JPH0372961B2 - - Google Patents

Info

Publication number
JPH0372961B2
JPH0372961B2 JP57122641A JP12264182A JPH0372961B2 JP H0372961 B2 JPH0372961 B2 JP H0372961B2 JP 57122641 A JP57122641 A JP 57122641A JP 12264182 A JP12264182 A JP 12264182A JP H0372961 B2 JPH0372961 B2 JP H0372961B2
Authority
JP
Japan
Prior art keywords
light
film
flat plate
transparent flat
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57122641A
Other languages
Japanese (ja)
Other versions
JPS5913224A (en
Inventor
Masataka Shirasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12264182A priority Critical patent/JPS5913224A/en
Priority to DE8383304027T priority patent/DE3378140D1/en
Priority to EP83304027A priority patent/EP0100178B1/en
Publication of JPS5913224A publication Critical patent/JPS5913224A/en
Priority to US06/815,279 priority patent/US4641926A/en
Publication of JPH0372961B2 publication Critical patent/JPH0372961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、光回路素子に係り、とくに光スイツ
チ、光サーキユレーター等に用いられる偏光素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to optical circuit elements, and particularly to polarizing elements used in optical switches, optical circulators, and the like.

(b) 技術の背景 現在実用化されている光回路においては、第1
図に示すような偏光素子1および2とフアラデー
回転素子3から成る光スイツチが用いられてい
る。またこれらの組合せを基本として成る光サー
キユレーター等も用いられている。
(b) Background of the technology In optical circuits currently in practical use, the first
An optical switch consisting of polarizing elements 1 and 2 and a Faraday rotation element 3 as shown in the figure is used. Optical circulators and the like based on a combination of these are also used.

第1図において、偏光素子1にX1の方向から
入射した光は偏光分離膜11によつて実線表示の
水平偏波と破線表示の垂直偏波とに分離される。
In FIG. 1, light incident on the polarizing element 1 from the direction X1 is separated by the polarization separation film 11 into horizontally polarized light shown by a solid line and vertically polarized light shown by a broken line.

すなわち、通常、入射光に含まれる水平偏波は
偏光分離膜を透過するのに対し、垂直偏波は該偏
光分離膜によつて反射されるためである。
That is, normally, horizontally polarized waves contained in incident light are transmitted through the polarization separation film, whereas vertically polarized waves are reflected by the polarization separation film.

第1図において、水平偏波は偏光分離膜11を
透過し、偏光素子1の反射面12によつて反射さ
れた後、フアラデー回転素子3に入射し、一方、
垂直偏波は偏光分離膜11によつて反射されフア
ラデー回転素子3に入射する。
In FIG. 1, the horizontally polarized wave passes through the polarization separation film 11, is reflected by the reflective surface 12 of the polarizing element 1, and then enters the Faraday rotation element 3;
The vertically polarized wave is reflected by the polarization separation film 11 and enters the Faraday rotation element 3.

これら分離された光は、フアラデー回転素子3
によつてその偏光面を回転されない時にはフアラ
デー偏光回転素子3をそのまま透過し、偏光素子
2に入射する。この場合、偏光素子2の偏光分離
膜21に入射した前記水平偏波はこれを透過し、
Y1の方向に出射し、また前記垂直偏波は偏光素
子2の反射面22により反射され偏光分離膜21
に入射するが、ここで再び反射されY1の方向に
出射する。
These separated lights are transferred to the Faraday rotation element 3
When the plane of polarization is not rotated by the beam, the light passes through the Faraday polarization rotation element 3 as it is and enters the polarization element 2. In this case, the horizontally polarized wave incident on the polarization separation film 21 of the polarizing element 2 is transmitted,
The vertically polarized wave is emitted in the direction of Y1, and the vertically polarized wave is reflected by the reflective surface 22 of the polarizing element 2 and passes through the polarized light separating film 21.
However, it is reflected again and emitted in the direction of Y1.

上記において、偏光素子1により分離された光
がフアラデー回転素子3によつてその偏光面を90
度回転される時には、フアラデー回転素子3に入
射した水平偏波は垂直偏波になり、これは偏光素
子2の偏光分離膜21により反射されY2の方向
に出射し、同様にしてフアラデー回転素子3に入
射した垂直偏波は水平偏波になり、これは偏光素
子2の反射面22で反射された後偏光分離膜21
を透過してY2の方向に出射する。
In the above, the light separated by the polarizing element 1 is changed by the Faraday rotator 3 to change its plane of polarization by 90 degrees.
When rotated, the horizontally polarized wave incident on the Faraday rotator 3 becomes a vertically polarized wave, which is reflected by the polarization separation film 21 of the polarizing element 2 and emitted in the Y2 direction, and similarly, the Faraday rotator 3 The vertically polarized wave that has entered becomes horizontally polarized wave, which is reflected by the reflective surface 22 of the polarizing element 2 and then passes through the polarization separation film 21.
It passes through and is emitted in the direction of Y2.

このように、偏光素子1により入射光を分離
し、フアラデー回転素子3によりこれら分離され
た光の偏光面を回転制御することによつて偏光素
子2からの光の出射方向を切り換えることができ
る。
In this way, the direction of light output from the polarizing element 2 can be switched by separating the incident light using the polarizing element 1 and controlling the rotation of the polarization plane of the separated lights using the Faraday rotation element 3.

また、偏光素子1にX2の方向から入射する光
についても同様のことが可能であり、これによつ
て出射方向の異なる2つの光を選択的に取り出す
こともできる。
Further, the same thing can be done for the light that enters the polarizing element 1 from the direction of X2, and thereby it is also possible to selectively extract two lights having different emission directions.

(c) 従来技術と問題点 従来、上記偏光素子1により分離された水平偏
波と垂直偏波の光路間の距離d(第1図参照)は
10mm前後であつた。
(c) Prior art and problems Conventionally, the distance d between the optical paths of the horizontally polarized wave and the vertically polarized wave separated by the polarizing element 1 (see Figure 1) is
It was around 10mm.

これは偏光素子1の幾何学的寸法、すなわち偏
光分離膜11の面と反射面12との間の距離に基
づくものであつて、従来の偏光素子の構造および
その製造方法では偏光素子を小型にするためこの
距離を1mm以下にすることはきわめて困難であ
り、またこれを実現するためには、製造コストが
高くなる欠点があつた。
This is based on the geometric dimensions of the polarizing element 1, that is, the distance between the surface of the polarization separation film 11 and the reflecting surface 12. Therefore, it is extremely difficult to reduce this distance to 1 mm or less, and achieving this has the drawback of increasing manufacturing costs.

すなわち、従来の構造の偏光素子は、第2図に
示すAの部分とBの部分とから成り、これらは別
箇に製作され、Aの部分に偏光分離膜11を設け
た後Bの部分と貼り合わせることによつて製作さ
れていた。しかも、これらにおいて、面4と面5
は正確に平行が保たれ、また面6と面7は正確に
同一平面上に在るように組立られ、かつ面6,
7,8および9には精密平面研磨加工が施されて
いることが必要であり、このような構造によれ
ば、偏光素子が小型になる程取り扱いおよび精度
の維持が困難になるためである。
That is, a polarizing element with a conventional structure consists of a part A and a part B shown in FIG. It was made by gluing it together. Moreover, in these, surface 4 and surface 5
are assembled so that they are exactly parallel, surfaces 6 and 7 are exactly on the same plane, and surfaces 6,
7, 8, and 9 must be subjected to precision surface polishing, and with such a structure, the smaller the polarizing element becomes, the more difficult it becomes to handle and maintain precision.

(d) 発明の目的 本発明は、従来の偏光素子の構造とは異なつ
て、小型化、低コスト化が可能な新規な構造を有
する偏光素子を提供することを目的とする。
(d) Object of the Invention An object of the present invention is to provide a polarizing element having a novel structure that is different from the structure of conventional polarizing elements and can be made smaller and lower in cost.

(e) 発明の構成 本発明は、2面が平行平面の透明平板31の一
方の面の一部に偏光分離膜32を、他方の面の一
部に光反射膜33を互いに斜め方向に位置ずれさ
せて設けた偏光素子であつて、前記偏光分離膜3
2と前記光反射膜33は、水平偏波と垂直偏波を
含む入射光X3が前記透明平板31の前記他方の
面における前記反射膜33が設けられていない部
分に対し斜め方向より入射し、前記透明平板31
を通つて前記偏光分離膜32に斜め方向より入射
した場合には、前記水平偏波は前記偏光分離膜3
2を透過し前記透明平板31より出射して第1出
射光X3となり、前記垂直偏波は前記偏光分離膜
32で反射し、前記透明平板31を通つて前記光
反射膜33で反射し、前記透明平板31を通つて
前記一方の面における前記偏光分離膜32が設け
られていない部分より出射して前記第1出射光Y
3と近接し且つ平行な第2出射光Y4となり、水
平偏波と垂直偏波を含む入射光X4が前記透明平
板31の前記一方の面における前記偏光分離膜3
2に斜め方向より入射した場合には、前記水平偏
波は前記偏光分離膜32を透過し前記透明平板3
1を通つて前記光反射膜33で反射し、前記透明
平板31を通つて前記一方の面における前記偏光
分離膜32が設けられていない部分より出射して
第2出射光Y4となり、前記垂直偏波は前記偏光
分離膜32で反射され前記透明平板31外へ出射
して前記第2出射光Y4と近接し且つ平行な第1
出射光Y3となるように、設けられていることを
特徴とする。
(e) Structure of the Invention The present invention provides a transparent flat plate 31 having two parallel planes, with a polarization separation film 32 on a part of one face and a light reflection film 33 on a part of the other face, which are positioned obliquely to each other. The polarization separation film 3 is a polarization element provided in a shifted manner.
2 and the light reflective film 33, the incident light X3 including horizontally polarized waves and vertically polarized waves is incident from an oblique direction onto a portion of the other surface of the transparent flat plate 31 where the reflective film 33 is not provided, The transparent flat plate 31
If the horizontally polarized light enters the polarization separation film 32 from an oblique direction through the polarization separation film 3
The vertically polarized wave is reflected by the polarization separation film 32, passes through the transparent flat plate 31, is reflected by the light reflection film 33, and is emitted from the transparent flat plate 31 to become the first output light X3. The first emitted light Y passes through the transparent flat plate 31 and is emitted from a portion of the one surface where the polarized light separation film 32 is not provided.
The incident light X4, which includes horizontally polarized waves and vertically polarized waves, becomes a second emitted light Y4 that is close to and parallel to the polarized light separation film 3 on the one surface of the transparent flat plate 31.
2 from an oblique direction, the horizontally polarized light passes through the polarization separation film 32 and passes through the transparent flat plate 3.
1, is reflected by the light reflecting film 33, passes through the transparent flat plate 31, and is emitted from a portion of the one surface where the polarized light separating film 32 is not provided, becoming a second emitted light Y4, which is the vertically polarized light Y4. The wave is reflected by the polarized light separation film 32 and emitted to the outside of the transparent flat plate 31, and is emitted into a first wave that is close to and parallel to the second emitted light Y4.
It is characterized in that it is provided so that the emitted light Y3 is generated.

(f) 発明の実施例 以下本発明の実施例を図面を参照して説明す
る。
(f) Embodiments of the invention Examples of the invention will be described below with reference to the drawings.

第3図は本発明による偏光素子の一実施例を示
す模式図である。
FIG. 3 is a schematic diagram showing an embodiment of a polarizing element according to the present invention.

同図において、31は厚さが1mm程度であり、
平行平面を有する透明平板であるガラス板であ
る。このガラス板31の一方の面の一部に誘電体
多層膜から成る偏光分離膜32を形成し、他の面
の一部に反射膜33(金属薄膜または誘電体多層
膜から成る)を形成する。これらの膜の形成は通
常の真空蒸着あるいはスパツタリングとフオトエ
ツチングの技術を用いて行えばよい。
In the same figure, 31 has a thickness of about 1 mm,
This is a glass plate that is a transparent flat plate with parallel planes. A polarization separation film 32 made of a dielectric multilayer film is formed on a part of one surface of the glass plate 31, and a reflective film 33 (made of a metal thin film or a dielectric multilayer film) is formed on a part of the other surface. . These films may be formed using conventional vacuum deposition or sputtering and photoetching techniques.

上記のようにして得られた偏光素子にX3の方
向から入射した光は、従来の偏光素子におけると
同様に分離され、同図の実線の経路にしたがつて
水平偏波はY3に、垂直偏波はY4に出射する。
The light incident on the polarizing element obtained as described above from the direction The wave is emitted at Y4.

また、X4の方向から入射した光は、破線の径
路にしたがつて分離され、水平偏波はY4に、垂
直偏波はY3に出射する。
Further, the light incident from the direction of X4 is separated along the path indicated by the broken line, and the horizontally polarized wave is outputted to Y4, and the vertically polarized wave is outputted to Y3.

尚、水平偏波と垂直偏波の出射光は一方が第1
出射光、他方が第2出射光となり、これらは互い
に近接し且つ平行な出射光となる。
Note that one of the horizontally polarized and vertically polarized output lights is the first.
The emitted light and the other become the second emitted light, and these become emitted lights that are close to each other and parallel to each other.

これらの場合、出射光Y3とY4の間の距離d
1は、偏光素子に対するX3方向の光の入射角を
i、ガラス板31の厚さをtまたその屈折率をn
とすると d1=2t・cosi・sini/(n2−sin2i)1/2 であるから、t=1mm、i=45°、n=1.5とする
と d1≒1.26mmとなる。
In these cases, the distance d between the output beams Y3 and Y4
1 is the angle of incidence of light in the X3 direction on the polarizing element, t is the thickness of the glass plate 31, and n is the refractive index of the glass plate 31.
Then, d1=2t・cosi・sini/(n 2 − sin 2 i) 1/2 , so if t=1 mm, i=45°, and n=1.5, then d1≒1.26 mm.

本発明によれば、ガラス板31の両面の平行度
が保たれていればその厚さはさらに薄いものでも
実施可能であり、この厚さに比例してd1の値を
さらに小さくすることができる。
According to the present invention, as long as the parallelism of both sides of the glass plate 31 is maintained, the thickness of the glass plate 31 can be even thinner, and the value of d1 can be further reduced in proportion to this thickness. .

第4図は本発明の実施例を示す模式図である。 FIG. 4 is a schematic diagram showing an embodiment of the present invention.

同図に示す偏光素子は、第3図と同様にして偏
光分離膜32と反射膜33を設けられたガラス板
31を、該ガラス板31と同じ屈折率を有する直
角プリズム41および42で両側から挾むように
して貼り合せ一体化してものであり、同図Aは貼
り合せ前の斜視図、Bは貼り合せ後の断面図であ
る。
In the polarizing element shown in the same figure, a glass plate 31 provided with a polarization separation film 32 and a reflective film 33 in the same manner as in FIG. They are integrally bonded together in a manner such that they are sandwiched together, and FIG.

本構造の偏光素子の場合には、第4図Bから明
らかなように、X5およびX6から入射する光は
偏光素子のそれぞれの面43および44に対しほ
ぼ垂直に入射するために、入射面43あるいは4
4における反射損失が少なくなり、また、偏光分
離膜32とガラス板31との界面における光の入
射角および出射角が大きくなるために、2つの偏
波に対する分離性能を向上することができる。
In the case of the polarizing element of this structure, as is clear from FIG. Or 4
Since the reflection loss at 4 is reduced and the incident and exit angles of light at the interface between the polarization separation film 32 and the glass plate 31 are increased, the separation performance for two polarized waves can be improved.

(g) 発明の効果 本発明によれば、偏光素子により分離された出
射光の間の距離を小さくすることが容易であり、
これによつてフアラデー回転素子を小型化でき、
その動作効率(一定の印加電圧によつて可能な偏
光面の回転角の大さ)を向上でき、また高速動作
を可能にする効果がある。さらにまた、構造およ
びその加工が比較的簡単であるため、低コストで
量産可能な偏光素子を提供できる効果がある。
(g) Effects of the invention According to the invention, it is easy to reduce the distance between the emitted lights separated by the polarizing element,
This allows the Faraday rotation element to be miniaturized,
It has the effect of improving its operating efficiency (the degree of rotation angle of the plane of polarization that is possible with a constant applied voltage) and enabling high-speed operation. Furthermore, since the structure and processing thereof are relatively simple, it is possible to provide a polarizing element that can be mass-produced at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は偏光素子を用いた光スイツチの概要を
説明するための図、第2図は従来の偏光素子の構
造を示す図、第3図および第4図は本発明による
偏光素子の構造を示す模式図である。 図において1および2は偏光素子、3はフアラ
デー回転素子、4,5,6,7,8および9は
面、11,21および32は偏光分離膜、12お
よび22は反射面、31はガラス板、33は反射
膜、41および42は直角プリズム、43および
44は入射面、45は出射面、X1…X6は光の
入射方向、Y4…Y6は光の出射方向、dおよび
d1は偏波間の距離である。
Figure 1 is a diagram for explaining the outline of an optical switch using a polarizing element, Figure 2 is a diagram showing the structure of a conventional polarizing element, and Figures 3 and 4 are diagrams showing the structure of a polarizing element according to the present invention. FIG. In the figure, 1 and 2 are polarizing elements, 3 is a Faraday rotation element, 4, 5, 6, 7, 8, and 9 are surfaces, 11, 21, and 32 are polarization separation films, 12 and 22 are reflective surfaces, and 31 is a glass plate. , 33 is a reflective film, 41 and 42 are right-angle prisms, 43 and 44 are incident surfaces, 45 is an exit surface, X1...X6 are light incident directions, Y4...Y6 are light exit directions, d and d1 are polarization differences It is distance.

Claims (1)

【特許請求の範囲】 1 2面が平行平面の透明平板の一方の面の一部
に偏光分離膜を、他方の面の一部に光反射膜を互
いに斜め方向に位置ずれさせて設けた偏光素子で
あつて、 前記偏光分離膜と前記光反射膜は、 水平偏波と垂直偏波を含む入射光が前記透明平
板の前記他方の面における前記反射膜が設けられ
ていない部分に対し斜め方向より入射し、前記透
明平板を通つて前記偏光分離膜に斜め方向より入
射した場合には、前記水平偏波は前記偏光分離膜
を透過し前記透明平板より出射して第1出射光と
なり、前記垂直偏波は前記偏光分離膜で反射し、
前記透明平板を通つて前記光反射膜で反射し、前
記透明平板を通つて前記一方の面における前記偏
光分離膜が設けられていない部分より出射して前
記第1出射光と近接し且つ平行な第2出射光とな
り、 水平偏波と垂直偏波を含む入射光が前記透明平
板の前記一方の面における前記偏光分離膜に斜め
方向より入射した場合には、前記水平偏波は前記
偏光分離膜を透過し前記透明平板を通つて前記光
反射膜で反射し、前記透明平板を通つて前記一方
の面における前記偏光分離膜が設けられていない
部分より出射して第2出射光となり、前記垂直偏
波は前記偏光分離膜で反射され前記透明平板外へ
出射して前記第2出射光と近接し且つ平行な第1
出射光となるように、 設けられていることを特徴とした偏光素子。
[Claims] 1. Polarized light obtained by providing a polarized light separating film on a part of one surface of a transparent flat plate with two parallel planes and a light reflecting film on a part of the other surface with their positions shifted in an oblique direction from each other. In the element, the polarization separation film and the light reflection film are arranged so that incident light including horizontally polarized waves and vertically polarized waves is directed in an oblique direction with respect to a portion of the other surface of the transparent flat plate where the reflection film is not provided. If the horizontally polarized light is incident on the polarized light separating film from an oblique direction through the transparent flat plate, the horizontally polarized light passes through the polarized light separating film and exits from the transparent flat plate to become the first output light, The vertically polarized wave is reflected by the polarization separation film,
The light passes through the transparent flat plate, is reflected by the light reflecting film, passes through the transparent flat plate, and is emitted from a portion of the one surface where the polarized light separating film is not provided, and is close to and parallel to the first emitted light. When the incident light, which becomes second output light and includes horizontally polarized waves and vertically polarized waves, enters the polarized light separating film on the one surface of the transparent flat plate from an oblique direction, the horizontally polarized light is removed from the polarized light separating film. The light passes through the transparent flat plate, is reflected by the light reflecting film, passes through the transparent flat plate, and is emitted from a portion of the one surface where the polarization separation film is not provided, becoming a second outgoing light, and the vertical light The polarized light is reflected by the polarized light separating film and emitted to the outside of the transparent flat plate, and the polarized light is emitted from the first light beam, which is close to and parallel to the second light beam.
A polarizing element characterized by being provided so as to emit light.
JP12264182A 1982-07-14 1982-07-14 Polarizing element Granted JPS5913224A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12264182A JPS5913224A (en) 1982-07-14 1982-07-14 Polarizing element
DE8383304027T DE3378140D1 (en) 1982-07-14 1983-07-11 Polarizing elements
EP83304027A EP0100178B1 (en) 1982-07-14 1983-07-11 Polarizing elements
US06/815,279 US4641926A (en) 1982-07-14 1985-12-26 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12264182A JPS5913224A (en) 1982-07-14 1982-07-14 Polarizing element

Publications (2)

Publication Number Publication Date
JPS5913224A JPS5913224A (en) 1984-01-24
JPH0372961B2 true JPH0372961B2 (en) 1991-11-20

Family

ID=14840992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12264182A Granted JPS5913224A (en) 1982-07-14 1982-07-14 Polarizing element

Country Status (1)

Country Link
JP (1) JPS5913224A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138934A (en) * 1984-07-30 1986-02-25 Yamaichi Electric Mfg Co Ltd Switch of optical path
EP1031868B1 (en) * 1999-02-26 2003-05-14 Dr. Johannes Heidenhain GmbH Compensated parallel beam splitter with two plates and interferometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137329A (en) * 1980-03-28 1981-10-27 Fujitsu Ltd Polarized and separated light control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699538U (en) * 1979-12-27 1981-08-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137329A (en) * 1980-03-28 1981-10-27 Fujitsu Ltd Polarized and separated light control device

Also Published As

Publication number Publication date
JPS5913224A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
EP0100178B1 (en) Polarizing elements
JPH0230490B2 (en)
JPH0372961B2 (en)
JP2825037B2 (en) Optical connection device and optical system for optical connection device
JPH0139561B2 (en)
JPH0357459B2 (en)
US4553229A (en) Apparatus for reading information
JP2000180789A (en) Optical isolator
JPH06324289A (en) Polarization beam splitter and optical circulator using this splitter and optical switch
JPH0830789B2 (en) Polarization splitting prism
JP2775103B2 (en) Polarizing prism
JPS60238813A (en) Optical isolator
JPS5996551A (en) Reproducing device of photomagnetic recording body
JPS6030734Y2 (en) High reverse loss compact optical isolator
JPH0738049B2 (en) Optical device
JP2003185836A (en) Polarizing beam splitter and optical isolator optical system
JPH06281886A (en) Optical isolator and optical device using optical isolator
JPS62200319A (en) Optical fiber circuit device
JPS63280217A (en) Optical circuit
JP3263501B2 (en) Polarization separation element
JP2002287093A (en) Optical isolator
JPH08166561A (en) Optical element for optical isolator and optical isolator
JPH09325215A (en) Polarization beam splitter and module therefor
JPH1138400A (en) Liquid crystal element
JPS63183402A (en) Polarized light separating and synthesizing prism for optical device