JPH0375212A - Preparation of elastic graphite - Google Patents

Preparation of elastic graphite

Info

Publication number
JPH0375212A
JPH0375212A JP1210283A JP21028389A JPH0375212A JP H0375212 A JPH0375212 A JP H0375212A JP 1210283 A JP1210283 A JP 1210283A JP 21028389 A JP21028389 A JP 21028389A JP H0375212 A JPH0375212 A JP H0375212A
Authority
JP
Japan
Prior art keywords
nitrogen dioxide
dioxide gas
carbonaceous material
treatment
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1210283A
Other languages
Japanese (ja)
Other versions
JPH0624967B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Hidemasa Honda
本田 英昌
Masaki Fujii
政喜 藤井
Takaisa Nakagawa
中川 隆功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Koa Oil Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1210283A priority Critical patent/JPH0624967B2/en
Publication of JPH0375212A publication Critical patent/JPH0375212A/en
Publication of JPH0624967B2 publication Critical patent/JPH0624967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a lightweight, heat-resistant and highly elastic graphite product by bringing a carbonaceous material into contact with NO2 gas and subsequently subjecting the material to a graphitization treatment at >= a specific temperature. CONSTITUTION:A carbonaceous material is brought into contact with nitrogen dioxide gas and subsequently subjected to a graphitization treatment at a temperature of >=2000 deg.C to provide the objective elastic graphite product having a packing density of 1.0g/cm<3> and a recovery rate of >=50% at a compression degree of 10-90%. The concentration of the used nitrogen dioxide gas is not necessarily high, may be >=10% but preferably is a high concentration such as >=50%. For the improvement of the reactivity of the nitrogen dioxide gas an operation such as the blowing of steam through the nitrogen dioxide gas and the passage of the nitrogen dioxide gas through an acidic solution is effective. For the further proceeding of the oxidation reaction as a side-reaction air, oxygen, ozone, etc., may be mixed with the nitrogen dioxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素材料に関し、特に軽量、耐熱性であり、か
つ、弾性にすぐれた粒状の弾性黒鉛体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to carbon materials, and particularly to a method for producing granular elastic graphite bodies that are lightweight, heat resistant, and have excellent elasticity.

〔発明の背景〕[Background of the invention]

一般に炭素材料は、軽量、耐熱性、高弾性率1の他の材
料に見られない特性を持っているが、ブロック体では多
孔質なものでも剛性であり、一方、繊維、シート、フィ
ルムのように、細いかあるいは薄いものでは変形可能な
ものになる。しかし、これら炭素材料はそれ自体弾性体
としての性質は有していない。従来、弾性を持つ炭素材
料としては膨張黒鉛から製造されるシートが知られてい
る。
In general, carbon materials have properties not found in other materials, such as light weight, heat resistance, and high modulus of elasticity. In addition, thin or thin objects can be deformed. However, these carbon materials themselves do not have elastic properties. Conventionally, sheets made of expanded graphite have been known as elastic carbon materials.

それでも、このシートに圧縮荷重を加えた後に荷重を除
いて求められる回復率は小さいものである(斉藤、工業
材料、29巻34ページ)。
Still, the recovery rate determined by applying a compressive load to this sheet and then removing the load is small (Saito, Industrial Materials, Vol. 29, p. 34).

本発明者らは先に、圧縮荷重を加えた後、荷重を除いて
求められる回復率の大きい粒状弾性黒鉛体の製造方法を
提供している(特開昭63−139080号、特開昭6
4−9808号および特願昭63−237921号)。
The present inventors have previously provided a method for manufacturing a granular elastic graphite body that has a high recovery rate after applying a compressive load and then removing the load (Japanese Patent Application Laid-Open No. 139080/1983,
No. 4-9808 and Japanese Patent Application No. 63-237921).

これらの発明の要旨は、特開昭63−139080号明
細書において、硝酸もしくは硝酸と硫酸との混酸で処理
した炭素質メソフェースまたは生コークスを、また、特
開昭64−9808号においては、硝酸もしくは硝酸と
硫酸との混酸で処理した炭素質メソフェースまた生コー
クスをアルカリ水溶液中で溶解させ、次いで、酸水溶液
で析出させて得られるアクアメソフェースを、約300
℃で加熱処理して膨張・発泡させ、さらに、特願昭63
−237921号においては炭素質メソフェースまたは
生コークスを硝酸と接触させて急速に加熱することで膨
張・発泡させて、これを2400℃以上(特願昭63−
237921号については2000℃以上)の温度で黒
鉛化処理するものであった。確かに、上記の第1ないし
第2の方法によって得られる黒鉛化は優れた回復率を有
するものであるが、硝酸もしくは硝酸と硫酸との混酸で
の処理が、第2法のそれでは硝酸もしくは硝酸と硫酸と
の混酸で処理後、更に溶解、析出処理が工捏上必要であ
っjコ。
The gist of these inventions is that, in JP-A No. 63-139080, carbonaceous mesophase or raw coke treated with nitric acid or a mixed acid of nitric acid and sulfuric acid, and in JP-A No. 64-9808, carbonaceous mesophase or raw coke treated with nitric acid Alternatively, carbonaceous mesophase treated with a mixed acid of nitric acid and sulfuric acid or aqua mesophase obtained by dissolving raw coke in an alkaline aqueous solution and then precipitating it with an acid aqueous solution,
℃ heat treatment to expand and foam.
In No.-237921, carbonaceous mesophase or raw coke is brought into contact with nitric acid and rapidly heated to expand and foam, and the mixture is heated to a temperature of 2400°C or higher (Japanese Patent Application No. 63-
Regarding No. 237921, the graphitization treatment was carried out at a temperature of 2000° C. or higher. It is true that the graphitization obtained by the first or second method above has an excellent recovery rate, but the treatment with nitric acid or a mixed acid of nitric acid and sulfuric acid is After treatment with a mixed acid of sulfuric acid and sulfuric acid, further dissolution and precipitation treatments are required for fabrication.

そのとき、両者に共通な操作である硝酸もしくは硝酸と
硫酸との混酸での処理は、原料にニトロ基の導入と副反
応である酸化反応によるカルボキシル基、水酸基が同時
に導入されるというものである。このことから、約30
0℃の熱処理間に生じる膨張・発泡現象は、ニトロ基に
よる原料の溶融とカルボン酸基と水酸基の分解で発生す
るガスによると推察された。すなわち、これらの方法に
おいては、弾性黒鉛体を製造するためにはニトロU、カ
ルボキシル基等の存在が必要な用件であると4゜えられ
ていた。 いずれにしても、上述した従来の製造方法は
、工程が比較的繁雑であり、時間的にも長時間を要する
ものであった。そこで、第3法では、酸による処理、可
溶化・析出処理ならびに膨張発泡処理という一連の繁雑
な工程を簡略化し、時間の短縮化を図るため、炭素質材
料に硝酸を接触させて急速加熱することにより膨張・発
泡処理を行う方法を提案している。
At that time, treatment with nitric acid or a mixed acid of nitric acid and sulfuric acid, which is a common operation for both, simultaneously introduces nitro groups into the raw material and carboxyl groups and hydroxyl groups through the side reaction of oxidation reaction. . From this, approximately 30
The expansion/foaming phenomenon that occurs during the heat treatment at 0° C. is presumed to be due to the gas generated by the melting of the raw material by the nitro group and the decomposition of the carboxylic acid group and hydroxyl group. That is, in these methods, the presence of nitro U, carboxyl groups, etc. was considered to be a necessary requirement in order to produce elastic graphite bodies. In any case, the conventional manufacturing method described above has relatively complicated steps and takes a long time. Therefore, in the third method, in order to simplify a series of complicated steps such as acid treatment, solubilization/precipitation treatment, and expansion foaming treatment, and to shorten the time, the carbonaceous material is brought into contact with nitric acid and rapidly heated. We are proposing a method for performing expansion/foaming treatment.

しかしながら、この方法は、それにより製造−1−程の
簡略化は図れたものの、急速加熱処理において発生する
多量の分解ガスや蒸気の処理に手間がかかることや、接
触させる硝酸の回収が困難であることなどの問題があり
、工業化への適用は必ずしも容易ではないと考えられて
いる。
However, although this method simplifies the production step (1), it takes time and effort to process the large amount of decomposed gas and steam generated during rapid heating treatment, and it is difficult to recover the nitric acid that is brought into contact. However, it is thought that it is not necessarily easy to apply it to industrialization due to certain problems.

〔発明のw1要〕 本発明は、上記事情により鑑みてなされたものであり、
従来法で採用されている工程を、より合理的かつ迅速な
工程にし、これにより製造工程の簡略化と製造コストの
低減化が図られ、工業化への応用が容易であり、しかも
すぐれた弾性特性を有する黒鉛体を得るための方法を提
供することを目的としている。
[W1 essential points of the invention] The present invention has been made in view of the above circumstances,
The process used in conventional methods has been made more rational and faster, simplifying the manufacturing process and reducing manufacturing costs, making it easy to apply to industrialization, and providing excellent elastic properties. The object of the present invention is to provide a method for obtaining a graphite body having the following properties.

上述したように、従来の製造方法においては、その工程
は、硝酸もしくは硝酸と硫酸との混酸での処理、可溶化
ならびに析出処理、膨張・発泡処理、もしくは硝酸との
接触による加熱処理および黒鉛化処理という一連の操作
からなるが、本発明者らは、さらに鋭意研究の結果、原
料となる炭素質材料に二酸化窒素ガスを接触させるとい
う比較的簡単な工程によって、次の工程における炭素質
材料の膨張・発泡を引き起こすに十分な童のニトロ基や
カルボキシル基等の官能基を導入することができ、これ
を膨張・発泡処理した後に黒鉛化処理することによって
良好な特性の弾性黒鉛体を得ることができることを見出
した。
As mentioned above, in the conventional manufacturing method, the steps include treatment with nitric acid or a mixed acid of nitric acid and sulfuric acid, solubilization and precipitation treatment, expansion/foaming treatment, or heat treatment and graphitization by contact with nitric acid. It consists of a series of operations called processing, but as a result of further intensive research, the present inventors discovered that the carbonaceous material in the next step can be processed by a relatively simple process of bringing nitrogen dioxide gas into contact with the carbonaceous material that will serve as the raw material. Functional groups such as nitro groups and carboxyl groups sufficient to cause expansion and foaming can be introduced, and elastic graphite with good properties can be obtained by graphitizing the material after expansion and foaming. I discovered that it can be done.

本発明の弾性黒鉛体の製造方法は、上記知見に基づいて
完成されたものであり、より詳しくは、炭素質材料を二
酸化窒素ガスと接触させた後、2000℃以上の温度で
黒鉛化処理することを特徴としている。
The method for producing an elastic graphite body of the present invention has been completed based on the above findings, and more specifically, after bringing a carbonaceous material into contact with nitrogen dioxide gas, it is graphitized at a temperature of 2000°C or higher. It is characterized by

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明の方法について詳細に説明する。 The method of the present invention will be explained in detail below.

炭素質材料 原料である炭素質材料としては重質瀝青物であるピッチ
類の熱処理によって製造されるピッチ、メソフェースピ
ッチ、炭素質メソフェースおよび生コークスコークスな
どであるが、炭素質メソフェースおよび(または)コー
クスが好ましく用いられる。
Examples of carbonaceous materials that are raw materials include pitch produced by heat treatment of pitch, which is a heavy bituminous substance, mesoface pitch, carbonaceous mesoface, and raw coke coke, but carbonaceous mesoface and/or Coke is preferably used.

炭素質メソフェースは重質瀝青物を約350〜500℃
で熱処理した時に生成する光学的異方性体である。これ
ら炭素質メソフェースの原料として用いられる重質瀝青
物はコールタールピッチ、石炭液化物の石炭系ピッチ、
6浦の蒸留残さ浦、ナフサの熱分解時に副生ずるナフサ
タールピッチ、ナフサ等の流動接触分解法(FCC法)
で副生ずるFCCデカントオイル等の石油系ピッチ、P
VC等の合成高分子の熱分解で得られるピッチ等であり
、炭素化処理によって易黒鉛化性炭素を与えるものであ
れば特に種類は問わない。これらのピッチ類は約350
〜500℃で熱処理する。この熱処理によって、炭素質
メソフェースを生成させる。炭素質メソフェースの生成
は熱処理物を偏光顕微鏡下で観察することによって容易
に知ることができる。すなわち、炭素質メソフェースは
光学的等方性相であるピッチ中に光学的異方性相として
識別される。
Carbonaceous mesoface heats heavy bituminous materials at approximately 350 to 500℃.
It is an optically anisotropic substance that is produced when heat-treated. The heavy bituminous materials used as raw materials for these carbonaceous mesophases include coal tar pitch, coal-based pitch from liquefied coal,
Fluid catalytic cracking method (FCC method) of 6 pores of distillation residue, naphtha tar pitch produced by-product during thermal decomposition of naphtha, naphtha, etc.
Petroleum-based pitch such as FCC decant oil, which is a by-product of P
It is pitch etc. obtained by thermal decomposition of synthetic polymers such as VC, and the type is not particularly limited as long as it can provide graphitizable carbon through carbonization treatment. These pitches are about 350
Heat treatment at ~500°C. This heat treatment produces carbonaceous mesophase. The formation of carbonaceous mesophase can be easily detected by observing the heat-treated product under a polarizing microscope. That is, the carbonaceous mesophase is identified as an optically anisotropic phase within the optically isotropic phase, pitch.

炭素質メソフェースを生成させる熱処理条件は、熱処理
したピッチから分離される炭素質メソフェースの元素組
成によって決められる。元素のうち、特に水素の含有量
が2重量%以上になるようにすることが好ましい。
The heat treatment conditions for producing carbonaceous mesofaces are determined by the elemental composition of the carbonaceous mesofaces separated from the heat-treated pitch. Among the elements, it is particularly preferable that the content of hydrogen be 2% by weight or more.

従って、熱処理条件を厳しくしてピッチ類を全量固化さ
せたセミコークスでは、水素量が2%以下とならないよ
うに過度の熱処理は避ける必要がある。
Therefore, in semi-coke in which pitches are completely solidified under strict heat treatment conditions, excessive heat treatment must be avoided so that the hydrogen content does not fall below 2%.

熱処理したピッチから炭素質メソフェースの分離は沈降
法または(および)溶剤分別法で行う。
Separation of carbonaceous mesophase from heat-treated pitch is carried out by sedimentation method and/or solvent fractionation method.

すなわち、熱処理したピッチを、このピッチが溶融状態
において、静置すると炭素質メソフェースが下方に沈降
するので、この部分のみを採取する。
That is, if the heat-treated pitch is allowed to stand in a molten state, the carbonaceous mesophase will settle downward, and only this portion will be collected.

また、溶剤としてキノリン、ピリジン等の白°機溶剤、
アントラセンやクレオソート油等の芳香族化合物を多量
に含有する芳香族系油に熱処理したピッチを溶解、分散
させ、これらの溶剤の不溶性成分として得ることができ
る。
In addition, white solvents such as quinoline and pyridine can be used as solvents,
It can be obtained as an insoluble component in these solvents by dissolving and dispersing heat-treated pitch in an aromatic oil containing a large amount of aromatic compounds such as anthracene or creosote oil.

二酸化窒素ガス処理 上記炭素質材料を、二酸化窒素ガスと接触させて処理す
る。二酸化窒素ガスの濃度は必ずしも高濃度のものであ
る必要はなく、すなわち10%以上でよいが、反応時間
を短くするためには高濃度の方が好ましく、50%以上
のものが好ましく使用される。
Nitrogen dioxide gas treatment The carbonaceous material described above is treated by contacting it with nitrogen dioxide gas. The concentration of nitrogen dioxide gas does not necessarily have to be high, that is, it can be 10% or more, but in order to shorten the reaction time, a high concentration is preferable, and 50% or more is preferably used. .

炭素質メソフェースと二酸化窒素ガスとの接触は気−固
相であるため、粒度が数關以上と大きい場合は反応が不
十分となり、膨張、発泡の程度が小さくなる恐れがある
ため、分離して得られた塊状の炭素質メソフェースをそ
のまま用いることは好ましくない。一方、粒度が約10
μm以下になると、膨張、発泡の程度が好ましくなく、
得られる黒鉛体の性能が低下する。従って、好ましい粒
度範囲としては約1〜2+amから10μmの範囲であ
る。
Since the contact between carbonaceous mesophase and nitrogen dioxide gas is in the gas-solid phase, if the particle size is several orders of magnitude larger, the reaction may be insufficient and the degree of expansion and foaming may be reduced, so separate the mesophase and nitrogen dioxide gas. It is not preferable to use the obtained massive carbonaceous mesophase as it is. On the other hand, the particle size is about 10
If it is less than μm, the degree of expansion and foaming will be unfavorable.
The performance of the graphite body obtained deteriorates. Accordingly, a preferred particle size range is from about 1-2+am to 10 micrometers.

二酸化窒素ガスの反応性を高めるために、二酸化窒素ガ
ス中への水蒸気の吹き込み、二酸化窒素ガスの酸性溶液
中の通過などの操作が有効であり、さらに、副反応であ
る酸化反応を進めるために空気、酸素、オゾン等を二酸
化窒素ガスに混合して反応させても良い。
In order to increase the reactivity of nitrogen dioxide gas, operations such as blowing water vapor into nitrogen dioxide gas and passing nitrogen dioxide gas through an acidic solution are effective.Furthermore, in order to advance the oxidation reaction, which is a side reaction, Air, oxygen, ozone, etc. may be mixed with nitrogen dioxide gas and reacted.

熱処理 上記処理した炭素質材料を250〜500℃の温度で熱
処理する。この処理によって、炭素質材料は数倍から数
十倍に体積が増加する。このときの体積増加率は二酸化
窒素ガス処理条件に関与すると考えられる。上記温度範
囲の加熱条件のうち昇温速度は速くても遅くても体積増
加率にほとんど影響しないが、60℃/hr以下のよう
に極端に遅い速度は好ましくない。それは処理した炭素
質材料の分解が約250℃附近の狭い温度域で起こるた
めであり、極端に遅い場合は、膨張・発泡の反応がスム
ースに進まないためである。この処理は必ずしも別個の
工程として行う必要はなく、体積増加が生じるため取り
扱い上に問題がなければ熱処理にひき続いて連続的に黒
鉛化処理してもよい。
Heat Treatment The carbonaceous material treated above is heat treated at a temperature of 250 to 500°C. Through this treatment, the volume of the carbonaceous material increases from several times to several tens of times. The volume increase rate at this time is considered to be related to the nitrogen dioxide gas treatment conditions. Among the heating conditions in the above temperature range, whether the heating rate is fast or slow has little effect on the volume increase rate, but an extremely slow rate of 60° C./hr or less is not preferred. This is because the treated carbonaceous material decomposes in a narrow temperature range around 250°C, and if it is extremely slow, the expansion/foaming reaction will not proceed smoothly. This treatment does not necessarily need to be carried out as a separate step, and if there is no problem in handling since an increase in volume occurs, the graphitization treatment may be carried out continuously following the heat treatment.

黒鉛化 上記熱処理を行った炭素質材料または二酸化窒素ガス処
理した炭素質材料を、20oO℃以上に加熱し、黒鉛化
する。黒鉛化温度がこれ以ドの温度では後述する圧縮後
の回復率が低下する。
Graphitization The carbonaceous material subjected to the above heat treatment or the carbonaceous material treated with nitrogen dioxide gas is heated to 20oO°C or higher to graphitize it. If the graphitization temperature is lower than this temperature, the recovery rate after compression, which will be described later, decreases.

このようにして得られたものが弾性体であるかどうかに
ついては次のような試験により確認することができる。
Whether the product thus obtained is an elastic body can be confirmed by the following test.

内径10++*の炭素鋼(S −45C)製シリンダー
状金型に、得られた試料約0゜5gを入れ、周囲からた
たいて最密充填になるようにした後、上部から押し棒を
挿入し、1kg/cdの荷重を加え、このときの試料の
高さを測定し、−旦Q重を取り除いた後再び同じ荷重を
加えても変わらない値を示すようになったとき、この値
をhoとする。ついで、所定の荷重を加え、試料の高さ
を測定し、その値をhlとする。そして荷重を除き、そ
のときの試料の高さを測定し、その値をh2とする。
Approximately 0.5 g of the obtained sample was placed in a cylindrical mold made of carbon steel (S-45C) with an inner diameter of 10++*, and after pounding from the periphery to form the closest packing, a push rod was inserted from the top. Then, apply a load of 1 kg/cd, measure the height of the sample at this time, and if it shows the same value even if the same load is applied again after removing the Q weight, this value is Ho. Then, a predetermined load is applied, the height of the sample is measured, and the value is set as hl. Then, the load is removed, the height of the sample at that time is measured, and the value is set as h2.

これらの値から、次式によって、充填密度、圧縮率およ
び回復率を求めることができる〇充填密度(g /an
”) −(試料型Hk (g))/ (hOπr2) 
−(+)圧縮率(%)    −((hO−hl)/h
O)X100       、、、(2)回復率(%)
    −((h2−hl)/(hO−hl)) X1
00   −(3)本発明の方法によれば、式(1)か
ら求められる充填密度が1.og/cd以下であり、式
(2)における圧縮率が10〜90%のときの、式(3
)における回復率が50%以上である弾性黒鉛体を得る
ことができる。
From these values, the packing density, compression ratio, and recovery rate can be determined using the following formula.〇Filling density (g/an
”) −(sample type Hk (g))/ (hOπr2)
-(+) Compression rate (%) -((hO-hl)/h
O) X100, (2) Recovery rate (%)
-((h2-hl)/(hO-hl)) X1
00 - (3) According to the method of the present invention, the packing density determined from equation (1) is 1. og/cd or less and when the compression ratio in equation (2) is 10 to 90%, equation (3
) It is possible to obtain an elastic graphite body having a recovery rate of 50% or more.

以下、実施例を挙げて本発明の方法を更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 コールタールピッチ500gに対してキノリンを約15
00ml加え、約90℃に加熱し、溶解させた。これを
遠心沈降機によって不溶成分を沈降させ、上澄みを定性
ろ紙によって、減圧濾過した。
Example 1 Approximately 15% of quinoline is added to 500g of coal tar pitch.
00ml was added and heated to about 90°C to dissolve it. Insoluble components were precipitated using a centrifugal sedimentation machine, and the supernatant was filtered under reduced pressure using qualitative filter paper.

ろ液を減圧蒸留してキノリンを除き、フリーカーボンを
含有しないピッチを得た。このピッチ300gを500
m1のガラス製円筒状容器に入れ、窒素ガス気流中、攪
拌しながら、450’Cまで加熱し、この温度で45分
間保持した。時間経過後、直ちに室温まで冷却して熱処
理ピッチ273gを得た。熱処理ピッチ200gに対し
てキノリン600m1加え、約90℃に加熱して、溶解
、分散させた。これを遠心沈降機により、不溶成分を沈
降させ、上澄みを除き、不溶成分に新たなキノリンを加
え、約90℃に加熱した後、遠心沈降機で不溶成分を沈
降させた。この操作を5回繰り返した後、不溶成分はベ
ンゼン、次いでアセトンで十分に洗浄してキノリンを除
き、約70℃で乾燥して、炭素質メソフェース98gを
得た。ついで、この炭素質メソフェース50gを200
m1のキノリンに入れ、約250℃に加熱して、キノリ
ンを還流させながら3時間保持した後、遠心機で不溶成
分を沈降させ、上澄みを除いた。この操作を8回繰り返
した後、不溶成分にベンゼン、次いでアセトンで十分洗
浄してキノリンを除き、約70℃で乾燥して、炭素質メ
ソフェース44gを得た@このようにして調製した炭素
質メンフェースの元素組成を表1に示す。
The filtrate was distilled under reduced pressure to remove quinoline, yielding pitch free of free carbon. This pitch of 300g is 500g
The mixture was placed in a 1 ml glass cylindrical container, heated to 450'C while stirring in a nitrogen gas flow, and held at this temperature for 45 minutes. After the elapse of time, the mixture was immediately cooled to room temperature to obtain 273 g of heat-treated pitch. 600 ml of quinoline was added to 200 g of heat-treated pitch and heated to about 90° C. to dissolve and disperse. The insoluble components were precipitated using a centrifugal sedimentation machine, the supernatant was removed, fresh quinoline was added to the insoluble components, and after heating to about 90°C, the insoluble components were sedimented using a centrifugal sedimentation machine. After repeating this operation five times, the insoluble components were thoroughly washed with benzene and then with acetone to remove quinoline, and the mixture was dried at about 70° C. to obtain 98 g of carbonaceous mesophase. Next, 50 g of this carbonaceous mesophase was
ml of quinoline, heated to about 250° C., held for 3 hours while refluxing the quinoline, and then centrifuged to precipitate insoluble components and remove the supernatant. After repeating this operation 8 times, the insoluble components were thoroughly washed with benzene and then with acetone to remove the quinoline and dried at about 70°C to obtain 44 g of carbonaceous mesophase. Table 1 shows the elemental composition of the face.

この0.35mm以下の粒度の5gを内径10mmのス
テンレス製パイプに充填し、20m1/l1inの流量
で二酸化窒素ガス(製鉄化学(株)製、99.9%)を
25℃で1時間通し、次いで乾燥した。このときの収率
は炭素質メソフェースに対して140重量%であった。
5 g of this particle size of 0.35 mm or less was filled into a stainless steel pipe with an inner diameter of 10 mm, and nitrogen dioxide gas (manufactured by Steel Chemical Co., Ltd., 99.9%) was passed through it at a flow rate of 20 m1/1 inch at 25 ° C. for 1 hour. It was then dried. The yield at this time was 140% by weight based on the carbonaceous mesophase.

これを500m1の円筒状ガラス容器に入れ、予め45
0℃に加熱した塩浴中に投入し、30分間保持した。収
率は炭素質メソフェースに対して89.6重量%であっ
た。次いで、アルゴン気流中で2800℃まで加熱し、
30分間保持して黒鉛化処理した。収率は炭素質メソフ
ェースに対して61.8frj1%であった。
Place this in a 500m1 cylindrical glass container, and
It was placed in a salt bath heated to 0°C and held for 30 minutes. The yield was 89.6% by weight based on carbonaceous mesophase. Then, heated to 2800°C in an argon stream,
It was held for 30 minutes and graphitized. The yield was 61.8frj1% based on carbonaceous mesophase.

黒鉛化処理物0.5gを内径10關のシリンダー状容器
に入れ、容器をたたいて十分に充填した後、1 kg 
/ cdの荷重を加え、そのときの高さを計測し、−旦
荷重を取り除いた後44び荷重を加えても変わらない値
を示すようになったとき、その値を計測した(h O)
。これから式(1)に従って充填密度を計算したところ
、0.67g/ciであった。ついで、荷重を5000
kg/cd加え、そのときの高さを計則した(hl)。
Put 0.5 g of the graphitized product into a cylindrical container with an inner diameter of 10 mm, tap the container to fully fill it, and then add 1 kg.
/ cd was applied, the height at that time was measured, and after the load was removed, the value was measured when the value remained the same even after the load was applied (h O).
. The packing density was calculated from this according to formula (1) and was found to be 0.67 g/ci. Then, increase the load to 5000
kg/cd was added, and the height at that time was measured (hl).

そして、このt1重を除いて、再び高さを計測した(h
2)。得られたhl、h2から式(2)および(3)に
よって、圧縮率、回復率を求めたところ、圧縮率は72
%であり、回復率は72%であった。反応温度を変えた
場合、二酸化窒素ガスに水蒸気を加えた場合等の収率を
表2に、充填密度、圧縮率および回復率を表3に示す。
Then, excluding this t1 weight, the height was measured again (h
2). The compression ratio and recovery ratio were calculated from the obtained hl and h2 using equations (2) and (3), and the compression ratio was 72.
%, and the recovery rate was 72%. Table 2 shows the yield when the reaction temperature was changed, water vapor was added to nitrogen dioxide gas, etc., and Table 3 shows the packing density, compressibility, and recovery rate.

表1 よび黒鉛化処理を行った。そのときの収率を表4に、充
填密度、圧縮率および回復率を表5に示す。
Table 1 and graphitization treatment were performed. The yield at that time is shown in Table 4, and the packing density, compression rate and recovery rate are shown in Table 5.

二酸化窒素ガス処理 表2 ガス混含 的・勉 元素組成(wt%) 炭素   水素   窒素 99.9 0 99.9 99.9 99.9 t  NO2/ 1m=’to7a。Nitrogen dioxide gas treatment Table 2 Contains gas target/study Elemental composition (wt%) Carbon Hydrogen Nitrogen 99.9 0 99.9 99.9 99.9 t NO2/1m='to7a.

1NO2/ Il!−70/30 89.6 83.8 77.7 84.7 73.4 61.8 Bo、3 51.3 55.0 47.7 炭素質メソフェース 92.3  3.4  1.4生
コークス     92.3  3.1  0.6態!
!  龍(500kg/cj) (g /cd)腸(%) 塀(%) 龍(5000kr /d) us(%)目障(%) 実施例2 デイレードコーカー法で得られた坐コークスを粉砕し、
0.35!I11以下に調製した。このコークスの元素
組成を表1に示す。このコークス5gを実施例1に示し
たと同様の方法で反応、熱処理お0.67 0.72 0.86 663 0.62
1NO2/Il! -70/30 89.6 83.8 77.7 84.7 73.4 61.8 Bo, 3 51.3 55.0 47.7 Carbonaceous mesoface 92.3 3.4 1.4 Raw coke 92. 3 3.1 0.6 state!
! Dragon (500kg/cj) (g/cd) Intestine (%) Wall (%) Dragon (5000kr/d) us (%) Eyesight (%) Example 2 The sitting coke obtained by the delayed coker method was crushed. ,
0.35! It was adjusted to below I11. Table 1 shows the elemental composition of this coke. 5 g of this coke was reacted and heat treated in the same manner as shown in Example 1.0.67 0.72 0.86 663 0.62

Claims (1)

【特許請求の範囲】 1、炭素質材料を二酸化窒素ガスに接触させた後、20
00℃以上の温度で黒鉛化処理することを特徴とする、
充填密度が1.0g/cm^3以下であり、かつ圧縮率
10〜90%における回復率が50%以上である弾性黒
鉛体の製造方法。 2、炭素質材料が、その水素含有量が2%以上であり、
通常の炭素化処理により易黒鉛化性炭素を与えるもので
あることを特徴とする、請求項1の方法。 3、炭素質材料と接触させる二酸化窒素ガスの濃度が1
0%以上であり、流速が炭素質材料1gに対して0.1
cc/min以上で、0〜200℃の温度で5分ないし
5時間処理することを特徴とする、請求項1の方法。 4、炭素質材料に接触させる二酸化窒素ガスに、水蒸気
、酸ミスト、空気、酸素、オゾン等を共存させることを
特徴とする、請求項1の方法。
[Claims] 1. After bringing the carbonaceous material into contact with nitrogen dioxide gas, 20
Characterized by graphitization treatment at a temperature of 00°C or higher,
A method for producing an elastic graphite body having a packing density of 1.0 g/cm^3 or less and a recovery rate of 50% or more at a compression ratio of 10 to 90%. 2. The carbonaceous material has a hydrogen content of 2% or more,
2. The method according to claim 1, wherein the graphitizable carbon is obtained by a conventional carbonization treatment. 3. The concentration of nitrogen dioxide gas brought into contact with the carbonaceous material is 1
0% or more, and the flow rate is 0.1 per 1 g of carbonaceous material.
The method according to claim 1, characterized in that the treatment is carried out at a rate of cc/min or more at a temperature of 0 to 200°C for 5 minutes to 5 hours. 4. The method according to claim 1, wherein water vapor, acid mist, air, oxygen, ozone, etc. are allowed to coexist in the nitrogen dioxide gas that is brought into contact with the carbonaceous material.
JP1210283A 1989-08-15 1989-08-15 Method for producing elastic graphite body Expired - Lifetime JPH0624967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1210283A JPH0624967B2 (en) 1989-08-15 1989-08-15 Method for producing elastic graphite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1210283A JPH0624967B2 (en) 1989-08-15 1989-08-15 Method for producing elastic graphite body

Publications (2)

Publication Number Publication Date
JPH0375212A true JPH0375212A (en) 1991-03-29
JPH0624967B2 JPH0624967B2 (en) 1994-04-06

Family

ID=16586834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1210283A Expired - Lifetime JPH0624967B2 (en) 1989-08-15 1989-08-15 Method for producing elastic graphite body

Country Status (1)

Country Link
JP (1) JPH0624967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518034A (en) 2010-01-21 2013-05-20 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Special composition for use as a drug
FR3068886B1 (en) 2017-07-17 2019-08-30 L'oreal AQUEOUS COSMETIC COMPOSITION COMPRISING A PYRIDINE-DICARBOXYLIC ACID DERIVATIVE AND A HYDROXYSTILBENE

Also Published As

Publication number Publication date
JPH0624967B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JP3609406B2 (en) Method for producing solvated mesophase pitch and carbon article therefrom
JPH0258317B2 (en)
JPH0340076B2 (en)
JPS61238885A (en) Method of refining raw material used for production of carbon product
JPS635433B2 (en)
EP1518825B1 (en) Process for producing spherical activated carbon
JPH0233679B2 (en)
JP2980619B2 (en) Method of generating mesophase pitch from isotropic pitch
JPH0665580A (en) Improved method for forming mesophase pitch
JPH0511049B2 (en)
US5017358A (en) Preparation of elastic graphite materials
JPH0445550B2 (en)
JPH0375212A (en) Preparation of elastic graphite
US4986895A (en) Process for treating coal tar or coal tar pitch
JPS58156023A (en) Production of carbon fiber
JPS635323B2 (en)
EP0585193B1 (en) Method for the industrial manufacture of carbon-containing mesophase microspheres and derived carbon objects
JPH03169339A (en) Production of carbonaceous adsorbing material having pores
JPS63139011A (en) Production of fine powdery graphite
JPH0149641B2 (en)
CN117143629A (en) Aromatic oil for mesophase pitch and preparation method and application thereof
JPH0212903B2 (en)
JPH04218590A (en) Production of elastic graphite
JPS6049084A (en) Method for treating coal tar or coal tar pitch
JPS6024042B2 (en) Method for producing easily graphitizable carbon material raw material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term