JP2004296865A - Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor - Google Patents

Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor Download PDF

Info

Publication number
JP2004296865A
JP2004296865A JP2003088319A JP2003088319A JP2004296865A JP 2004296865 A JP2004296865 A JP 2004296865A JP 2003088319 A JP2003088319 A JP 2003088319A JP 2003088319 A JP2003088319 A JP 2003088319A JP 2004296865 A JP2004296865 A JP 2004296865A
Authority
JP
Japan
Prior art keywords
ferrite
sio
phase
component
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003088319A
Other languages
Japanese (ja)
Inventor
Masahiro Kajimura
将弘 梶村
Takatsugu Hagino
貴継 萩埜
Kiwa Okino
喜和 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2003088319A priority Critical patent/JP2004296865A/en
Publication of JP2004296865A publication Critical patent/JP2004296865A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a winding chip inductor with a high saturation magnetic flux density and having a least rate of change ΔL(%) in an inductance L with respect to a stress at a low cost. <P>SOLUTION: The winding chip inductor is provided with a ferrite core and a coil wound on the ferrite core, the ferrite core including: a ferrite phase comprising N-Cu-Zn ferrite; a Zn<SB>2</SB>SiO<SB>4</SB>phase comprising Zn<SB>2</SB>SiO<SB>4</SB>; and an impurity phase comprising unavoidable impurities. The containing rate of the Zn<SB>2</SB>SiO<SB>4</SB>phase is preferably 0.5 to 1.5 wt%. The ferrite core for the winding chip inductor can be manufactured by calcining raw material powder for the N-Cu-Zn ferrite, adding the Zn<SB>2</SB>SiO<SB>4</SB>to obtained calcining powder, forming the powder and thereafter sintering the forming. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は巻き線チップインダクタ用フェライトコアとその製造方法及び巻き線チップインダクタに関するものである。
【0002】
【従来の技術】
テレビ、ビデオ、パソコン、携帯電話等の電子機器には巻き線チップインダクタが多数使用されている。これらの巻き線チップインダクタは、機械的強度の保持や温度、湿度等の外部環境に対しての信頼性を得るため、ドラム型のコアに巻き線を施した後、表面に合成樹脂が塗布・被覆されている。
【0003】
この塗布・被覆された合成樹脂は硬化するときに収縮してフェライトコアに圧縮応力を及ぼし、フェライトコアのインダクタンスLはこの圧縮応力によってかなり変化するが、圧縮応力は合成樹脂の塗布・被覆の状態や硬化の条件によって変動するので、得られたフェライトコアのインダクタンスLに大幅なバラツキが生じ、所望の範囲のインダクタンスLを備えた巻き線チップインダクタを得ることが難しいという問題があった。
【0004】
この問題に対し、特開平2−137301号公報では、Ni−Cu−Zn系フェライトについて、Fe,NiO,ZnO,CuOから成る原料粉に0.5〜20wt%のSiOを添加し、焼成時にフェライトの成分であるZnOとこのSiOとを化合させ、焼結体中にZnSiO相を形成させることで、圧縮応力に対してインダクタンスLの変化率ΔL(%)を低減させる発明が提案されている。
【0005】
ここで、圧縮応力に対するインダクタンスLの変化率ΔL(%)の低減は、ZnSiOがフェライトより線熱膨張係数が低いため、焼成の冷却時にフェライトとの間の線熱膨張係数差に基づく引張応力を残留させることにより実現している。
【0006】
【発明が解決しようとする課題】
ところで、上記の従来技術では、次のような問題点がある。すなわち、Ni−Cu−Zn系フェライトの応力によるインダクタンスLの変化率ΔL(%)を小さくするためには、SiOの添加量が少量の場合では効果が無く、多量のSiOを添加してZnSiO相を形成させなければならず、しかも、ZnSiO相形成に寄与しなかったSiOは焼結体に残存する。
【0007】
そして、ZnSiOおよびSiOは非磁性相であり、これらの非磁性相の増大に伴って飽和磁束密度Bsが低下してしまうので、SiOの添加によって飽和磁束密度Bsが高く且つ応力に対するインダクタンスLの変化率ΔL(%)が小さいという特性が両立するNi−Cu−Zn系フェライトを得ることは困難であった。
【0008】
また、焼結体中にZnSiO相を形成させるためにはSiOをフェライト成分であるZnOと化合させることになるが、このSiOとZnOの化合によって焼結体中のフェライト成分であるZnOの組成比が変動し、温度特性、飽和磁束密度Bs、透磁率μ、Q、周波数特性、機械特性等の特性が変化し、安定した特性を有する材料を得ることができなかった。
【0009】
また、SiOはフェライトの焼結性を悪化させるので、緻密なフェライト焼結体を得るためには、より高温で焼成する必要があり、そのため、焼成コストがかかり、製品のコストアップにつながるという問題があった。
【0010】
また、ZnSiO相を形成するためには、フェライト成分におけるFe比が常用のものよりも低く、かつZnOとSiOを含有することが不可欠であり、適用できる組成範囲がかなり限定され、たとえば、フェライト成分におけるZnO含有量が低い組成では、SiOを添加してもZnSiO相は形成されず、圧縮応力に対するインダクタンスLの変化率ΔL(%)を小さくすることが難しいという問題があった。
【0011】
また、ZnSiO相は焼成時にZnOとSiOとの化合により形成されるが、低温で焼成した場合、ZnSiOが合成されず、圧縮応力に対するインダクタンスLの変化率ΔL(%)を小さくすることが難しいという問題があった。
【0012】
本発明は、できるだけ飽和磁束密度Bsが高くし、合成樹脂の被覆により圧縮応力が作用してもインダクタンスLの変化率ΔL(%)ができるだけ小さくなるようにした巻き線チップインダクタを低コストで提供することを目的とする。
【0013】
【課題を解決するための手段】
この発明に係る巻き線チップインダクタ用フェライトコアは、Ni−Cu−Zn系フェライトからなるフェライト相と、ZnSiOからなるZnSiO相と、不可避不純物からなる不純物相とからなることを特徴とするものである。
【0014】
また、この発明に係る巻き線チップインダクタは、フェライトコアと、該フェライトコアに巻回されているコイルとを備え、該フェライトコアが、Ni−Cu−Zn系フェライトからなるフェライト相と、ZnSiOからなるZnSiO相と、不可避不純物からなる不純物相とからなることを特徴とするものである。
【0015】
ここで、前記ZnSiO相の含有割合は0.5〜1.5wt%の範囲が好ましい。これは、ZnSiO相の割合が0.5wt%未満では圧縮応力に対するインダクタンスLの変化率ΔL(%)の低減の効果があまり得られず、ZnSiO相の割合が1.5wt%を超えると所望の飽和磁束密度が得られないが、ZnSiO相の割合が0.5〜1.5wt%の範囲ではこのような不都合がなく、所望の諸特性が得られるからである。
【0016】
また、前記フェライト相中のFe成分はFeに換算して30〜50mol%の範囲が好ましい。これは、フェライト相中のFe成分がFeに換算して30mol%を未満になると所望の透磁率μが得られず、Fe成分がFeに換算して50mol%を超えると所望の比抵抗、所望の損失、所望の周波数特性が得られなくなるが、Fe成分がFeに換算して30〜50mol%の範囲ではこのような不都合がなく、所望の諸特性が得られるからである。
【0017】
また、前記フェライト相中のCu成分はCuOに換算して0〜15mol%の範囲が好ましい。これは、Cu成分がCuOに換算して15mol%を超えると所望のQ値が得られなくなるが、Cu成分がCuOに換算して0〜15mol%の範囲ではこのような不都合がなく、所望の諸特性が得られるからである。
【0018】
また、前記フェライト相中のZn成分はZnOに換算して0〜37mol%の範囲が好ましい。これは、Zn成分がZnOに換算して30mol%を超えるとキュリー温度が実用温度に近くなって使用し難くなるが、Zn成分がZnOに換算して0〜30mol%の範囲ではこのような不都合がなく、所望の諸特性が得られるからである。
【0019】
また、この発明に係る線チップインダクタ用フェライトコアの製造方法は、Ni−Cu−Zn系フェライト用の原料粉末を仮焼し、得られた仮焼粉にZnSiOを添加し、これを成形した後に焼結させることを特徴とするものである。
【0020】
ここで、前記ZnSiOの添加量は0.5〜1.5wt%の範囲が好ましい。また、前記原料粉末中のFe成分はFeとして30〜50mol%、前記原料粉末中のNi成分はNiOとして0〜60mol%、前記原料粉末中のCu成分はCuOとしての0〜15mol%、前記原料粉末中のZn成分はZnOとして0〜37mol%の範囲が好ましい。その理由は上述した限定理由と同様である。
【0021】
【実施例】
実施例1:原料粉末を、Fe:49mol%、NiO:39mol%、ZnO:5mol%、CuO:7mol%の割合で各々秤量し、これらをボールミル内に入れ、充分に混合して混合粉末を得た。
【0022】
次に、この混合粉末を容器に入れ、この容器を電気炉に入れ、大気雰囲気下、従来の慣用法で仮焼し、スピネル系フェライトの粉末を作成した。
【0023】
次に、この仮焼により得られたフェライトに0〜2.5wt%の範囲でZnSiO(SiO量に換算して0〜0.72wt%)を添加し、また、0.5wt%のSiOを添加し、これらをボールミル内に入れ、仮焼物を解砕させるとともに、ZnSiOを混合して各々仮焼混合粉を得た。
【0024】
次に、仮焼混合粉に有機バインダを加えて造粒し、これを加圧成形して角状トロイダルコア型の成形体を得た。そして、この角状トロイダルコア型の成形体を大気雰囲気下、1075〜1120℃で2時間焼成して焼結させ、角状トロイダルコアを得た。
【0025】
次に、この角状トロイダルコアの飽和磁束密度Bs(mT)、比抵抗(Ω・cm)を求めたところ、表1に示す通りであった。
【0026】
次に、得られた角状トロイダルコアにコイルを13回巻回してインダクタを作成した。そして、このインダクタに荷重を加えた状態でインダクタンスLを測定し、圧縮応力(kgfmm)とインダクタンスLの変化率ΔL(%)との関係を求めたところ、表1及び図1に示す通りの結果が得られた。
【0027】
【表1】

Figure 2004296865
【0028】
表1及び図1に示す結果から、ZnSiOを添加すると、SiOを添加した場合と比べ、飽和磁束密度Bs及び比抵抗が大きくなることがわかる。
【0029】
また、ZnSiOの添加量が0の場合、L変化率が−40%と大きいが、ZnSiOの添加量の増加に伴いL変化率が小さくなる。他方、ZnSiOの添加量の増加に伴い飽和磁束密度Bsが小さくなり、ZnSiOの添加量が1.5wt%を越えると所望の飽和磁束密度Bsが得られなくなる。従って、L変化率と飽和磁束密度Bsの両方を満足させZnSiOの添加量は0.5〜1.5wt%の範囲である。
【0030】
実施例2:Feの割合を45.0〜51.0mol%の範囲で変化させ、ZnSiOの添加量を1.5wt%と固定した他は、実施例1と同様の条件で角状トロイダルコア及びインダクタを作成し、飽和磁束密度Bs(mT)、2kgf/mmのL変化率(%)、比抵抗(Ω・cm)を求めたところ、表2に示す通りの結果が得られた。
【0031】
【表2】
Figure 2004296865
【0032】
本発明は圧縮応力に対するインダクタンスLの変化率ΔL(%)を小さくするためにZnSiOを添加しているので、SiOを添加する場合と比べてZn成分が添加成分の影響を受けなくて済み、従って、表2に示すように、Feの割合が48.5mol%以上の場合でも添加成分によるインダクタンスLの応力に対する変化率ΔL(%)の改善が図られることがわかる。
【0033】
実施例3:Feの割合を49mol%と固定し、ZnSiOの添加量を1.5wt%と固定し、NiO、ZnO及びCuOの相互の割合を変化させ、実施例1と同様の条件で角状トロイダルコア及びインダクタを作成し、飽和磁束密度Bs(mT)、2kgf/mmのL変化率(%)、比抵抗(Ω・cm)を求めたところ、表3に示す通りの結果が得られた。
【0034】
【表3】
Figure 2004296865
【0035】
表3から、ZnSiOを添加することにより、Fe以外のフェライト成分の割合を変化させても、インダクタンスLの応力に対する変化率ΔL(%)の改善が図られることがわかる。特開平2−137301号公報に記載されている発明では、ZnO比を10〜30mol%、CuO比を15mol%以下と規定していたのに対し、ZnSiOを添加する場合は、ZnO比が10mol%以下かつ30mol%以上の場合でもインダクタンスLの応力に対する変化率ΔL(%)の改善が図られることがわかる。
【0036】
【発明の効果】
本発明は、圧縮応力を緩和させる非磁性相を少量の添加剤を添加することによってフェライト焼結体中に効率的に形成させることができるので、添加剤の添加による飽和磁束密度Bsの低下を抑制し、圧縮応力に対するインダクタンスLの変化率ΔL(%)を効率的に小さくすることができるという効果がある。
【0037】
また、本発明は、従来のように焼成時にZnSiOを合成させるような方法を採らず、予め合成されたZnSiOを添加するので、フェライト成分であるZnOが焼成時に消費されず、フェライト成分の組成が変動しないので、温度特性、飽和磁束密度Bs、透磁率、Q、周波数特性、機械特性等の特性が変動し難いという効果がある。
【0038】
また、本発明は、ZnSiOを形成するためのフェライト成分への組成的な制限が小さいため、ZnO含有量が0wt%の場合でも焼結体中にZnSiO相を形成させることが可能である。また、Fe比も増加させることが可能である。
【0039】
また、本発明は、焼成温度に関係なく焼結体中にZnSiO相を形成させることができるので、低温焼成材においても、圧縮応力に対するインダクタンスLの変化率ΔL(%)を小さくすることができるという効果がある。
【0040】
また、本発明はSiOより焼結性の良いZnSiOを添加して圧縮応力に対するインダクタンスLの変化率ΔL(%)を小さくしているので、焼結の際の焼成温度を低下させることができ、従って、焼結コストを低減させることができるという効果がある。
【0041】
また、本発明は、ZnSiOよりも線熱膨張係数が大きいフェライトであれば、応力に対してインダクタンスLの変化率ΔL(%)を低減することができるので、Niフェライト、Mn−Znフェライト、Mg−Znフェライトへの適用範囲の拡大が可能になるという効果がある。
【図面の簡単な説明】
【図1】図1はZnSiO添加量を変化させた時の圧縮応力に対するインダクタンスの変化率を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ferrite core for a wound chip inductor, a method for manufacturing the same, and a wound chip inductor.
[0002]
[Prior art]
2. Description of the Related Art Many winding chip inductors are used in electronic devices such as televisions, videos, personal computers, and mobile phones. In order to maintain mechanical strength and obtain reliability against external environments such as temperature and humidity, these wound chip inductors are wound around a drum-shaped core and then coated with synthetic resin on the surface. Coated.
[0003]
The applied and coated synthetic resin shrinks when it cures and exerts a compressive stress on the ferrite core, and the inductance L of the ferrite core changes considerably due to the compressive stress. And hardening conditions, there is a problem that the inductance L of the obtained ferrite core varies greatly, and it is difficult to obtain a wound chip inductor having an inductance L in a desired range.
[0004]
For this problem, Japanese Unexamined 2-137301 discloses for Ni-Cu-Zn ferrite, Fe 2 O 3, NiO, were added ZnO, and 0.5-20% of SiO 2 in the raw material powder consisting of CuO By combining ZnO, which is a component of ferrite, and this SiO 2 during firing to form a Zn 2 SiO 4 phase in the sintered body, the rate of change ΔL (%) of inductance L with respect to compressive stress is reduced. Inventions have been proposed.
[0005]
Here, the decrease in the rate of change ΔL (%) of the inductance L with respect to the compressive stress is based on the difference in linear thermal expansion coefficient between the Zn 2 SiO 4 and the ferrite during cooling of firing because Zn 2 SiO 4 has a lower linear thermal expansion coefficient than the ferrite. This is achieved by leaving tensile stress.
[0006]
[Problems to be solved by the invention]
By the way, the above-mentioned prior art has the following problems. That is, in order to reduce the change rate ΔL (%) of the inductance L due to the stress of the Ni—Cu—Zn-based ferrite, there is no effect when the amount of added SiO 2 is small, and a large amount of SiO 2 is added. The Zn 2 SiO 4 phase must be formed, and SiO 2 that has not contributed to the formation of the Zn 2 SiO 4 phase remains in the sintered body.
[0007]
Then, Zn 2 SiO 4 and SiO 2 are non-magnetic phases, since these saturation magnetic flux density Bs with increasing non-magnetic phase decreases the saturation magnetic flux density Bs by the addition of SiO 2 is high and the stress It is difficult to obtain a Ni-Cu-Zn-based ferrite which is compatible with the characteristic that the rate of change ΔL (%) of the inductance L is small.
[0008]
Although in order to form a Zn 2 SiO 4 phase in the sintered body will be compound of SiO 2 and ZnO is ferrite component, a ferrite component of the sintered body by chemical of SiO 2 and ZnO The composition ratio of certain ZnO fluctuated, and the temperature characteristics, saturation magnetic flux density Bs, magnetic permeability μ, Q, frequency characteristics, mechanical characteristics, and other characteristics changed, and a material having stable characteristics could not be obtained.
[0009]
In addition, since SiO 2 deteriorates the sinterability of ferrite, it is necessary to fire at a higher temperature in order to obtain a dense ferrite sintered body, so that firing cost is increased, which leads to an increase in product cost. There was a problem.
[0010]
Further, in order to form a Zn 2 SiO 4 phase, it is indispensable that the ratio of Fe 2 O 3 in the ferrite component is lower than that of a normal ferrite component and that ZnO and SiO 2 are contained. For example, in a composition having a low ZnO content in a ferrite component, a Zn 2 SiO 4 phase is not formed even if SiO 2 is added, and the rate of change ΔL (%) of inductance L with respect to compressive stress may be reduced. There was a problem that it was difficult.
[0011]
Further, the Zn 2 SiO 4 phase is formed by a combination of ZnO and SiO 2 during firing, but when fired at a low temperature, Zn 2 SiO 4 is not synthesized, and the change rate ΔL (%) of the inductance L with respect to the compressive stress is not generated. There is a problem that it is difficult to reduce the size.
[0012]
The present invention provides, at low cost, a wound chip inductor in which the saturation magnetic flux density Bs is made as high as possible and the rate of change ΔL (%) of the inductance L is made as small as possible even when a compressive stress is applied by coating with a synthetic resin. The purpose is to do.
[0013]
[Means for Solving the Problems]
Winding chip ferrite core inductor according to the present invention includes a ferrite phase consisting Ni-Cu-Zn ferrite, and Zn 2 SiO 4 phase consisting of Zn 2 SiO 4, in that it consists an impurity phase unavoidable impurities It is a feature.
[0014]
Moreover, winding chip inductor according to the present invention comprises a ferrite core, a coil wound on the ferrite core, the ferrite core, the ferrite phase consisting Ni-Cu-Zn ferrite, Zn 2 and Zn 2 SiO 4 phase consisting of SiO 4, is characterized in that consist of an impurity phase unavoidable impurities.
[0015]
Here, the content ratio of the Zn 2 SiO 4 phase is preferably in the range of 0.5 to 1.5 wt%. This is because if the ratio of the Zn 2 SiO 4 phase is less than 0.5 wt%, the effect of reducing the change rate ΔL (%) of the inductance L with respect to the compressive stress is not so much obtained, and the ratio of the Zn 2 SiO 4 phase is 1.5 wt%. %, The desired saturation magnetic flux density cannot be obtained, but if the ratio of the Zn 2 SiO 4 phase is in the range of 0.5 to 1.5 wt%, there is no such inconvenience and desired characteristics can be obtained. is there.
[0016]
Further, Fe components in the ferrite phase in the range of 30 to 50 mol% are preferred in terms of Fe 2 O 3. This is because if the Fe component in the ferrite phase is less than 30 mol% in terms of Fe 2 O 3 , a desired magnetic permeability μ cannot be obtained, and if the Fe component exceeds 50 mol% in terms of Fe 2 O 3. A desired specific resistance, a desired loss, and a desired frequency characteristic cannot be obtained. However, when the Fe component is in the range of 30 to 50 mol% in terms of Fe 2 O 3, there are no such disadvantages, and desired characteristics can be obtained. Because it can be done.
[0017]
Further, the Cu component in the ferrite phase is preferably in the range of 0 to 15 mol% in terms of CuO. This is because a desired Q value cannot be obtained when the Cu component exceeds 15 mol% in terms of CuO, but there is no such inconvenience when the Cu component is in the range of 0 to 15 mol% in terms of CuO. This is because various characteristics can be obtained.
[0018]
Further, the Zn component in the ferrite phase is preferably in the range of 0 to 37 mol% in terms of ZnO. This is because if the Zn component exceeds 30 mol% in terms of ZnO, the Curie temperature is close to the practical temperature and it is difficult to use, but if the Zn component is in the range of 0 to 30 mol% in terms of ZnO, such disadvantages occur. This is because desired characteristics can be obtained.
[0019]
Further, in the method of manufacturing a ferrite core for a wire chip inductor according to the present invention, a raw material powder for a Ni—Cu—Zn-based ferrite is calcined, and Zn 2 SiO 4 is added to the calcined powder obtained. It is characterized by being molded and then sintered.
[0020]
Here, the amount of the Zn 2 SiO 4 added is preferably in the range of 0.5 to 1.5 wt%. The Fe component in the raw material powder is 30 to 50 mol% as Fe 2 O 3 , the Ni component in the raw material powder is 0 to 60 mol% as NiO, and the Cu component in the raw material powder is 0 to 15 mol% as CuO. The Zn component in the raw material powder is preferably in the range of 0 to 37 mol% as ZnO. The reason is the same as the limitation reason described above.
[0021]
【Example】
The raw material powder, Fe 2 O 3:: Example 1 49mol%, NiO: 39mol% , ZnO: 5mol%, CuO: respectively weighed at a ratio of 7 mol%, it was placed in a ball mill, mixed thoroughly mixed A powder was obtained.
[0022]
Next, the mixed powder was placed in a container, and the container was placed in an electric furnace and calcined in a conventional manner under an air atmosphere to prepare a spinel ferrite powder.
[0023]
Next, Zn 2 SiO 4 (0 to 0.72 wt% in terms of SiO 2 amount) is added to the ferrite obtained by this calcination in the range of 0 to 2.5 wt%, and 0.5 wt% the SiO 2 was added, and these were placed in a ball mill, causes disintegrated calcined product to obtain a respective calcined mixed powder by mixing Zn 2 SiO 4.
[0024]
Next, an organic binder was added to the calcined mixed powder, and the mixture was granulated, followed by press molding to obtain a square toroidal core type molded body. Then, this rectangular toroidal core type molded body was fired and sintered at 1075 to 1120 ° C. for 2 hours in an air atmosphere to obtain a rectangular toroidal core.
[0025]
Next, when the saturation magnetic flux density Bs (mT) and the specific resistance (Ω · cm) of the rectangular toroidal core were determined, they were as shown in Table 1.
[0026]
Next, an inductor was formed by winding a coil around the obtained square toroidal core 13 times. Then, the inductance L was measured while a load was applied to the inductor, and the relationship between the compressive stress (kgfmm 2 ) and the rate of change ΔL (%) of the inductance L was determined. The result was obtained.
[0027]
[Table 1]
Figure 2004296865
[0028]
From the results shown in Table 1 and FIG. 1, it can be seen that the addition of Zn 2 SiO 4 increases the saturation magnetic flux density Bs and the specific resistance as compared with the case where SiO 2 is added.
[0029]
When the addition amount of Zn 2 SiO 4 is 0, the L change rate is as large as −40%, but the L change rate decreases as the addition amount of Zn 2 SiO 4 increases. On the other hand, the saturation magnetic flux density Bs decreases with an increase in the amount of Zn 2 SiO 4 added. If the amount of Zn 2 SiO 4 exceeds 1.5 wt%, a desired saturation magnetic flux density Bs cannot be obtained. Therefore, both the L change rate and the saturation magnetic flux density Bs are satisfied, and the amount of Zn 2 SiO 4 added is in the range of 0.5 to 1.5 wt%.
[0030]
Example 2: the ratio of Fe 2 O 3 was varied in a range of 45.0~51.0Mol%, other with a fixed amount of Zn 2 SiO 4 and 1.5 wt%, the same conditions as in Example 1 Then, a square toroidal core and an inductor were prepared, and the saturation magnetic flux density Bs (mT), the L change rate (%) of 2 kgf / mm 2 , and the specific resistance (Ω · cm) were obtained. The results shown in Table 2 were obtained. was gotten.
[0031]
[Table 2]
Figure 2004296865
[0032]
In the present invention, Zn 2 SiO 4 is added in order to reduce the change rate ΔL (%) of the inductance L with respect to the compressive stress. Therefore, the Zn component is not affected by the added component as compared with the case where SiO 2 is added. Therefore, as shown in Table 2, it can be seen that even when the proportion of Fe 2 O 3 is 48.5 mol% or more, the rate of change ΔL (%) of the inductance L with respect to the stress due to the added component can be improved.
[0033]
Example 3 The ratio of Fe 2 O 3 was fixed at 49 mol%, the amount of Zn 2 SiO 4 was fixed at 1.5 wt%, and the mutual ratio of NiO, ZnO and CuO was changed. Square toroidal cores and inductors were prepared under the same conditions, and the saturation magnetic flux density Bs (mT), the rate of change of L (%) at 2 kgf / mm 2 , and the specific resistance (Ω · cm) were determined. The results were as follows.
[0034]
[Table 3]
Figure 2004296865
[0035]
From Table 3, it can be seen that by adding Zn 2 SiO 4 , even if the ratio of the ferrite component other than Fe 2 O 3 is changed, the rate of change ΔL (%) of the inductance L with respect to the stress can be improved. In the invention described in JP-A-2-137301, the ZnO ratio is specified to be 10 to 30 mol% and the CuO ratio is specified to be 15 mol% or less. On the other hand, when Zn 2 SiO 4 is added, the ZnO ratio is reduced. It can be seen that the rate of change ΔL (%) of the inductance L with respect to the stress can be improved even when the ratio is 10 mol% or less and 30 mol% or more.
[0036]
【The invention's effect】
The present invention can efficiently form a nonmagnetic phase for relaxing compressive stress in a ferrite sintered body by adding a small amount of an additive. Thus, there is an effect that the rate of change ΔL (%) of the inductance L with respect to the compressive stress can be efficiently reduced.
[0037]
Further, the present invention does not employ a method of synthesizing Zn 2 SiO 4 at the time of sintering as in the prior art, but adds Zn 2 SiO 4 synthesized in advance, so that ZnO as a ferrite component is not consumed at the time of sintering. Since the composition of the ferrite component does not change, there is an effect that characteristics such as temperature characteristics, saturation magnetic flux density Bs, magnetic permeability, Q, frequency characteristics, and mechanical characteristics hardly change.
[0038]
In addition, the present invention provides a method for forming a Zn 2 SiO 4 phase in a sintered body even when the ZnO content is 0 wt% because the compositional restrictions on the ferrite component for forming Zn 2 SiO 4 are small. Is possible. Also, the Fe 2 O 3 ratio can be increased.
[0039]
Further, according to the present invention, since the Zn 2 SiO 4 phase can be formed in the sintered body regardless of the firing temperature, the rate of change ΔL (%) of the inductance L with respect to the compressive stress is reduced even in a low-temperature fired material. There is an effect that can be.
[0040]
Further, in the present invention, the change rate ΔL (%) of the inductance L with respect to the compressive stress is reduced by adding Zn 2 SiO 4 having better sinterability than SiO 2, so that the firing temperature during sintering is reduced. Therefore, there is an effect that the sintering cost can be reduced.
[0041]
Further, according to the present invention, if the ferrite has a larger linear thermal expansion coefficient than that of Zn 2 SiO 4 , the rate of change ΔL (%) of the inductance L with respect to stress can be reduced. There is an effect that the range of application to ferrite and Mg-Zn ferrite can be expanded.
[Brief description of the drawings]
FIG. 1 is a graph showing the rate of change of inductance with respect to compressive stress when the amount of Zn 2 SiO 4 is changed.

Claims (9)

Ni−Cu−Zn系フェライトからなるフェライト相と、ZnSiOからなるZnSiO相と、不可避不純物からなる不純物相とからなることを特徴とする巻き線チップインダクタ用フェライトコア。Ferrite phase consisting Ni-Cu-Zn ferrite, Zn 2 and Zn 2 SiO 4 phase consisting of SiO 4, winding chip ferrite core inductor, characterized by comprising an impurity phase unavoidable impurities. 前記ZnSiO相の含有割合が0.5〜1.5wt%であることを特徴とする請求項1に記載の巻き線チップインダクタ用フェライトコア。Winding chip ferrite core inductor according to claim 1, the content of the Zn 2 SiO 4 phase is characterized by a 0.5 to 1.5%. 前記フェライト相中のFe成分がFeに換算して30〜50mol%、前記フェライト相中のNi成分がNiOに換算して0〜60mol%、前記フェライト相中のCu成分がCuOに換算して0〜15mol%、前記フェライト相中のZn成分がZnOに換算して0〜37mol%であることを特徴とする請求項1又は2に記載の巻き線チップインダクタ用フェライトコア。30 to 50 mol% Fe component of the ferrite phase is in terms of Fe 2 O 3, 0~60mol% Ni component of the ferrite phase is in terms of NiO, Cu component of the ferrite phase is converted to CuO 3. The ferrite core for a wound chip inductor according to claim 1, wherein the ferrite phase has a Zn content of 0 to 15 mol% and a Zn component in the ferrite phase of 0 to 37 mol% in terms of ZnO. Ni−Cu−Zn系フェライト用の原料粉末を仮焼し、得られた仮焼粉にZnSiOを添加・混合し、この混合粉を成形した後に焼結させたことを特徴とするフェライトコアの製造方法。Ferrite calcined raw material powder of an Ni-Cu-Zn-based ferrite, resulting were added and mixed Zn 2 SiO 4 in the calcined powder, characterized in that by sintering after molding the mixed powder Core manufacturing method. 前記ZnSiOの含有割合が0.5〜1.5wt%であることを特徴とする請求項4に記載のフェライトコアの製造方法。Method for producing a ferrite core according to claim 4, the content of the Zn 2 SiO 4 is characterized in that it is a 0.5 to 1.5%. 前記原料粉末中のFe成分がFeとして30〜50mol%、前記原料粉末中のNi成分がNiOとして0〜60mol%、前記原料粉末中のCu成分がCuOとしての0〜15mol%、前記原料粉末中のZn成分がZnOとして0〜37mol%であることを特徴とする請求項4又は5に記載のフェライトコアの製造方法。The Fe component in the raw material powder is 30 to 50 mol% as Fe 2 O 3 , the Ni component in the raw material powder is 0 to 60 mol% as NiO, the Cu component in the raw material powder is 0 to 15 mol% as CuO, The method for producing a ferrite core according to claim 4, wherein the Zn component in the raw material powder is 0 to 37 mol% as ZnO. フェライトコアと、該フェライトコアに巻回されているコイルとを備え、該フェライトコアが、Ni−Cu−Zn系フェライトからなるフェライト相と、ZnSiOからなるZnSiO相と、不可避不純物からなる不純物相とからなることを特徴とする巻き線チップインダクタ。A ferrite core, a coil wound on the ferrite core, the ferrite core, the ferrite phase consisting Ni-Cu-Zn ferrite, and Zn 2 SiO 4 phase consisting of Zn 2 SiO 4, unavoidable A wound chip inductor comprising an impurity phase comprising impurities. 前記ZnSiO相の含有割合が0.5〜1.5wt%であることを特徴とする請求項7に記載の巻き線チップインダクタ。Winding chip inductor according to claim 7, the content of the Zn 2 SiO 4 phase is characterized by a 0.5 to 1.5%. 前記フェライト相中のFe成分がFeに換算して30〜50mol%、前記フェライト相中のNi成分がNiOに換算して0〜60mol%、前記フェライト相中のCu成分がCuOに換算して0〜15mol%、前記フェライト相中のZn成分がZnOに換算して0〜37mol%であることを特徴とする請求項7又は8に記載の巻き線チップインダクタ。30 to 50 mol% Fe component of the ferrite phase is in terms of Fe 2 O 3, 0~60mol% Ni component of the ferrite phase is in terms of NiO, Cu component of the ferrite phase is converted to CuO 9. The wound chip inductor according to claim 7, wherein the content of the Zn component in the ferrite phase is 0 to 37 mol% in terms of ZnO.
JP2003088319A 2003-03-27 2003-03-27 Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor Withdrawn JP2004296865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088319A JP2004296865A (en) 2003-03-27 2003-03-27 Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088319A JP2004296865A (en) 2003-03-27 2003-03-27 Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor

Publications (1)

Publication Number Publication Date
JP2004296865A true JP2004296865A (en) 2004-10-21

Family

ID=33402483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088319A Withdrawn JP2004296865A (en) 2003-03-27 2003-03-27 Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor

Country Status (1)

Country Link
JP (1) JP2004296865A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132834A1 (en) 2007-04-24 2008-11-06 Toda Kogyo Corporation Ni-zn-cu ferrite powder, green sheet and sintered body
JP2012096952A (en) * 2010-11-01 2012-05-24 Tdk Corp Ferrite sintered compact and electronic component
US8637764B2 (en) 2009-09-14 2014-01-28 Mitsubishi Plastics, Inc. Biaxially oriented polyester film for sealing back surface of photovoltaics
US9984799B2 (en) 2013-10-07 2018-05-29 Tdk Corporation Ferrite composition and electronic component
US10020791B2 (en) 2015-04-02 2018-07-10 Tdk Corporation Ferrite composition and electronic component
JP6407399B1 (en) * 2017-12-26 2018-10-17 Tdk株式会社 Multilayer coil parts
WO2023058479A1 (en) * 2021-10-07 2023-04-13 株式会社村田製作所 Ferrite sintered body and stacked coil component
WO2023058478A1 (en) * 2021-10-07 2023-04-13 株式会社村田製作所 Ferrite sintered body and stacked coil component
JP7385175B2 (en) 2019-01-29 2023-11-22 Tdk株式会社 Ferrite compositions and laminated electronic components

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403728B1 (en) 2007-04-24 2014-06-03 도다 고교 가부시끼가이샤 Ni-zn-cu ferrite powder, green sheet and sintered body
US8470194B2 (en) * 2007-04-24 2013-06-25 Toda Kogyo Corporation Ni—Zn—Cu ferrite particles, green sheet comprising the Ni—Zn—Cu ferrite particles and Ni—Zn—Cu ferrite sintered ceramics
EP2141136A1 (en) * 2007-04-24 2010-01-06 Toda Kogyo Corporation Ni-zn-cu ferrite powder, green sheet and sintered body
US20100163779A1 (en) * 2007-04-24 2010-07-01 Yoji Okano Ni-zn-cu ferrite particles, green sheet comprising the ni-zn-cu ferrite particles and ni-zn-cu ferrite sintered ceramics
WO2008132834A1 (en) 2007-04-24 2008-11-06 Toda Kogyo Corporation Ni-zn-cu ferrite powder, green sheet and sintered body
EP2141136A4 (en) * 2007-04-24 2012-04-25 Toda Kogyo Corp Ni-zn-cu ferrite powder, green sheet and sintered body
JP2008290931A (en) * 2007-04-24 2008-12-04 Toda Kogyo Corp Ni-Zn-Cu FERRITE POWDER, GREEN SHEET CONTAINING Ni-Zn-Cu FERRITE POWDER AND Ni-Zn-Cu FERRITE SINTERED BODY
US8637764B2 (en) 2009-09-14 2014-01-28 Mitsubishi Plastics, Inc. Biaxially oriented polyester film for sealing back surface of photovoltaics
JP2012096952A (en) * 2010-11-01 2012-05-24 Tdk Corp Ferrite sintered compact and electronic component
US9984799B2 (en) 2013-10-07 2018-05-29 Tdk Corporation Ferrite composition and electronic component
US10020791B2 (en) 2015-04-02 2018-07-10 Tdk Corporation Ferrite composition and electronic component
JP6407399B1 (en) * 2017-12-26 2018-10-17 Tdk株式会社 Multilayer coil parts
JP2019114733A (en) * 2017-12-26 2019-07-11 Tdk株式会社 Laminate coil component
JP7385175B2 (en) 2019-01-29 2023-11-22 Tdk株式会社 Ferrite compositions and laminated electronic components
WO2023058479A1 (en) * 2021-10-07 2023-04-13 株式会社村田製作所 Ferrite sintered body and stacked coil component
WO2023058478A1 (en) * 2021-10-07 2023-04-13 株式会社村田製作所 Ferrite sintered body and stacked coil component

Similar Documents

Publication Publication Date Title
JP4532401B2 (en) NiCuZn-based ferrite and electronic component using the same
JPWO2007032338A1 (en) Ferrite material
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JP2006151743A (en) Ferrite material and electronic component using it
JP2004296865A (en) Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor
JP3405630B2 (en) Ferrite material
JP3492802B2 (en) Low loss ferrite material
JP2004161593A (en) Ferritic material
JP5387947B2 (en) Sintered ferrite material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2007063123A (en) Ferrite material and electronic component using the same
JP3487552B2 (en) Ferrite material
JP3464100B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP2006151702A (en) Ferrite magnetic material and electronic component obtained by using the same
JP2007302493A (en) NiCuZn FERRITE AND ELECTRONIC COMPONENT USING THE SAME
JP3550258B2 (en) Ferrite material
JP3426780B2 (en) Ferrite material
JP4766339B2 (en) Sintered ferrite and manufacturing method thereof
JPH06333719A (en) Ni-zn soft ferrite
JPH0391209A (en) Chip inductor
EP1231614A1 (en) Oxide magnetic material and core using the same
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP3692057B2 (en) Ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110210