JPH0374812A - Ferrite magnetic material - Google Patents

Ferrite magnetic material

Info

Publication number
JPH0374812A
JPH0374812A JP21088989A JP21088989A JPH0374812A JP H0374812 A JPH0374812 A JP H0374812A JP 21088989 A JP21088989 A JP 21088989A JP 21088989 A JP21088989 A JP 21088989A JP H0374812 A JPH0374812 A JP H0374812A
Authority
JP
Japan
Prior art keywords
powder
ferrite magnetic
ferrite
magnetic
highly crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21088989A
Other languages
Japanese (ja)
Inventor
Atsushi Inuzuka
敦 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21088989A priority Critical patent/JPH0374812A/en
Publication of JPH0374812A publication Critical patent/JPH0374812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the density of a molded object, and obtain magnetic material of high permeability, by constituting ferrite magnetic material which is used for a transformer, an inductor, a magnetic head, etc., by binding highly crystalline ferrite magnetic powder of sphere type by using thermosetting resin or thermoplastic resin. CONSTITUTION:Magnetic material is constituted by using thermosetting or thermoplastic resin 2 for binding highly crystalline ferrite magnetic power 1 of sphere type, air gaps 3, and bores 4 of the magnetic powder 1. The magnetic powder 1 used in this case is powder wherein crystallization is sufficiently progressed by baking at a high temperature. The powder baked at 900 deg.C or more is preferable in the ordinary case. When soft magnetic material is wanted, large grain size is adopted, since small coercive force of magnetic powder is desirable. On the other hand, the filling density of highly crystalline ferrite magnetic powder of sphere type is decreased, so that the diameter up to 100-200mum is desirable in practice. For ferrite material, e.g. Ni-Zn system is used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トランス、インダクタ、磁気ヘッド等の各種
電子部品に用いられるフェライト磁性体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ferrite magnetic material used in various electronic components such as transformers, inductors, and magnetic heads.

従来の技術 フェライト磁性粉末を熱硬化性樹脂あるいは熱可塑性樹
脂(以下、総じて樹脂と記す。)で結着してなるフェラ
イト磁性体では、所定形状に成形後、フェライトが反応
する程の高温の熱処理をしないため、高透磁率のフェラ
イト磁性体を得るためには用いるフェライト磁性粉末の
保磁力が小さいこと、また、成形体中のフェライト充て
ん率が高い(すなわち、フェライト磁性体の密度が大き
い)ことが必要となる。
Conventional technology Ferrite magnetic materials made by bonding ferrite magnetic powder with thermosetting resin or thermoplastic resin (hereinafter collectively referred to as resin) require heat treatment at a high enough temperature that the ferrite reacts after being molded into a predetermined shape. In order to obtain a ferrite magnetic material with high magnetic permeability, the coercive force of the ferrite magnetic powder used must be small, and the ferrite filling rate in the compact must be high (that is, the density of the ferrite magnetic material is high). Is required.

第2図に従来のフェライト磁性体の微細構造の模式図を
示す。第2図において、6は高結晶性フェライト磁性粉
末5を結着する樹脂、7は空隙、8は高結晶性フェライ
ト磁性粉末5のボアである。
FIG. 2 shows a schematic diagram of the microstructure of a conventional ferrite magnetic material. In FIG. 2, 6 is a resin that binds the highly crystalline ferrite magnetic powder 5, 7 is a gap, and 8 is a bore of the highly crystalline ferrite magnetic powder 5.

高結晶性フェライト磁性粉末5は、高温焼成で十分に結
晶化が進んでいるので保磁力は小さく、比較的高い透磁
率のフェライト磁性体を得ることができる。
Since the highly crystalline ferrite magnetic powder 5 is sufficiently crystallized by high-temperature firing, the coercive force is small, and a ferrite magnetic material with relatively high magnetic permeability can be obtained.

発明が解決しようとする課題 しかしながら、結晶化が十分に進んでいるために塊状の
焼成物を粉砕する時にへき面破壊が生じやすく、一般に
、そのフェライト磁性粉末の形状は、第2図の高結晶性
フェライト磁性粉末5のように鋭い角を有する多面体と
なる。そのため、加圧成形時に高結晶性フェライト磁性
粉末5が十分充填されず、フェライト磁性体の密度が低
いという問題点を有していた。
Problems to be Solved by the Invention However, since the crystallization is sufficiently advanced, cleavage fracture is likely to occur when the lump-like fired product is crushed, and the shape of the ferrite magnetic powder is generally the highly crystalline shape shown in Fig. 2. It becomes a polyhedron with sharp corners like the magnetic ferrite powder 5. Therefore, there was a problem in that the highly crystalline ferrite magnetic powder 5 was not sufficiently filled during pressure molding, and the density of the ferrite magnetic material was low.

本発明は上記従来の問題点を解決するもので、高密度化
することによって樹脂結着型で高透磁率のフェライト磁
性体を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a resin-bonded ferrite magnetic body with high magnetic permeability by increasing the density.

課題を解決するための手段 この課題を解決するために本発明のフェライト磁性体は
、球状をなす高結晶性フェライト磁性粉末を樹脂で結着
した構成とするものである。
Means for Solving the Problem In order to solve this problem, the ferrite magnetic body of the present invention has a structure in which spherical highly crystalline ferrite magnetic powder is bound with a resin.

作用 以上のように高結晶性フェライト磁性粉末の形状が球状
であるために加圧成形時に発生するフェライト磁性粉末
どうしの摩擦が小さくなる。そのために、成形体は高密
度化し、透磁率の高いフェライト磁性体を得ることが可
能となる。
Effect As described above, since the highly crystalline ferrite magnetic powder has a spherical shape, the friction between the ferrite magnetic powders that occurs during pressure molding is reduced. Therefore, the compact has a high density, and it becomes possible to obtain a ferrite magnetic body with high magnetic permeability.

実施例 以下、本発明の実施側について説明する。Example The implementation side of the present invention will be explained below.

第1図は本発明のフェライト磁性体の微細構造の模式図
である。第1図において、2は高結晶性練状フェライト
磁性粉1を結着する熱硬化性あるいは熱可塑性の樹脂、
3は空隙、4は高結晶性球状フェライト磁性粉末1のボ
アである。
FIG. 1 is a schematic diagram of the fine structure of the ferrite magnetic material of the present invention. In FIG. 1, 2 is a thermosetting or thermoplastic resin that binds the highly crystalline ferrite magnetic powder 1;
3 is a gap, and 4 is a bore of the highly crystalline spherical ferrite magnetic powder 1.

ここで使用する高結晶性球状フェライト磁性粉末1は、
高温焼成で十分に結晶化が進んだものであって、通常は
900℃以上で焼成したものが好ましい。
The highly crystalline spherical ferrite magnetic powder 1 used here is:
It is preferable that the crystallization progresses sufficiently through high-temperature firing, and that firing at 900° C. or higher is usually preferable.

軟質フェライト磁性体を得たい場合は、高結晶性球状フ
ェライト磁性粉末1の保磁力が小さいほど良いので、磁
性粒子サイズが大きいほど望ましいが、一方、高結晶性
球状フェライト磁性粉末1の充填密度が下がるので実際
には100〜200μm径までが適している。
If you want to obtain a soft ferrite magnetic material, the smaller the coercive force of the highly crystalline spherical ferrite magnetic powder 1 is, the better, so the larger the magnetic particle size is, the better. In practice, a diameter of 100 to 200 μm is suitable.

以下、具体的な実施例について説明する。Hereinafter, specific examples will be described.

(実施例1) Fe20350mo1%、Ni0N102O%。(Example 1) Fe20350mo1%, Ni0N102O%.

Zn030mo 1%よりなる出発混合物をスプレード
ライヤ法によって造粒し、この球状に造粒された微細球
状混合物を1320℃で6時間焼成し、平均粒径70μ
mのNi−Zn系軟質フェライト焼成粉を準備した。こ
の粉末を走査型電子顕微鏡で観察したところ十分球状化
しており、X線解析した結果では軟質フェライト特有の
鋭いスピネル構造解析線が得られ、結晶性の非常に高い
球状フェライト磁性粉末であることを確認した。
A starting mixture consisting of 1% Zn030mo was granulated by a spray dryer method, and this spherical granulated fine spherical mixture was fired at 1320°C for 6 hours to give an average particle size of 70μ.
m Ni-Zn based soft ferrite fired powder was prepared. When this powder was observed with a scanning electron microscope, it was found to be sufficiently spherical, and X-ray analysis revealed sharp spinel structure analysis lines unique to soft ferrite, indicating that it is a spherical ferrite magnetic powder with extremely high crystallinity. confirmed.

上記高結晶性フェライト磁性粉末に対してエポキシ樹脂
を7wt%混合し、造粒した。この時、エポキシ樹脂を
溶剤で希釈して粘性を低くすることによって成形密度を
高めることができる。この造粒粉を3t/aIr圧力で
圧綿成形し、一定時間加熱し熱硬化させ、内径7mn+
、外径12間、厚さ3簡のりングコアを作成した(本発
明品)。
7 wt % of epoxy resin was mixed with the above highly crystalline ferrite magnetic powder and granulated. At this time, the molding density can be increased by diluting the epoxy resin with a solvent to lower its viscosity. This granulated powder was compressed at a pressure of 3t/aIr, heated for a certain period of time to thermoset, and had an inner diameter of 7mm+.
A ring core with an outer diameter of 12 mm and a thickness of 3 mm was prepared (product of the present invention).

比較のため、上記フェライト粉末と同じ配合組成の出発
混合物を同一の温度プロセスで焼威し、できあがった塊
状の焼成粉を粉砕機で機械的に破砕し、平均粒径70μ
mのNi−Zn系軟質フェライト焼成粉を準備した。こ
の粉末を走査型電子顕微鏡で観察したところ、形状は鋭
い角を有する多面体をしており、X線解析した結果では
軟質フェライト特有の鋭いスピネル構造解析線が得られ
、結晶性の高いフェライト磁性粉末であることを確認し
た。
For comparison, a starting mixture with the same composition as the above ferrite powder was burned in the same temperature process, and the resulting lumpy baked powder was mechanically crushed using a crusher to obtain an average particle size of 70μ.
m Ni-Zn based soft ferrite fired powder was prepared. When this powder was observed with a scanning electron microscope, it was found to have a polyhedral shape with sharp corners, and X-ray analysis revealed sharp spinel structural lines characteristic of soft ferrite, indicating that it is a highly crystalline ferrite magnetic powder. It was confirmed that

このフェライト磁性粉末を用いて、本発明品と同様にし
て、リングコアを得た(比較品)。
Using this ferrite magnetic powder, a ring core was obtained in the same manner as the product of the present invention (comparative product).

本発明品および比較品の材料特性を第1表に示す。Table 1 shows the material properties of the inventive product and the comparative product.

本発明品は、同じ出発原料を同一の温度プロセスで焼成
したにもかかわらず、フェライト磁性粉末の形状が球状
であるために、比較品よりも密度が高くなり初透磁率、
飽和磁束密度ともに大きくなっている。
Although the product of the present invention is made from the same starting materials and fired at the same temperature process, the ferrite magnetic powder has a spherical shape, so the density is higher than that of the comparative product, and the initial permeability is low.
Both the saturation magnetic flux density is large.

なお、上記実施例において、初透磁率の測定は、JIS
規格(C2561)に準じ、まず前述のりングコアに絶
縁テープを一層巻いた後、線径0.26mmφの絶縁銅
線を全周にわたって一層巻いた試料を準備した。次にこ
の自己インダクタンスをマクスウェルブリッジで測定磁
界の強さが0.8 (A/m)以下にて測定し、これよ
り周波数1(MHz)での初透磁率を算出した。
In the above examples, the initial magnetic permeability was measured according to JIS
In accordance with the standard (C2561), a sample was prepared by first wrapping one layer of insulating tape around the aforementioned ring core, and then wrapping one layer of insulated copper wire with a wire diameter of 0.26 mmφ around the entire circumference. Next, this self-inductance was measured with a Maxwell bridge at a measurement magnetic field strength of 0.8 (A/m) or less, and the initial magnetic permeability at a frequency of 1 (MHz) was calculated from this.

また、飽和磁束密度はリングコアをJIS規格(C25
61)に準じ、磁気磁束法にて、10(Oe)の磁場で
の磁束密度を測定した。
In addition, the saturation magnetic flux density of the ring core is JIS standard (C25
61), the magnetic flux density in a magnetic field of 10 (Oe) was measured by the magnetic flux method.

発明の効果 以上のように本発明は、球状をなす高結晶性フェライト
磁性粉末を用いることによって、成形体の密度を高め透
磁率の高い優れた樹脂結着型のフェライト磁性体を実現
できるものである。
Effects of the Invention As described above, the present invention makes it possible to realize an excellent resin-bonded ferrite magnetic body with increased density of a molded body and high magnetic permeability by using spherical highly crystalline ferrite magnetic powder. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のフェライト磁性体の一実施例を示す
微細構造の模式図、第2図は従来のフェライト磁性粉末
を用いたフェライト磁性体の微細構造の模式図である。 1・・・・・・高結晶性球状フェライト磁性粉末、2・
・・・・・樹脂、3・・・・・・空隙、4・・・・・・
ボア。
FIG. 1 is a schematic diagram of the microstructure of an embodiment of the ferrite magnetic material of the present invention, and FIG. 2 is a schematic diagram of the microstructure of a ferrite magnetic material using conventional ferrite magnetic powder. 1... Highly crystalline spherical ferrite magnetic powder, 2...
...Resin, 3...Void, 4...
Boa.

Claims (1)

【特許請求の範囲】[Claims]  球状をなす高結晶性フェライト磁性粉末を熱硬化性樹
脂あるいは熱可塑性樹脂で結着したフェライト磁性体。
A ferrite magnetic material made by bonding spherical highly crystalline ferrite magnetic powder with thermosetting resin or thermoplastic resin.
JP21088989A 1989-08-16 1989-08-16 Ferrite magnetic material Pending JPH0374812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21088989A JPH0374812A (en) 1989-08-16 1989-08-16 Ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21088989A JPH0374812A (en) 1989-08-16 1989-08-16 Ferrite magnetic material

Publications (1)

Publication Number Publication Date
JPH0374812A true JPH0374812A (en) 1991-03-29

Family

ID=16596770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21088989A Pending JPH0374812A (en) 1989-08-16 1989-08-16 Ferrite magnetic material

Country Status (1)

Country Link
JP (1) JPH0374812A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670472A1 (en) * 1994-03-04 1995-09-06 CTS Corporation Rotary position sensor
EP0670471B1 (en) * 1994-03-04 1998-11-25 CTS Corporation Throttle position sensor for an internal combustion engine
WO1999008083A1 (en) * 1997-08-07 1999-02-18 Koyo Seiko Co., Ltd. Torque sensor
US6288534B1 (en) 1999-02-10 2001-09-11 Cts Corporation Non-contacting throttle valve position sensor
JP2002305108A (en) * 2000-04-28 2002-10-18 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic element and manufacturing method of them

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670472A1 (en) * 1994-03-04 1995-09-06 CTS Corporation Rotary position sensor
US5798639A (en) * 1994-03-04 1998-08-25 Cts Corporation Rotary position sensor with improved bearing tolerance
EP0670471B1 (en) * 1994-03-04 1998-11-25 CTS Corporation Throttle position sensor for an internal combustion engine
WO1999008083A1 (en) * 1997-08-07 1999-02-18 Koyo Seiko Co., Ltd. Torque sensor
US6288534B1 (en) 1999-02-10 2001-09-11 Cts Corporation Non-contacting throttle valve position sensor
JP2002305108A (en) * 2000-04-28 2002-10-18 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic element and manufacturing method of them
JP4684461B2 (en) * 2000-04-28 2011-05-18 パナソニック株式会社 Method for manufacturing magnetic element

Similar Documents

Publication Publication Date Title
CN107311637B (en) A kind of method that low-power consumption manganese-zinc ferrite is prepared based on nucleocapsid crystal grain
US8070974B2 (en) Soft-magnetic material and process for producing articles composed of this soft-magnetic material
JP3542319B2 (en) Single crystal ferrite fine powder
KR20060054395A (en) Soft magnetic composite powder and production method therefor and production method for soft magnetic compact
WO2011148826A1 (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for producing dust core
WO2015079856A1 (en) Powder core, coil component, and method for producing powder core
CN111451515B (en) Low-power-consumption soft magnetic alloy material, preparation method thereof and electronic device
JPH0374812A (en) Ferrite magnetic material
JP2009164402A (en) Manufacturing method of dust core
JP2004296865A (en) Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor
JP3939476B2 (en) High frequency magnetic materials
JPH036803A (en) Ferrite magnetic material and manufacture thereof
JPH01101610A (en) Chip inductor
JP2006310873A (en) Powder magnetic core and method for manufacturing it
JPH0374811A (en) Ferrite magnetic material
JP3426780B2 (en) Ferrite material
JP2003221232A (en) Ferrite material and its production method
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
US5966065A (en) Core for inductance elements and its production method
JPH02241006A (en) Manufacture of ferrite magnetic material
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
WO2020158519A1 (en) Ferrite composite powder, method for producing ferrite molded body, method for producing ferrite sintered body, molded body, and sintered body
JP2003272909A (en) Dust core
JP3008566B2 (en) Manufacturing method of oxide magnetic material
JPH04101401A (en) Ferrite magnetic body and production thereof