツチング時の安定性が
高い。
Next, as shown in FIG. 5C, the polycrystalline Si film 18.45 is patterned by RIH until the SiO□ film 15 is formed. At this time, polycrystalline Si film 18.45 and SiO
□Membrane 15 Membrane material 5 Polycrystalline S
High stability during overetching with respect to i-film 18.45.

その後は、第5D図に示す様に、第1実施例等の場合と
同様に、誘電体膜26の形成や多結晶Si膜27のバタ
ーニング等を行う。
Thereafter, as shown in FIG. 5D, formation of the dielectric film 26 and patterning of the polycrystalline Si film 27 are performed in the same manner as in the first embodiment.

以上の様にして製造した第3実施例では、多結晶Si膜
18と多結晶Si膜45とがSin、膜17の突起部1
7aを覆っているので、多結晶Si膜18の膜厚が薄く
ても、突起部17aの高さ分つまり多結晶Si膜45の
膜厚分だけ多結晶Si膜18.45の表面積が大きい。
In the third embodiment manufactured as described above, the polycrystalline Si film 18 and the polycrystalline Si film 45 are made of Sin, and the protrusion 1 of the film 17 is
7a, even if the polycrystalline Si film 18 is thin, the surface area of the polycrystalline Si film 18.45 is large by the height of the protrusion 17a, that is, by the thickness of the polycrystalline Si film 45.

従って、多結晶Si膜18.45と多結晶Si膜27と
の対向面積が大きく、容量素子35.36の容量が大き
い。
Therefore, the opposing area between the polycrystalline Si film 18.45 and the polycrystalline Si film 27 is large, and the capacitance of the capacitive element 35.36 is large.

第6図は、第4実施例の製造工程を示している。FIG. 6 shows the manufacturing process of the fourth embodiment.

この第4実施例を製造するには、第6A図に示す様に、
5i02膜17を堆積させた後、引き続いて多結晶Si
膜46を堆積させる。
To manufacture this fourth embodiment, as shown in FIG. 6A,
After depositing the 5i02 film 17, polycrystalline Si is subsequently deposited.
A film 46 is deposited.

次に、第6B図に示す様に、多結晶Si膜46をRIE
してSing膜17膜条7晶Si膜46の側壁を形成し
、この状態で5iOz膜17.13をRIEする。この
結果、5ift膜15上のSing膜17膜条7される
が、多結晶St膜46下のSiO□膜17は除去されな
い。
Next, as shown in FIG. 6B, the polycrystalline Si film 46 is subjected to RIE.
The sidewalls of the Sing film 17 and the 7-crystalline Si film 46 are then formed, and in this state, the 5iOz film 17.13 is subjected to RIE. As a result, the Sing film 17 on the 5ift film 15 is removed, but the SiO□ film 17 under the polycrystalline St film 46 is not removed.

従って、SiO□膜15及び多結晶Si膜14の両側方
に5t(h膜17の突起部17aが形成され、また側壁
である多結晶St膜46の厚さ分だけ5iOz膜17の
基底部の幅が広くなる。
Therefore, protrusions 17a of the 5T(h film 17) are formed on both sides of the SiO□ film 15 and the polycrystalline Si film 14, and the base of the 5iOz film 17 is formed by the thickness of the polycrystalline St film 46, which is the side wall. The width becomes wider.

次に、多結晶Si膜46をライトエツチングした後、第
6C図に示す様に、多結晶St膜18を堆積させる。そ
して、n+領域21a〜21Cを形成するための不純物
のイオン注入とイオン注入した不純物に対するアニール
とRIEによる多結晶St膜18のパターニングとを行
う。
Next, after light etching the polycrystalline Si film 46, a polycrystalline St film 18 is deposited as shown in FIG. 6C. Then, ion implantation of impurities for forming n+ regions 21a to 21C, annealing of the implanted impurities, and patterning of polycrystalline St film 18 by RIE are performed.

その後は、第6D図に示す様に、第1実施例等の場合と
同様に、誘電体膜26の形成や多結晶Si膜27のバタ
ーニング等を行う。
Thereafter, as shown in FIG. 6D, the formation of the dielectric film 26 and the patterning of the polycrystalline Si film 27 are performed in the same manner as in the first embodiment.

以上の様にして製造した第4実施例でも、多結晶St膜
18がSing膜17膜条7部17aを覆っているので
、多結晶St膜18の膜厚が薄くても、突起部17aの
高さ分だけ多結晶Si膜18の表面積が大きい。従って
、多結晶Si膜18と多結晶St膜27との対向面積が
大きく、容量素子35.36の容量が大きい。
In the fourth embodiment manufactured as described above, the polycrystalline St film 18 covers the film strip 7 portion 17a of the Sing film 17, so even if the polycrystalline St film 18 is thin, the protrusion 17a is The surface area of the polycrystalline Si film 18 is large by the height. Therefore, the opposing area between the polycrystalline Si film 18 and the polycrystalline St film 27 is large, and the capacitance of the capacitive elements 35 and 36 is large.

また、側壁である多結晶Si膜46の厚さ分だけ5in
2膜17の基底部の幅が広く、しかもSing膜17膜
条7で多結晶Si膜46に覆われている面は堆積時のま
までありRIEを受けていないので、SiO□膜17の
耐圧が高い。
Also, the thickness of the polycrystalline Si film 46, which is the side wall, is 5 inches.
The width of the base of the SiO film 17 is wide, and the surface covered with the polycrystalline Si film 46 in the Sing film 17 film strip 7 remains as it was when deposited and has not been subjected to RIE. is high.

第7図は、第5実施例の製造工程を示している。FIG. 7 shows the manufacturing process of the fifth embodiment.

この第5実施例は、第5図に示した第3実施例と第6図
に示した第4実施例とを融合させた構造を有している。
This fifth embodiment has a structure that is a combination of the third embodiment shown in FIG. 5 and the fourth embodiment shown in FIG.

即ち、この第5実施例を製造するには、第7A図に示す
様に、多結晶St膜45とSing膜15膜対5晶Si
膜14とをワード線のパターンにパターニングした状態
で、SiO□膜17と多結晶Si膜46とを堆積させる
That is, in order to manufacture this fifth embodiment, as shown in FIG. 7A, the polycrystalline St film 45 and the Sing film 15 are paired with the
With the film 14 patterned into a word line pattern, the SiO□ film 17 and the polycrystalline Si film 46 are deposited.

その後、第7B図に示す様に多結晶St膜46の側壁を
形成し、第7C図に示す様にSing膜17膜条7をR
IEL、第7D図に示す様に多結晶St膜18の堆積及
び多結晶5iN18.45のバターニング等を行う。
Thereafter, as shown in FIG. 7B, the side walls of the polycrystalline St film 46 are formed, and as shown in FIG. 7C, the film strips 7 of the Sing film 17 are
IEL, as shown in FIG. 7D, a polycrystalline St film 18 is deposited and polycrystalline 5iN 18.45 is patterned.

以上の様な第5実施例では、SiO□膜17のRIE時
に、多結晶st膜46 )t11壁カ5iOtla 1
70)側壁に対するストッパとなり、且つ多結晶Si膜
45がSing膜15膜対5るストッパとなっているの
で、SiO□膜17のRIEに際してのオーバエツチン
グ時の安定性が高い。
In the fifth embodiment as described above, during RIE of the SiO□ film 17, the polycrystalline st film 46)t11 wall
70) Since the polycrystalline Si film 45 acts as a stopper for the side wall and also serves as a stopper for the Sing film 15, stability during overetching during RIE of the SiO□ film 17 is high.

なお、この第5実施例における多結晶Si膜45は、上
述の様にエツチングに対するストッパを主な目的として
いるので、第5図に示した第3実施例における多結晶S
i膜45より薄くてもよい。
The polycrystalline Si film 45 in this fifth embodiment is mainly intended as a stopper for etching as described above, so the polycrystalline Si film 45 in the third embodiment shown in FIG.
It may be thinner than the i-film 45.

〔発明の効果〕〔Effect of the invention〕

請求項1〜3の何れの半導体メモリでも、容量素子の容
量が大きいので、α線によるソフトエラー等に対して強
く、安定な動作が可能である。
In any of the semiconductor memories according to the first to third aspects of the invention, since the capacitance of the capacitive element is large, it is resistant to soft errors caused by alpha rays and stable operation is possible.

また、請求項1の半導体メモリでは、容量素子の一方の
電極の力学的強度が大きいので製造過程での破損が少な
く、しかも容量素子の一方の電極よりも上層の配線の平
坦度も高いので、製造が容易である。
Further, in the semiconductor memory according to the first aspect, since the mechanical strength of one electrode of the capacitive element is high, there is less damage during the manufacturing process, and the flatness of the wiring in the upper layer is also higher than that of the one electrode of the capacitive element. Easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願の発明の第1実施例の製造工程を順次に示
しており第2図の7−I線に沿う側断面図、第2図は第
1実施例の平面図、第3図は第1実施例の変形例の製造
工程の途中を示す側断面図、第4図〜第7図は夫々第2
〜第5実施例の製造工程を順次に示す側断面図である。 なお図面に用いた符号において、 14・−−−−−・−−−一−−−・・・−・多結晶S
i膜15−・−・−−−−−−−−−−−−−5i O
を膜17’−−−−−・  ・・SiO2膜17a  
   ・突起部 18−−−−−−−−−一  多結晶Si膜23   
−−−−−−・−多結晶Si膜25−−−−−−−−−
・−−−一一−−−−・空洞部26−・・−・−−−−
一−・−−一−−誘電体膜27・−−−−−−−・−・
−・−多結晶Si膜33.34− ・−・−・スイッチ
ングトランジスタ35.36    容量素子 45−−−−−−−−−−−−・−・・−・多結晶Si
膜である。
1 is a side sectional view taken along line 7-I in FIG. 2, a plan view of the first embodiment, and FIG. 3 is a side sectional view taken along line 7-I in FIG. is a side sectional view showing the middle of the manufacturing process of a modification of the first embodiment, and FIGS.
- It is a sectional side view which shows the manufacturing process of 5th Example sequentially. In addition, in the symbols used in the drawings, 14.
i film 15−・−・−−−−−−−−−−−5i O
The film 17'-----...SiO2 film 17a
・Protrusion 18-----1 Polycrystalline Si film 23
----------Polycrystalline Si film 25-----
・---11-----Cavity part 26-----
1−・−−1−−Dielectric film 27・−−−−−−・−・
---Polycrystalline Si film 33.34---Switching transistor 35.36 Capacitive element 45----------------Polycrystalline Si
It is a membrane.

Claims (1)

【特許請求の範囲】 1、容量素子とスイッチングトランジスタとでメモリセ
ルが構成されており、前記容量素子の一方の電極が前記
スイッチングトランジスタのゲート電極上へ延びている
半導体メモリにおいて、前記一方の電極がトンネル状の
空洞部を有すると共にこの一方の電極の上面が略平坦に
形成されており、 少なくとも前記空洞部内と前記上面上とに誘電体膜を介
して前記容量素子の他方の電極が形成されている半導体
メモリ。 2、前記一方の電極の下面下にも前記誘電体膜を介して
前記他方の電極が形成されている請求項1記載の半導体
メモリ。 3、容量素子とスイッチングトランジスタとでメモリセ
ルが構成されており、前記容量素子の一方の電極が前記
スイッチングトランジスタのゲート電極上へ延びている
半導体メモリにおいて、前記ゲート電極上の絶縁膜が突
起部を有しており、 前記一方の電極が少なくとも前記突起部を覆っており、 前記容量素子の他方の電極が誘電体膜を介して前記一方
の電極を覆っている半導体メモリ。
[Claims] 1. In a semiconductor memory in which a memory cell is constituted by a capacitive element and a switching transistor, and one electrode of the capacitive element extends onto a gate electrode of the switching transistor, the one electrode has a tunnel-like cavity, and the upper surface of this one electrode is formed substantially flat, and the other electrode of the capacitive element is formed at least within the cavity and on the upper surface with a dielectric film interposed therebetween. semiconductor memory. 2. The semiconductor memory according to claim 1, wherein the other electrode is also formed under the lower surface of the one electrode with the dielectric film interposed therebetween. 3. In a semiconductor memory in which a memory cell is constituted by a capacitive element and a switching transistor, and one electrode of the capacitive element extends onto the gate electrode of the switching transistor, the insulating film on the gate electrode has a protrusion. A semiconductor memory, wherein the one electrode covers at least the protrusion, and the other electrode of the capacitive element covers the one electrode with a dielectric film interposed therebetween.
JP1212147A 1989-08-18 1989-08-18 Semiconductor memory Pending JPH0376159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212147A JPH0376159A (en) 1989-08-18 1989-08-18 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212147A JPH0376159A (en) 1989-08-18 1989-08-18 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH0376159A true JPH0376159A (en) 1991-04-02

Family

ID=16617669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212147A Pending JPH0376159A (en) 1989-08-18 1989-08-18 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH0376159A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178115A (en) * 1989-12-06 1991-08-02 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor
JPH04196481A (en) * 1990-11-28 1992-07-16 Nec Corp Semiconductor storage device
JPH04225557A (en) * 1990-04-03 1992-08-14 Electron & Telecommun Res Inst Dram cell of standard structure
JPH04298074A (en) * 1990-10-25 1992-10-21 Hyundai Electron Ind Co Ltd Dram provided with stacked capacitor and manufacture thereof
JPH06181295A (en) * 1991-12-18 1994-06-28 Samsung Electron Co Ltd Semiconductor memory device and its manufacture
JPH06232366A (en) * 1992-12-31 1994-08-19 Hyundai Electron Ind Co Ltd Manufacture of laminated capacitor for semiconductor element
WO1996026544A1 (en) * 1995-02-22 1996-08-29 Micron Technology, Inc. Method of forming a dram bit line contact
US5686747A (en) * 1993-02-12 1997-11-11 Micron Technology, Inc. Integrated circuits comprising interconnecting plugs
US5705838A (en) * 1993-02-12 1998-01-06 Micron Technology, Inc. Array of bit line over capacitor array of memory cells

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178115A (en) * 1989-12-06 1991-08-02 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor
JPH04225557A (en) * 1990-04-03 1992-08-14 Electron & Telecommun Res Inst Dram cell of standard structure
JPH04298074A (en) * 1990-10-25 1992-10-21 Hyundai Electron Ind Co Ltd Dram provided with stacked capacitor and manufacture thereof
JPH04196481A (en) * 1990-11-28 1992-07-16 Nec Corp Semiconductor storage device
JPH06181295A (en) * 1991-12-18 1994-06-28 Samsung Electron Co Ltd Semiconductor memory device and its manufacture
JPH06232366A (en) * 1992-12-31 1994-08-19 Hyundai Electron Ind Co Ltd Manufacture of laminated capacitor for semiconductor element
US5821140A (en) * 1993-02-12 1998-10-13 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory cells
US5686747A (en) * 1993-02-12 1997-11-11 Micron Technology, Inc. Integrated circuits comprising interconnecting plugs
US5705838A (en) * 1993-02-12 1998-01-06 Micron Technology, Inc. Array of bit line over capacitor array of memory cells
US5900660A (en) * 1993-02-12 1999-05-04 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory calls
US6110774A (en) * 1993-02-12 2000-08-29 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory cells
WO1996026544A1 (en) * 1995-02-22 1996-08-29 Micron Technology, Inc. Method of forming a dram bit line contact
KR100388519B1 (en) * 1995-02-22 2003-09-19 마이크론 테크놀로지, 인크. Method for forming a bit line on a capacitor array of a memory cell and an integrated circuit and a semiconductor memory device using the same

Similar Documents

Publication Publication Date Title
TWI390665B (en) Semiconductor device having dual-sti (shallow trench isolation) and manufacturing method thereof
JP3964828B2 (en) Semiconductor device
US7829414B2 (en) Method for manufacturing non-volatile semiconductor memory device, and non-volatile semiconductor memory device
JPH0296362A (en) Semiconductor device and manufacture thereof
JPS60148165A (en) Manufacture of semiconductor memory device
US7709319B2 (en) Semiconductor device and method of manufacturing the same
JP2004228421A (en) Nonvolatile semiconductor storage and manufacturing method thereof
JPS62286270A (en) Semiconductor memory
JPH0376159A (en) Semiconductor memory
JPH08306879A (en) Method of fabricating semiconductor device
JPH11111936A (en) Manufacture of semiconductor device
KR910009617B1 (en) Semiconductor memory device and manufacture there of
KR100242470B1 (en) Semiconductor memory device and its fabricating method
US6838341B2 (en) Method for fabricating semiconductor device with self-aligned storage node
JPH0834303B2 (en) Method for manufacturing semiconductor memory device
JPH02257670A (en) Semiconductor storage device and manufacture thereof
KR0127267B1 (en) Manufacturing method for charge storage electrode of capacitor
JP2590867B2 (en) Manufacturing method of memory device
JP2000101052A (en) Semiconductor device and manufacture thereof
CN113948442A (en) Semiconductor device and method for manufacturing the same
JPH05275649A (en) Semiconductor storage device
KR100255162B1 (en) Forming method of a capacitor in a semiconductor device
JPH07249693A (en) Semiconductor device and its manufacture
KR0165304B1 (en) Self align contact structure semiconductor device &amp; its fabrication method
JPH0373570A (en) Manufacture of semiconductor memory