JPH0372211B2 - - Google Patents

Info

Publication number
JPH0372211B2
JPH0372211B2 JP60210326A JP21032685A JPH0372211B2 JP H0372211 B2 JPH0372211 B2 JP H0372211B2 JP 60210326 A JP60210326 A JP 60210326A JP 21032685 A JP21032685 A JP 21032685A JP H0372211 B2 JPH0372211 B2 JP H0372211B2
Authority
JP
Japan
Prior art keywords
butene
butadiene
yield
formula
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60210326A
Other languages
Japanese (ja)
Other versions
JPS6270326A (en
Inventor
Yoshiharu Okumura
Haruko Takai
Takeo Koyama
Katsuzo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP60210326A priority Critical patent/JPS6270326A/en
Publication of JPS6270326A publication Critical patent/JPS6270326A/en
Publication of JPH0372211B2 publication Critical patent/JPH0372211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術的分野 本発明はジアリールアルカン、特にジアリール
ブタンの製造方法に関する。ジアリールブタンは
感圧複写紙用溶剤等の溶剤の他、熱媒体、電気絶
縁油などに有用な化合物である。 従来の技術 ジアリールアルカンの製造方法として次の様な
ものが知られている。スチレンを二量化し、水素
添加して、1,3−ジフエニルブタンを得る方法
(特開昭55−27225号公報)、ベンゼンとブタジエ
ンからジフエニルブタンを製造する方法として、
硫酸あるいはフツ化水素を触媒として使用するも
の(ジヤーナル・オブ・アメリカン・ケミカルソ
サイアテイー 1944年、第66巻816〜817頁)、硫
酸あるいは塩化アルミニウムを触媒として使用す
るもの(ジヤーナル・オブ・オーガニツク・ケミ
ストリー 1966年、第31巻1124〜1127頁)などが
ある。 発明が解決しようとする問題点 ジアリールアルカンが各種溶剤、熱媒体、電気
絶縁油等に有用であることはすでに公知である
が、効率の良い工業的製法についてはあまり注目
されていない。例えば前記の技術によるジアリー
ルアルカンの収率は低い。ベンゼンとブタジエン
からの製法では、ブタジエン基準の収率はせいぜ
い15%程度であり、ブタジエンの重合物等の副生
物が多い。 問題を解決する為の手段 発明の要旨 本発明者らはジアリールアルカン効率の良い製
造法を種々検討する中で、出発物質の1つをブタ
ジエンの様なジエン類でなく、1−アリール−2
−ブテンにすることで収率が著しく、改善される
ことを見出し、本発明を完成した。 即ち本発明は、 (a) 一般式
TECHNICAL FIELD OF THE INVENTION The present invention relates to a process for producing diarylalkanes, particularly diarylbutanes. Diarylbutane is a compound useful as a solvent such as a solvent for pressure-sensitive copying paper, as well as a heat medium, electrical insulating oil, and the like. BACKGROUND ART The following methods are known as methods for producing diarylalkanes. A method of dimerizing styrene and hydrogenating it to obtain 1,3-diphenylbutane (Japanese Unexamined Patent Publication No. 55-27225), a method of producing diphenylbutane from benzene and butadiene,
Those using sulfuric acid or hydrogen fluoride as a catalyst (Journal of the American Chemical Society, 1944, Vol. 66, pp. 816-817), those using sulfuric acid or aluminum chloride as a catalyst (Journal of Organic Chemical Society, 1944, Vol. 66, pp. 816-817).・Chemistry 1966, Vol. 31, pp. 1124-1127). Problems to be Solved by the Invention Although it is already known that diarylalkanes are useful as various solvents, heating media, electrical insulating oils, etc., efficient industrial production methods have not received much attention. For example, the yields of diarylalkane by the techniques described above are low. In the production method using benzene and butadiene, the yield based on butadiene is about 15% at most, and there are many by-products such as butadiene polymers. SUMMARY OF THE INVENTION Means for Solving the Problems The present inventors have investigated various efficient methods for producing diarylalkanes, and found that one of the starting materials was not a diene such as butadiene, but a 1-aryl-2
It was discovered that the yield was significantly improved by using -butene, and the present invention was completed. That is, the present invention provides (a) general formula

【式】(R1, R2,R3は水素原子、又は低級アルキル基でR1
とR2は互いに結合し環状を有しても良い。)で
表わされる1−アリール−2−ブテンと、 (b) 一般式
[Formula] (R 1 , R 2 , R 3 are hydrogen atoms or lower alkyl groups, and R 1
and R 2 may be bonded to each other and have a cyclic shape. ) 1-aryl-2-butene represented by (b) general formula

【式】(R1,R2,R3は水素 原子又は低級アルキル基でR1とR2は結合して、
環状を有しても良い)で表わされる芳香族炭化
水素を、ハロゲン化アルミニウムの存在下ある
いはハロゲン化アルミニウム及び特定の助触媒
の存在下に、反応させることを特徴とする、ジ
アリールアンカンの製造方法 に関する。 1−アリール−2−ブテン 一般式
[Formula] (R 1 , R 2 , R 3 are hydrogen atoms or lower alkyl groups, R 1 and R 2 are bonded,
A method for producing diaryl ankane, which is characterized by reacting an aromatic hydrocarbon (which may have a cyclic structure) in the presence of aluminum halide or in the presence of aluminum halide and a specific promoter. Regarding. 1-Aryl-2-butene general formula

【式】で表わさ れ、R1,R2,R3は同じか異つても良い水素原子
又は低級アルキル基でR1,R2は互いに結合し環
状を有しても良い。これらの化合物は
It is represented by the formula: R 1 , R 2 and R 3 may be the same or different hydrogen atoms or lower alkyl groups, and R 1 and R 2 may be bonded to each other and have a cyclic structure. These compounds are

【式】及びブタジエンから高収率で得る ことができる。例えば、 (イ)Obtained in high yield from [formula] and butadiene be able to. for example, (stomach)

【式】とブタジエン(4/1モル比) より95%りん酸触媒存在下、60〜65℃で反応さ
せ、フエニルブテンを60%の収率で得、内1−
フエニル−2−ブテンは94.4%を占める〔「ブ
レンストツフ・ケミー」(Brennstoff−
Chemie)1963年 第44巻6号175頁〕。 (ロ) BF3−りん酸触媒で
[Formula] and butadiene (4/1 molar ratio) were reacted at 60 to 65°C in the presence of a 95% phosphoric acid catalyst to obtain phenylbutene with a yield of 60%, of which 1-
Phenyl-2-butene accounts for 94.4% (Brenstoff Chemie).
Chemie) 1963, Vol. 44, No. 6, p. 175]. (b) BF 3 - with phosphoric acid catalyst

【式】とブタジエ ン(4/2モル比)から85〜88〓=でフエニルブ
テンは80%以上の収率で得られる(米国特許第
2412595号、同第2471922号)。 (ハ) 「ジヤーナル・オブ・オーガニツク・ケミス
トリー」1951年 第16巻178頁では、アルキル
スルホン酸の存在下に
Phenylbutene can be obtained with a yield of over 80% from [Formula] and butadiene (4/2 molar ratio) = 85-88 (U.S. Patent No.
2412595, 2471922). (c) Journal of Organic Chemistry, 1951, Vol. 16, p. 178, states that in the presence of alkyl sulfonic acids,

【式】 とブタジエンを30℃以下で反応させて、1−
(2,5−ジメチルフエニル)−2−ブテンを54
%の収率で得ている。 (ニ)
[Formula] and butadiene are reacted at 30℃ or less to produce 1-
(2,5-dimethylphenyl)-2-butene 54
% yield. (d)

【式】/ブタジエン/70%H2SO4 (4/1/1モル比)を55℃で反応させると59
%の収率でフエニルブテンが得られる。
〔“Dokl.Akad.Nauk Azerb.SSR”(ドクラデ
イ・アカデミー・ナウク・アゼルバイジヤンス
コイ・エスエスアール)第21巻2号15頁1965年
参照〕 (ホ) キユメン/ブタジエン/95%硫酸より2−プ
テニル−キユメンを46%の収率で得る(「アゼ
ルバイジヤンスキイ・キミケスキイ・ツアーナ
ル」1963年 4号、73頁参照)。 1−アリール−2−ブテンの化合物としては、
後述の芳香族炭化水素にプテニル基の結合したも
のを使用することができ、1−フエニル−2−ブ
テン、1−トリル−2−ブテン、1−キシリル−
2−ブテン等1−テトラリル−2−ブテン、1−
ナフチル−2−ブテン等も使用でき、1−トリル
−2−ブテンの中でも、1−p−トリル−2−ブ
テン、又は1−o−トリル−2−ブテンが、1−
キシリル−2−ブテンの中でも、1−o−キシリ
ル−2−ブテン又は1−m−キシリル−2−ブテ
ンが好ましい。 芳香族炭化水素 一般式
[Formula] / Butadiene / 70% H 2 SO 4 (4/1/1 molar ratio) is reacted at 55℃, 59
Phenylbutene is obtained with a yield of %.
[Refer to “Dokl.Akad.Nauk Azerb.SSR” Vol. 21, No. 2, p. 15, 1965] (e) From kyumene/butadiene/95% sulfuric acid -Ptenyl-kyumene is obtained with a yield of 46% (see "Azerbaizyansky Kimikesky Touranar" 1963, No. 4, p. 73). As a compound of 1-aryl-2-butene,
The following aromatic hydrocarbons with a putenyl group bonded to them can be used, such as 1-phenyl-2-butene, 1-tolyl-2-butene, 1-xylyl-
2-butene etc. 1-tetralyl-2-butene, 1-
Naphthyl-2-butene etc. can also be used, and among 1-tolyl-2-butene, 1-p-tolyl-2-butene or 1-o-tolyl-2-butene is preferred.
Among xylyl-2-butenes, 1-o-xylyl-2-butene or 1-m-xylyl-2-butene is preferred. Aromatic hydrocarbon general formula

【式】で表わされ、R1,R2, R3は同じか異つても良い水素原子又は低級アル
キル基で、特にR1とR2は結合して環状を有し
It is represented by [Formula], and R 1 , R 2 , and R 3 are hydrogen atoms or lower alkyl groups that may be the same or different, and in particular, R 1 and R 2 are bonded to have a cyclic shape.

【式】の如き化合物を形成しても良 い。 これらの化合物としては、ベンゼン、トルエ
ン、エチルベンゼン、キユメン、キシレン、ジエ
チルベンゼン、エチルトルエン、シメン、ブソイ
ドキユメン、ヘミメリテン、テトラリン、インダ
ン、メチルインダン、ナフタレン、メチルナフタ
レン、エチルナフタレン、ジメチルナフタレンな
どが挙げられる。 立体障害の関係から、芳香核上の水素が二個以
上隣接する必要があり、好ましくは三個以上の水
素が隣接するものを用いる。したがつて、特に有
用なのは、ベンゼン、トルエン、エチルベンゼ
ン、o−キシレン、m−キシレン、テトラリン、
インダン、ナフタレン、メチルナフタレン、ジメ
チルナフタレン等である。 触媒及び助触媒 本発明に必須な触媒はハロゲン化アルミニウム
であり、AlCl3、AlBr3,AlI3,AlF3が使用でき
るがAlCl3が好ましい。ハロゲン化アルミニウム
はそれ自体で使用しても良いが、錯体化して使用
すると好ましい。錯体化に用いる錯化剤をここで
は、助触媒と呼ぶ。助触媒は有機ニトロ化合物
(ニトロメタン、ニトロベンゼン等)、エステル
(酢酸メチル、酢酸エチル、エチレングリコール
ジアセテート等)、エーテル(ジエチルエーテル、
グライム等)、ケトン(アセトン、メチルエチル
ケトン等)メチルベンゼン(メシチレン、デユレ
ン、イソデユレン、ペンタメチルベンゼン、ヘキ
サメチルベンゼン等)が用いられる。特にメチル
ベンゼンが収率を向上させるので好ましい。メチ
ルベンゼンとしては、隣接した芳香核水素を持た
ないものが実質的に非反応性であつて好ましい。
メチルベンゼンの働きは、AlCl3と液状のσ錯体
(ArH2 +AlCl4 -,ArH2 +Al2Cl7 -)を形成する助触
媒と考えられる(インターサイエンス バブリツ
シヤーズ発行「フリーデル−クラフツ アンド
リレーテツド リアクシヨンズ 」パート
5頁、1964年参照)。該錯体はアラルキル化前に
調製できるし、又、反応中に生成させることもで
きる。 上記助触媒は、助触媒/ハロゲン化アルミニウ
ム(モル比)が0.3〜10、好ましくは0.5〜5の範
囲で使用される。また、ハロゲン化アルミニウム
の使用量は特に限定する必要はないが好ましくは
1−アリール−2−ブテンに対しモル比1/100
〜1/2が好ましい。 反応条件 本発明の方法は回分式、半回分式、連続式いず
れでも実施でき、反応温度は0〜60℃、好ましく
は5〜50℃の範囲で行える。又、原料モル比(芳
香族炭化水素/1−アリール−2−ブテン)は3
〜40、好ましくは5〜30であり、これより低いと
日的生成物の逐次反応が進み、収率が低下する。 発明の効果 本発明の方法によりジアリールブタンが収率よ
く得られる。該生成物(ジアリールブタン異性体
混合物)は例えば感圧複写紙用溶剤として、使用
することができる。 実施例 以下、実施例により本発明を説明する。 実施例 1 (溶剤の製造) 撹拌機付の容量2のガラス反応器にベンゼン
10モル(781g)と粉砕した無水塩化アルミニウ
ム0.1モル(13.3g)を入れて撹拌しながら内部
温度を10℃に保つた。ここへ、1−フエニル−2
−ブテン(ベンゼンとブタジエンよりりん酸触媒
存在下に合成。ブタジエン基準の収率67%)0.5
モルとベンゼン2モルの混合液を連続的に4時間
にわたりガラス反応器に滴下して反応させた。混
合液滴下後も、撹拌しながら20分間、温度を10℃
に保つた。その後、撹拌を止め、反応生成物をを
分離回収し、カセイソーダ水溶液で洗浄中和し、
硫酸ソーダ上で乾燥後、減圧蒸留により無色透明
なジフエニルブタン(以下、DPBと云う、沸
点:常圧換算290〜300℃)368ミリモル(77.4g)
を得た。DPBの異性体組成は1,1−体24%、
1,2−体25%、1,3−体51%であつた。ま
た、粘度が4.57cst@40℃、流動点が−47℃以下
であつた。1−フエニル−2−ブテンの転化率は
100%であつた。又、1−フエニル−2−ブテン
基準の収率は73.6%であつた。 実施例 2 触媒として、予め無水塩化アルミニウム0.1モ
ル(13.3g)とメシチレン0.2モル(24.0g)を混
合して錯体化したものを用いた以外は、実施例1
と同様の実験をおこなつた。減圧蒸留により、無
色透明なDPB440ミリモル(92.5g)を得た。こ
のDPBの異性体組成は1,1−体22%、1,2
−体39%、1,3−体39%であつた。1−フエニ
ル−2−ブテンの転化率は99%であつた。 又、1−フエニル−2−ブテン基準の収率は
88.0%であつた。即ち、ブタジエンを出発物質と
考えた場合のDPBの収率は実施例1で49%、実
施例2で59%である。 比較例 1 触媒として濃硫酸1モル(98g)を用いる以外
は、実施例1と同様の実験をおこなつた。スルホ
ン化反応も併発したために、反応後撹拌を止めて
も有機層の濁りが顕著であり、二相分離は困難で
あつた。洗浄中和と乾燥後、減圧蒸留により
DPB201ミリモルを得たが、黄色がかつていた。
このDPBの異性体組成は、1,1−体58%、1,
2−体24%、1,3−体18%であつた。1−フエ
ニル−2−ブテンの転化率は98%であつた。1−
フエニル−2−ブテン基準の収率は40.2%であつ
た。ブタジエンを出発原料とするとDPB収率は
27%、実施例に比べてかなり低い。 比較例 2 撹拌機付のガラス反応器(容積200ml)に96%
硫酸29.65g(290ミリモル)とベンゼン91.9g
(1.17モル)を入れて、5℃でかきまぜた。つぎ
に、温度を5℃に保ちながら、撹拌しながら、常
圧下でブタジエン15.1g(279ミリモル)をガス
として1時間にわたつて吹込んだ。そこへカセイ
ソーダ水溶液を加えて反応を停止し、油層を分離
回収した。蒸留とガスクロマトグラフイーにより
生成物を定量したところ、ブタジエンは殆んど反
応して消費しており、ジフエニルブタンがブタジ
エン当り15モル%生成し、多量のブタジエン・オ
リゴマーが副生していた。 比較例 3 比較例2に用いたガラス反応器に塩化アルミニ
ウム3.63gへ(27ミリモル)とベンゼン91.6g
(1.17モル)を入れ、撹拌しながら50℃に保ち、
ブタジエン8.40g(156ミリモル)をガスとして
常圧下で2時間にわたり吹き込んだ。そこへカセ
イソーダ水溶液を加えて反応を停止し、油層を分
離回収した。分析したところ、ブタジエンは殆ん
ど反応して消費されており、ジフエニルブタンが
ブタジエン当り16モル%生成し、固体及び液体の
ポリマーがそれぞれブタジエン当り7重量%と
107重量%生成していた。 比較例 4 200mlの撹拌機付のガラス製反応器中で、ベン
ゼン88.1g(1.13モル)、AlCl33.37g(25ミリモ
ル)を入れ、5〜7℃でブタジエンガス9.0g
(0.166モル)を2時間にわたり常圧下で吹込ん
だ。生成物を中和洗浄後、分析した結果、ジフエ
ニルブタンはブタジエン基準で7モル%の収率で
あつた。 実施例 3〜6 原科の1−アリール−2−ブテン及び芳香族炭
化水素及び触媒を変えて実施例1と同様の実験を
行つた。 結果を表−1にまとめた。
Compounds such as the formula may also be formed. These compounds include benzene, toluene, ethylbenzene, kyumene, xylene, diethylbenzene, ethyltoluene, cymene, butoidyumene, hemimelithene, tetralin, indane, methylindane, naphthalene, methylnaphthalene, ethylnaphthalene, dimethylnaphthalene, and the like. In view of steric hindrance, it is necessary that two or more hydrogen atoms on the aromatic nucleus are adjacent to each other, and preferably three or more hydrogen atoms are used. Particularly useful are therefore benzene, toluene, ethylbenzene, o-xylene, m-xylene, tetralin,
These include indane, naphthalene, methylnaphthalene, dimethylnaphthalene, etc. Catalyst and cocatalyst The essential catalyst for the present invention is aluminum halide, and AlCl 3 , AlBr 3 , AlI 3 and AlF 3 can be used, but AlCl 3 is preferred. Aluminum halide may be used by itself, but is preferably used in the form of a complex. The complexing agent used for complexation is referred to herein as a cocatalyst. Cocatalysts include organic nitro compounds (nitromethane, nitrobenzene, etc.), esters (methyl acetate, ethyl acetate, ethylene glycol diacetate, etc.), ethers (diethyl ether,
glyme, etc.), ketones (acetone, methyl ethyl ketone, etc.), methylbenzene (mesitylene, duurene, isodeurene, pentamethylbenzene, hexamethylbenzene, etc.). In particular, methylbenzene is preferred since it improves the yield. As methylbenzene, one having no adjacent aromatic nuclear hydrogen is preferred as it is substantially non-reactive.
The function of methylbenzene is considered to be a cocatalyst that forms liquid σ complexes (ArH 2 + AlCl 4 - , ArH 2 + Al 2 Cl 7 - ) with AlCl 3 (Friedel-Crafts and
“Related Reactions” part
5, 1964). The complex can be prepared before the aralkylation or can be formed during the reaction. The cocatalyst is used in a mole ratio of cocatalyst/aluminum halide of 0.3 to 10, preferably 0.5 to 5. The amount of aluminum halide used is not particularly limited, but preferably at a molar ratio of 1/100 to 1-aryl-2-butene.
~1/2 is preferred. Reaction Conditions The method of the present invention can be carried out in a batch, semi-batch or continuous manner, and the reaction temperature is 0 to 60°C, preferably 5 to 50°C. In addition, the raw material molar ratio (aromatic hydrocarbon/1-aryl-2-butene) is 3
-40, preferably 5-30; if it is lower than this, sequential reactions of daily products will proceed and the yield will decrease. Effects of the Invention Diarylbutane can be obtained in good yield by the method of the present invention. The product (diarylbutane isomer mixture) can be used, for example, as a solvent for pressure-sensitive copying paper. Examples Hereinafter, the present invention will be explained by examples. Example 1 (Production of solvent) Benzene was added to a 2-capacity glass reactor equipped with a stirrer.
10 moles (781 g) and 0.1 mole (13.3 g) of ground anhydrous aluminum chloride were added thereto, and the internal temperature was maintained at 10°C while stirring. Here, 1-phenyl-2
-Butene (Synthesized from benzene and butadiene in the presence of a phosphoric acid catalyst. Yield 67% based on butadiene) 0.5
A mixture of 2 moles of benzene and 2 moles of benzene was continuously dropped into a glass reactor for 4 hours to react. After dropping the mixture, keep the temperature at 10℃ for 20 minutes while stirring.
I kept it. After that, stirring was stopped, the reaction product was separated and recovered, and washed and neutralized with aqueous caustic soda solution.
After drying over sodium sulfate, 368 mmol (77.4 g) of colorless and transparent diphenylbutane (hereinafter referred to as DPB, boiling point: 290 to 300°C converted to normal pressure) was obtained by distillation under reduced pressure.
I got it. The isomer composition of DPB is 1,1-isomer 24%,
25% were 1,2-isomers and 51% were 1,3-isomers. Further, the viscosity was 4.57cst@40°C, and the pour point was -47°C or lower. The conversion rate of 1-phenyl-2-butene is
It was 100%. Moreover, the yield based on 1-phenyl-2-butene was 73.6%. Example 2 Example 1 except that a complex obtained by mixing 0.1 mol (13.3 g) of anhydrous aluminum chloride and 0.2 mol (24.0 g) of mesitylene in advance was used as the catalyst.
conducted a similar experiment. By distillation under reduced pressure, 440 mmol (92.5 g) of colorless and transparent DPB was obtained. The isomer composition of this DPB is 1,1-isomer 22%, 1,2-isomer
-39% were 1,3-body and 39% were 1,3-body. The conversion rate of 1-phenyl-2-butene was 99%. Also, the yield based on 1-phenyl-2-butene is
It was 88.0%. That is, when butadiene is considered as a starting material, the yield of DPB is 49% in Example 1 and 59% in Example 2. Comparative Example 1 An experiment similar to Example 1 was conducted except that 1 mol (98 g) of concentrated sulfuric acid was used as a catalyst. Since the sulfonation reaction also occurred, the organic layer remained noticeably cloudy even when stirring was stopped after the reaction, making it difficult to separate the two phases. After washing, neutralization and drying, vacuum distillation
I got 201 mmol of DPB, but it was once yellow.
The isomer composition of this DPB is 58% 1,1-isomer;
24% were 2-body and 18% were 1,3-body. The conversion rate of 1-phenyl-2-butene was 98%. 1-
The yield based on phenyl-2-butene was 40.2%. When butadiene is used as the starting material, the DPB yield is
27%, which is considerably lower than the example. Comparative example 2 96% in a glass reactor (volume 200ml) with a stirrer
29.65 g (290 mmol) of sulfuric acid and 91.9 g of benzene
(1.17 mol) and stirred at 5℃. Next, while maintaining the temperature at 5° C. and stirring, 15.1 g (279 mmol) of butadiene was blown in as a gas under normal pressure over 1 hour. A caustic soda aqueous solution was added thereto to stop the reaction, and the oil layer was separated and collected. When the product was quantified by distillation and gas chromatography, it was found that most of the butadiene had been reacted and consumed, diphenylbutane was produced in an amount of 15 mol % based on butadiene, and a large amount of butadiene oligomer was produced as a by-product. Comparative Example 3 Into the glass reactor used in Comparative Example 2, 3.63 g of aluminum chloride (27 mmol) and 91.6 g of benzene were added.
(1.17 mol) and kept at 50℃ while stirring.
8.40 g (156 mmol) of butadiene was blown in as a gas under normal pressure for 2 hours. A caustic soda aqueous solution was added thereto to stop the reaction, and the oil layer was separated and collected. Analysis revealed that most of the butadiene was reacted and consumed, with 16 mol% of diphenylbutane produced based on butadiene, and solid and liquid polymers of 7% by weight each based on butadiene.
It produced 107% by weight. Comparative Example 4 88.1 g (1.13 mol) of benzene and 3.37 g (25 mmol) of AlCl 3 were placed in a 200 ml glass reactor equipped with a stirrer, and 9.0 g of butadiene gas was added at 5 to 7°C.
(0.166 mol) was bubbled in under normal pressure over a period of 2 hours. After neutralizing and washing the product, analysis revealed that the yield of diphenylbutane was 7 mol % based on butadiene. Examples 3 to 6 Experiments similar to those in Example 1 were conducted by changing the original 1-aryl-2-butene, aromatic hydrocarbon, and catalyst. The results are summarized in Table-1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) 一般式【式】 (R1,R2,R3は水素原子又は低級アルキル基で
R1とR2は結合して環状を有しても良い)で表
わされる1−アリール−2−ブテンと、 (b) 一般式【式】(R1,R2,R3は水素 原子又は低級アルキル基でR1とR2は結合して、
環状を有しても良い)で表わされる芳香族炭化
水素を、ハロゲン化アルミニウムの存在下ある
いはハロゲン化アルミニウム及び特定の助触媒
の存在下に存在下に反応させることを特徴とす
るジアリールブタンの製造方法。
[Claims] 1 (a) General formula [Formula] (R 1 , R 2 , R 3 are hydrogen atoms or lower alkyl groups)
(b) 1 - aryl-2-butene represented by the general formula [formula] (R 1 and R 2 may be combined to form a ring) and R 1 and R 2 are bonded by a lower alkyl group,
Production of diarylbutane, which is characterized by reacting an aromatic hydrocarbon (which may have a cyclic structure) in the presence of aluminum halide or in the presence of aluminum halide and a specific promoter. Method.
JP60210326A 1985-09-25 1985-09-25 Production of diarylbutane Granted JPS6270326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210326A JPS6270326A (en) 1985-09-25 1985-09-25 Production of diarylbutane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210326A JPS6270326A (en) 1985-09-25 1985-09-25 Production of diarylbutane

Publications (2)

Publication Number Publication Date
JPS6270326A JPS6270326A (en) 1987-03-31
JPH0372211B2 true JPH0372211B2 (en) 1991-11-18

Family

ID=16587568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210326A Granted JPS6270326A (en) 1985-09-25 1985-09-25 Production of diarylbutane

Country Status (1)

Country Link
JP (1) JPS6270326A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577399B2 (en) * 1987-09-17 1997-01-29 出光興産株式会社 Method for producing traction drive fluid
JP2797609B2 (en) * 1989-04-25 1998-09-17 住友化学工業株式会社 Method for producing sec-butylbenzene
JP2760643B2 (en) * 1990-08-03 1998-06-04 東燃株式会社 Method for producing diphenylbutane
WO1992009547A1 (en) * 1990-11-26 1992-06-11 Tonen Corporation Process for producing diphenylbutane

Also Published As

Publication number Publication date
JPS6270326A (en) 1987-03-31

Similar Documents

Publication Publication Date Title
Schmerling Catalysts for Hydrocarbon Reactions
US2125968A (en) Manufacture of aromatic alcohols
US2249987A (en) Manufacture of derivatives of aryl substituted mono-olefins
US4203927A (en) Olefin oxidation process
US3732324A (en) Process for producing oil-soluble sulfonate feedstock
JPH0372211B2 (en)
US2553470A (en) Production of alkenyl phenols
CN115141073B (en) Preparation method of aromatic hydrocarbon dimer compound
JPS6136498B2 (en)
US4237331A (en) Olefin oxidation process
US2469823A (en) Alkylation of thiophene
US2771496A (en) Process for the production of secondary alkylaryl hydrocarbons
Pines et al. Hydrogen Transfer. II. Reaction of Diisopropyltoluene and Isopropylcyclohexyltoluene with Methylcyclohexene1
US3387056A (en) Process for preparing straight chain alkyl aromatic compounds using hf and a fluoride catalyst modifier
JP2586647B2 (en) Process for producing dialkylbenzene having a high p-isomer content
US2531280A (en) Alkylation of thiophene compounds
US2410553A (en) Manufacture of alkylated aromatic compounds
US3079448A (en) Alkylating catalysts and alkylation process based thereon
US2453619A (en) 1, 3-diketones
US3275701A (en) Substituted benzenes
US3398206A (en) Production of p-dialkylbenzenes
US2526897A (en) Production of aryl indans
KR960002590B1 (en) Method for producing alkylstyrene
US3760021A (en) Alkylation catalyst
US2397542A (en) Alkylation