JPH0371946B2 - - Google Patents

Info

Publication number
JPH0371946B2
JPH0371946B2 JP59263671A JP26367184A JPH0371946B2 JP H0371946 B2 JPH0371946 B2 JP H0371946B2 JP 59263671 A JP59263671 A JP 59263671A JP 26367184 A JP26367184 A JP 26367184A JP H0371946 B2 JPH0371946 B2 JP H0371946B2
Authority
JP
Japan
Prior art keywords
welding point
welding
image
digital
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59263671A
Other languages
Japanese (ja)
Other versions
JPS61140384A (en
Inventor
Takeshi Katayama
Kyoshi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26367184A priority Critical patent/JPS61140384A/en
Publication of JPS61140384A publication Critical patent/JPS61140384A/en
Publication of JPH0371946B2 publication Critical patent/JPH0371946B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電縫管製造ラインにおける溶接状況の
計測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring welding conditions in an electric resistance welded pipe production line.

(従来の技術) このような電縫鋼管の製造において、高周波電
流を通電するための最適電力は被溶接材の寸法変
動や、成形状態により変化し、この最適電力と実
際の投入電力の間に差が生じると、溶接部品質に
悪影響を及ぼす。従来、自動的に投入電力を制御
する方法として、特開昭57−124585号、特開昭58
−157579号及び特開昭58−9781号のように溶接点
周辺への温度又は温度分布を有力な指標として、
あらかじめ品質が良好になるように定めた設定値
と一致するように投入電力あるいはライン速度を
調節する方法がある。しかし、溶接点周辺の温度
又は温度分布も、被溶接材の寸法変動や成形状態
により、最適値が変化するため、設定値を決定す
ることが難しいという問題があつた。
(Prior art) In manufacturing such electric resistance welded steel pipes, the optimum power for applying high-frequency current changes depending on the dimensional fluctuations of the material to be welded and the forming condition, and there is a difference between this optimum power and the actual input power. Any difference will adversely affect the quality of the weld. Conventionally, as a method for automatically controlling input power, Japanese Patent Application Laid-Open Nos. 57-124585 and 1982
-157579 and JP-A-58-9781, using the temperature or temperature distribution around the welding point as a powerful indicator,
There is a method of adjusting input power or line speed so that it matches a set value determined in advance to improve quality. However, the optimum value of the temperature or temperature distribution around the welding point changes depending on the dimensional fluctuations of the material to be welded and the forming condition, so there has been a problem that it is difficult to determine the set value.

このため、既に本出願人によつて出願されてい
る。
For this reason, an application has already been filed by the applicant.

特開昭59−69260号「電縫鋼管溶接入熱の制御
方法」に示すように両側エツジの衝合形状(以下
V収束角と称す)や衝合点位置(以下溶接点位置
と称す)及び加熱溶融された溶鋼排出量を計測
し、温度又は温度分布の設定値を決定するための
措置としたり、あるいは直接溶接状況を管理する
指標として使用することが溶接品質の維持に必要
である。
As shown in Japanese Patent Application Laid-Open No. 59-69260 "Method for controlling heat input during welding of electric resistance welded steel pipes", the abutment shape of both edges (hereinafter referred to as V convergence angle), the butt point position (hereinafter referred to as welding point position), and heating In order to maintain welding quality, it is necessary to measure the amount of molten steel discharged and use it as a measure to determine the temperature or temperature distribution set value, or as an index to directly manage the welding situation.

従来、これらの計測は適切な計測器がなかつた
ためV収束角や溶接点位置についてはテーピイン
グによりV収束角の形状を写し取り、分度器や、
ものさしを当て計測していたため造管中の計測が
できず、正確な情報を得ることができなかつた。
また溶鋼排出量も直接計測する方法がなく、溶接
後のビード太さにより間接的に推定していたた
め、同様に正確な情報を得ることができなかつ
た。
Conventionally, these measurements did not have appropriate measuring instruments, so the V convergence angle and welding point position were measured by copying the shape of the V convergence angle by taping, using a protractor,
Because measurements were taken using a ruler, it was not possible to take measurements during pipe making, making it impossible to obtain accurate information.
Furthermore, there was no way to directly measure the amount of molten steel discharged, and it was estimated indirectly based on the thickness of the bead after welding, making it similarly impossible to obtain accurate information.

また溶接点周辺の温度は特開昭58−157579号や
特開昭58−9781号のようにリニアアレーを使用し
た温度分布検出器によりシーム部円周方向の温度
分布を計測したり、イメージガイド、ハーフミラ
ー、光学フイルター及び撮像管からなる温度パタ
ーン測定装置により溶接点周辺の温度分布を計測
する方法がある。しかしながらこれらの方法は溶
接点周辺の一部分の温度分布を計測するものであ
り、全面の温度分布計測ができなかつたり、造管
中の計測であるため対象物が移動しており、局所
的な温度変化箇所があつた場合、この部分が計測
中に視野内を移動するため平滑化されてしまい検
出することが困難という問題があり、溶接状況を
監視する上で十分な情報が得られなかつた。
In addition, the temperature around the welding point can be measured by measuring the temperature distribution in the circumferential direction of the seam using a temperature distribution detector using a linear array, as in JP-A-58-157579 and JP-A-58-9781, or by using an image guide. There is a method of measuring the temperature distribution around the welding point using a temperature pattern measuring device consisting of a half mirror, an optical filter, and an image pickup tube. However, these methods only measure the temperature distribution in a part of the area around the welding point, and it is not possible to measure the temperature distribution over the entire surface, or because the measurement is performed during pipe making, the object is moving, and the local temperature may be affected. If there is a change, this part moves within the field of view during measurement and is smoothed out, making it difficult to detect, making it difficult to obtain sufficient information to monitor the welding situation.

(発明が解決しようとする問題点) 本発明は電縫管製造ラインにおける溶接状況を
管理する上で重要な情報である溶鋼排出量又は溶
接点位置又はV収束角度を計測する溶接状況計測
方法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a welding condition measuring method for measuring the amount of molten steel discharged, the welding point position, or the V convergence angle, which are important information for managing the welding condition in an ERW pipe manufacturing line. This is what we provide.

(問題点を解決するための手段、作用) 本発明の特徴は電縫管の製造ラインにおいて、
溶接点上方に高速シヤツターを備えたビデオカメ
ラを設置して溶接点周辺の静止画像を撮影し、該
ビデオカメラから得られる映像信号をデジタル信
号に変換して電子計算機システムのメモリにデジ
タル画像として取込み、該デイジタル画像を2値
化演算処理して得られる2値画像より溶鋼排出量
又は溶接点位置又はV収束角度を計測する方法で
ある。
(Means and actions for solving the problems) The feature of the present invention is that in the production line of electric resistance welded pipes,
A video camera equipped with a high-speed shutter is installed above the welding point to take still images around the welding point, and the video signal obtained from the video camera is converted into a digital signal and imported into the memory of the computer system as a digital image. This is a method of measuring the amount of molten steel discharged, the position of the welding point, or the V convergence angle from a binary image obtained by performing a binary calculation process on the digital image.

すなわち本発明ではデジタル画像を一定レベル
で2値化演算処理することにより、ある一定輝度
より高い部分と低い部分に弁別することができ、
輝度が高い部分の面積を求めることにより、溶接
点周辺の溶鋼排出量を求めることができるととも
に2値画像の形状よりV収束角と溶接点の計測を
可能にしたものである。
In other words, in the present invention, by performing binarization calculation processing on a digital image at a certain level, it is possible to distinguish parts with higher and lower luminance than a certain certain level,
By determining the area of the portion with high brightness, it is possible to determine the amount of molten steel discharged around the welding point, and it is also possible to measure the V convergence angle and the welding point from the shape of the binary image.

以下、本発明詳細を実施態様を示す図面に基づ
いて詳細に説明する。
Hereinafter, the present invention will be explained in detail based on drawings showing embodiments.

第1図は高速シヤツターと光学フイルターを備
えたビデオカメラ(以下単に高速シヤツターカメ
ラと称す)1と電子計算機システム2からなる溶
接点監視装置の構成を示すもので高速シヤツター
カメラ1は図示していない架台により溶接点Pの
上方に取付けられている。
Figure 1 shows the configuration of a welding point monitoring device consisting of a video camera (hereinafter simply referred to as high-speed shutter camera) 1 equipped with a high-speed shutter and an optical filter and a computer system 2. The high-speed shutter camera 1 is not shown in the figure. It is attached above the welding point P by a stand that is not attached to the welding point P.

3はCCDなどの固体撮像素子であり、4は特
定の波長域の光を透過する光学フイルターで、5
は固体撮像素子3に実像を結像するためのレン
ズ、6は高速シヤツターである。
3 is a solid-state image sensor such as a CCD, 4 is an optical filter that transmits light in a specific wavelength range, and 5 is an optical filter that transmits light in a specific wavelength range.
6 is a lens for forming a real image on the solid-state image sensor 3, and 6 is a high-speed shutter.

高速シヤツター6はメカニカルなシヤツターあ
るいは光の偏光を電気的にコントロールして開閉
する電子シヤツターでも良いが、シヤツター速度
が高速でまた開閉回数が多くなること及び制御性
が良いことから、ここでは電子シヤツターを使用
した例を示す。
The high-speed shutter 6 may be a mechanical shutter or an electronic shutter that opens and closes by electrically controlling the polarization of light, but an electronic shutter is used here because the shutter speed is high, the shutter can be opened and closed many times, and it has good controllability. Here is an example using.

また高速シヤツター6のシヤツター速度は対象
物の移動速度つまり造管速度を考慮して決定する
必要があり、一般の造管速度(45m/分以下程
度)なら1/2000秒以下のシヤツター速度にする。
こうすることにより、高速シヤツター6が開いた
瞬間、固体、撮像素子3の面上に第2図に示すよ
うな溶接点周辺の実像が投影される。このため固
体撮像素子3の各素子には投影した光の強さに対
応した電荷が蓄積されるので逐時各素子を走査す
ることにより、映像信号を得ることができる。こ
の時、高速シヤツターの開閉タイミングと走査の
関係は、第3図に示すように高速シヤツターが1/
2000秒以下の短い間、開いたあと、一枚の画像を
構成する映像信号が得られるようにする。例え
ば、一枚の画像が256本の走査線で構成される場
合は、シヤツターが開いたあと256種の映像信号
が得られる。こうして得られた1つ1つの映像信
号を第3図cに拡大して示しているように例えば
256分割する周期で、サンプリング計測し、逐時
デジタル信号に変換する。こうすることにより、
固体撮像素子3の面上に投影された静止画像は、
横方向256、縦方向256の画素に分割され、各1つ
1つの画素はデジタル信号に変換する場合の分解
能によつて複数の階調に分解される。例えばデジ
タル信号に変換するとき各素子の信号レベルを
256分割したとすると固体撮像素子3の面上に投
影された静止画像の濃度レベルつまり明かるいレ
ベル(白レベル)から暗いレベル(黒レベル)の
間が256の階調に分割されることになる。このよ
うにして得られたデジタル信号を電子計算機シス
テム内のメモリにデジタル画像データーとして記
憶する。
In addition, the shutter speed of the high-speed shutter 6 must be determined by taking into account the moving speed of the object, that is, the pipe-making speed; if the general pipe-making speed is about 45 m/min or less, the shutter speed should be 1/2000 seconds or less. .
By doing this, the moment the high-speed shutter 6 opens, a real image around the welding point as shown in FIG. 2 is projected onto the surface of the solid-state image sensor 3. Therefore, charges corresponding to the intensity of the projected light are accumulated in each element of the solid-state image sensing device 3, so that a video signal can be obtained by scanning each element one after another. At this time, the relationship between the opening/closing timing of the high-speed shutter and scanning is as shown in Figure 3.
After being opened for a short period of 2000 seconds or less, a video signal constituting one image can be obtained. For example, if one image consists of 256 scanning lines, 256 types of video signals will be obtained after the shutter is opened. For example, each video signal obtained in this way is shown enlarged in Fig. 3c.
Sampling is performed at a frequency divided by 256 and converted into a digital signal one by one. By doing this,
The still image projected onto the surface of the solid-state image sensor 3 is
It is divided into 256 pixels in the horizontal direction and 256 pixels in the vertical direction, and each pixel is decomposed into a plurality of gradations depending on the resolution when converting to a digital signal. For example, when converting to a digital signal, the signal level of each element is
If it is divided into 256, the density level of the still image projected on the surface of the solid-state image sensor 3, that is, between the bright level (white level) and the dark level (black level), will be divided into 256 gradations. . The digital signal thus obtained is stored in a memory within the computer system as digital image data.

電子計算機システム2内のメモリに記憶された
デジタル画像データーは高速シヤツターカメラ1
の映像信号をデジタル信号に変換して取り込んだ
ものであるためデジタル画像の濃度レベルは高速
シヤツターカメラ1の光学フイルター4を透過し
た特定波長域の光の強度に対応している。またこ
の光の強度は被写体である溶接点周辺の高温部か
ら放射される放射エネルギーの強さと対応してい
るため、光学フイルターの透過波長を選択するこ
とにより、温度情報として取り扱うことができ、
溶接点周辺の温度分布を計測することができる。
The digital image data stored in the memory in the computer system 2 is sent to the high-speed shutter camera 1.
Since the image signal is converted into a digital signal and captured, the density level of the digital image corresponds to the intensity of light in a specific wavelength range that has passed through the optical filter 4 of the high-speed shutter camera 1. In addition, the intensity of this light corresponds to the intensity of radiant energy emitted from the high temperature area around the welding point, which is the subject, so by selecting the transmission wavelength of the optical filter, it can be treated as temperature information.
Temperature distribution around the welding point can be measured.

なお、固体撮像素子3の各々の素子に感度バラ
ツキがある場合は、正確な温度分布計測が困難で
ある。この場合は、温度分布が均一な黒体炉内を
高速シヤツタカメラ1の視野いつぱいに撮影し、
この画像を電子計算機システム2にデジタル画像
として取り込み、電子計算機システム2内で次の
演算を実施することにより、補正係数を求める。
Note that if each element of the solid-state image sensor 3 has sensitivity variations, it is difficult to accurately measure the temperature distribution. In this case, the inside of the blackbody reactor, where the temperature distribution is uniform, is photographed to the full field of view of the high-speed shutter camera 1.
This image is imported into the computer system 2 as a digital image, and the following calculation is performed within the computer system 2 to obtain a correction coefficient.

第4図に示すように電子計算機システム内のメ
モリにデジタル画像はX方向が256、Y方向が256
の画素に分割された配列にデーターとして記憶さ
れている(但しメモリ−上で構成されている256
×256画素のデジタル画像データは元の画像と同
じ位置関係でハードウエアー上にあるわけではな
い)ためX方向の画素を(1,1),(2,1),
(3,1),……(256、1)としY方向の画素を
(1,1),(1,2),(1,3),……(1,256

という(X、Y)座標に対応させて表わすことと
し、各画素内のデーターをDO(X、Y)と表わす
とすると〔1〕式により、黒体炉内から放射され
る、特定波長域の放射エネルギーを固体撮像素子
3が検出した信号の平均値を求めることができ
る。
As shown in Figure 4, the memory in the computer system has 256 digital images in the X direction and 256 pixels in the Y direction.
It is stored as data in an array divided into 256 pixels (however, 256
×256 pixel digital image data is not located on the hardware in the same positional relationship as the original image), so the pixels in the X direction are (1, 1), (2, 1),
(3, 1), ... (256, 1) and the pixels in the Y direction are (1, 1), (1, 2), (1, 3), ... (1, 256
)
If the data in each pixel is expressed as D O (X, Y), then by equation [1], the specific wavelength range emitted from inside the blackbody reactor can be expressed as The average value of the signals detected by the solid-state image pickup device 3 can be determined.

=DO(1,1)+DO(1,2)+DO(1,3)+…
…DO(256,256)/256×256……〔1〕 そして各画素のデーターDO(1,1),DO(1,
2),DO(1,3),……DO(256,256)と平均値
Xの比率を各画素について〔2〕式により求め、
各画素の補正係数K(X,Y)とする。
=D O (1,1)+D O (1,2)+D O (1,3)+…
...D O (256, 256) / 256 × 256 ... [1] And the data of each pixel D O (1, 1), D O (1,
2), D O (1, 3), ... Find the ratio of D O (256, 256) and the average value X for each pixel using formula [2],
Let the correction coefficient K(X, Y) be for each pixel.

K(X,Y)=X/DO(X,Y) ……〔2〕 このようにして求めた補正係数K(X,Y)を
測定対象物を撮影して得られた各画素のデーター
Di(1,1),Di(1,2),Di(1,2),Di(1,
3),……Di(256,256)にそれぞれ掛け合わせる
ことにより固体撮像素子3の感度バラツキを補正
することができる。
K (X, Y) = X / D O (X, Y) ... [2] The correction coefficient K (X, Y) obtained in this way is used as data for each pixel obtained by photographing the measurement object.
D i (1,1), D i (1,2), D i (1,2), D i (1,
3), . . . By multiplying D i (256, 256), sensitivity variations in the solid-state image sensor 3 can be corrected.

こうして得られたデーターに放射率補正を行な
い温度指示値に換算することにより高速シヤツタ
ーカメラ1で撮影した画像の各々の画素で温度指
示値が求まる。
By performing emissivity correction on the data thus obtained and converting it into a temperature instruction value, a temperature instruction value can be determined for each pixel of the image photographed by the high-speed shutter camera 1.

温度指示値に変換されたデジタル画像をアナロ
グ信号に変換し、第1図のモニター7に表示する
ことにより白黒画像として温度分布を観察するこ
とができる。
The temperature distribution can be observed as a black and white image by converting the digital image converted into the temperature indication value into an analog signal and displaying it on the monitor 7 in FIG.

また温度指示値に変換されたデジタル画像を任
意の温度T℃に相当するレベルで2値化演算処理
しモニター7に表示することにより、T℃以上の
温度を有する部分のみを表示することができ、さ
らに複数のレベルで弁別し、各温度範囲に所定の
色を割り付け、カラーモニターに凝似カラー表示
することにより、温度分布をわかりやすく表示す
ることもできる。
In addition, by processing the digital image converted into a temperature indication value into a binary value at a level corresponding to an arbitrary temperature T°C and displaying it on the monitor 7, it is possible to display only the portion with a temperature higher than T°C. Furthermore, by discriminating at multiple levels, assigning a predetermined color to each temperature range, and displaying the same color on a color monitor, the temperature distribution can be displayed in an easy-to-understand manner.

次に溶接点周辺の溶鋼排出量は高速シヤツター
カメラ1の映像信号をデイジタル信号に変換して
取込んだデイジタル画像を任意のレベルで2値化
演算処理することにより、第5図に示すように濃
度レベルが「0」の部分と濃度レベルが「255」
の部分に分割でき溶鋼の部分Sのみを抽出できる
ため、この部分が画像内にしめる面積比率を求
め、実寸法に換算することにより、溶鋼排出量を
求めることができる。
Next, the amount of molten steel discharged around the welding point is determined by converting the video signal of the high-speed shutter camera 1 into a digital signal and performing binarization processing on the captured digital image at an arbitrary level, as shown in Figure 5. The part where the density level is "0" and the part where the density level is "255"
Since only the molten steel part S can be extracted, the amount of molten steel discharged can be found by finding the area ratio that this part fits into the image and converting it to the actual size.

なお、2値化演算処理の2値化レベルは溶鋼排
出部分の輝度が高いために、例えばデイジタル画
像の各画素の濃度をヒストグラム化し、ヒストグ
ラムの谷の部分の濃度で2値化するモード法等を
適用することによつて容易に2値化処理を行なう
ことができる。
In addition, since the brightness of the molten steel discharge area is high, the binarization level of the binarization calculation process is such as a mode method in which the density of each pixel of the digital image is converted into a histogram and the density of the valley part of the histogram is binarized. Binarization processing can be easily performed by applying .

また高速シヤツターカメラ1の視野内の一部分
の溶鋼排出量を求めたい場合はデジタル画像の不
要部分をマスキング処理することにより可能であ
る。
Furthermore, if it is desired to determine the amount of molten steel discharged from a portion within the field of view of the high-speed shutter camera 1, this is possible by masking unnecessary portions of the digital image.

次に第5図に示す溶接点周辺のデジタル画像を
2値化演算処理した2値画像データより溶接点位
置とV収束角度を求める方法について説明する。
Next, a method for determining the welding point position and V convergence angle from binary image data obtained by performing a binary calculation process on a digital image around the welding point shown in FIG. 5 will be described.

第5図の2値画像データでY方向の各座標に対
しX方向の座標を順次みてゆき濃度レベルが1よ
り大きい画素のX座標をリストアツプし、この内
座標が抜けているところをひとくぎりとしてカウ
ントする。これを各Y座標について実施しカウン
ト数が2から1に変るY座標を求める。つまり第
5図中aの位置のY座標yaに対するX方向の濃度
レベル変化はすべて0レベルなので第6図イに示
すようになりカウント値は0である。次に第5図
中bの位置Y座標ybに対してはX方向の濃度レベ
ル変化は255レベルのところが2ケ所あるため第
6図ロのようになり、カウント値は2である。そ
して溶接点が存在するY座標yc以降つまりc以降
では第6図ハのようになりカウント値が1にな
る。このためカウント値が2から1に変るY座標
ycを求めることにより、溶接点位置を検出するこ
とができる。
In the binary image data in Figure 5, sequentially look at the coordinates in the X direction for each coordinate in the Y direction, list up the X coordinates of pixels whose density level is greater than 1, and select the missing coordinates. be counted as This is performed for each Y coordinate to find the Y coordinate where the count changes from 2 to 1. In other words, the density level change in the X direction with respect to the Y coordinate y a at the position a in FIG. 5 is all 0 level, so the count value is 0 as shown in FIG. 6A. Next, for the position Y coordinate y b of b in FIG. 5, the density level change in the X direction is as shown in FIG. 6 b because there are two 255 level changes, and the count value is 2. Then, after the Y coordinate yc where the welding point exists, that is, after c, the count value becomes 1 as shown in FIG. 6C. Therefore, the Y coordinate where the count value changes from 2 to 1
By determining yc , the welding point position can be detected.

またY収束角度は2値画素データーと前述の説
明で求められた溶接点位置より演算により求める
ことができる。つまり2値画像データーで溶接点
位置を求めたときに行なつた処理のうち、Y方向
の各座標に対しX方向の座標を順次みてゆき濃度
レベルが1より大きい画素のX座標をリストアツ
プし、この内座標が抜けているところをひとくぎ
りとしてカウントする方法で、カウント値が2で
あつたY座標の内、任意の座標、例えばybでX方
向の画素の濃度レベルが0と255に分かれる境界
4ケ所、すなわち第5図のP1,P2,P3,P4を求
める。これらは第6図ロのP1′,P2′,P3′,P4′に
対応する。このうち、X座標が最小のもの(第5
図ではP1,第6図ではP1′)とX座標が最大もの
も(第5図ではP4、第6図ではP4′)を除いた残
りの2点(第5図ではP2とP3,第6図ではP2′と
P3′)のXY座標をそれぞれ(xo,yb)と(xn
yb)とすることにより、溶接点直前の丸型形状に
成形されたストリヅプの両側エツジ位置を求める
ことができ、先に求めた溶接点位置のY座標
(yc)とともに〔3〕式を使つてV収束角を求め
ることができる。
Further, the Y convergence angle can be determined by calculation from the binary pixel data and the welding point position determined in the above explanation. In other words, among the processes performed when determining the welding point position using binary image data, the X-direction coordinates are sequentially looked at for each Y-direction coordinate, and the X-coordinates of pixels whose density level is greater than 1 are restored. , by counting the missing inner coordinates as one set, the density level of the pixel in the X direction becomes 0 and 255 at any coordinate, for example y b , among the Y coordinates where the count value was 2. Find the four dividing boundaries, ie, P 1 , P 2 , P 3 , and P 4 in Figure 5. These correspond to P 1 ′, P 2 ′, P 3 ′, and P 4 ′ in FIG. 6B. Among these, the one with the smallest X coordinate (the fifth
P 1 in the figure, P 1 ' in Figure 6) and the remaining two points (P 2 in Figure 5) excluding the one with the maximum X coordinate (P 4 in Figure 5, P 4 ' in Figure 6 ) and P 3 , and in Figure 6, P 2 ′ and
Let the XY coordinates of P 3 ′) be (x o , y b ) and (x n ,
y b ), the positions of both edges of the round shaped strip immediately before the welding point can be found, and formula [3] can be calculated using the Y coordinate (y c ) of the welding point position obtained previously. can be used to find the V convergence angle.

θ=2×tan-1(xn−xn)/2/yc−yb ……〔3〕 このような2値化演算処理、面積演算処理、溶
接点位置演算処理、角度演算処理を電子計算機シ
ステムで実行することにより、溶鋼排出量計測、
溶接点位置計測及びV収束角計測を実現できる。
θ=2×tan -1 (x n - x n )/2/y c - y b ... [3] Such binarization calculation processing, area calculation processing, welding point position calculation processing, and angle calculation processing are Measures the amount of molten steel discharged by running it on an electronic computer system,
It is possible to measure the welding point position and V convergence angle.

また温度変換処理を合わせて実行することによ
り、溶接点周辺の温度分布も同時に計測すること
ができる。
Furthermore, by performing temperature conversion processing at the same time, the temperature distribution around the welding point can also be measured at the same time.

(発明の効果) 本発明により電縫溶接時の溶接状況を管理する
上で、重要な指標である、溶鋼排出量、溶接点位
置及びV収束角の同時計測を実現し溶接品質の向
上に寄与するとともに溶接のための入熱制御用の
検出端として使用することにより、入熱の自動制
御化を実現できる有益な効果を示すものである。
(Effect of the invention) The present invention realizes simultaneous measurement of molten steel discharge amount, welding point position, and V convergence angle, which are important indicators in managing the welding situation during electric resistance welding, contributing to improvement of welding quality. In addition, by using it as a detection end for heat input control for welding, it shows the beneficial effect of realizing automatic control of heat input.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置例を示す
図、第2図は固体撮像素子の面上に投影された溶
接点周辺の実像を示す図、第3図a,b,cは高
速シヤツターの開閉タイミングと走査の関係を示
す図、第4図は電子計算機システムに取り込まれ
たデジタル画像の配列を示す図、第5図は電子計
算機システムにおいて2値化されたデジタル画像
を示す図、第6図イ,ロ,ハは第5図のデジタル
画像を走査したときの信号波形を示す図である。 1:ビデオカメラ、2:電子計算機システム、
3:固体撮像素子、6:高速シヤツター。
Fig. 1 is a diagram showing an example of a device for carrying out the present invention, Fig. 2 is a diagram showing a real image around the welding point projected onto the surface of a solid-state image sensor, and Fig. 3 a, b, and c are high-speed images. A diagram showing the relationship between shutter opening/closing timing and scanning, FIG. 4 is a diagram showing the arrangement of digital images taken into the computer system, and FIG. 5 is a diagram showing the digital images binarized in the computer system. 6A, 6B, and 6C are diagrams showing signal waveforms when the digital image of FIG. 5 is scanned. 1: Video camera, 2: Electronic computer system,
3: Solid-state image sensor, 6: High-speed shutter.

Claims (1)

【特許請求の範囲】[Claims] 1 電縫管の製造ラインにおいて、溶接点上方に
高速シヤツター機能を備えた2次元イメージセン
サカメラを設置して、溶接点周辺の静止画像を撮
影し、該2次元イメージセンサカメラから得られ
る映像信号をデジタル信号に変換して、電子計算
機システムのメモリにデジタル画像として取り込
み、該デジタル画像を2値化演算処理して得られ
る2値画像より溶鋼排出量又は溶接点位置又はV
収束角度を計測することを特徴とする電縫溶接に
おける溶接状況計測方法。
1. On the production line for electric resistance welded pipes, a two-dimensional image sensor camera with a high-speed shutter function is installed above the welding point to take still images around the welding point, and the video signal obtained from the two-dimensional image sensor camera is is converted into a digital signal, imported into the memory of a computer system as a digital image, and the digital image is binarized and arithmetic processed to determine the amount of molten steel discharged, the welding point position, or
A method for measuring welding conditions in electric resistance welding, characterized by measuring a convergence angle.
JP26367184A 1984-12-13 1984-12-13 Welding state measuring method in electric seam welding Granted JPS61140384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26367184A JPS61140384A (en) 1984-12-13 1984-12-13 Welding state measuring method in electric seam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26367184A JPS61140384A (en) 1984-12-13 1984-12-13 Welding state measuring method in electric seam welding

Publications (2)

Publication Number Publication Date
JPS61140384A JPS61140384A (en) 1986-06-27
JPH0371946B2 true JPH0371946B2 (en) 1991-11-15

Family

ID=17392723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26367184A Granted JPS61140384A (en) 1984-12-13 1984-12-13 Welding state measuring method in electric seam welding

Country Status (1)

Country Link
JP (1) JPS61140384A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504056B2 (en) * 1987-05-30 1996-06-05 株式会社明電舎 Heat input control method and device for ERW pipe welding
US7380697B2 (en) * 2001-02-14 2008-06-03 Honda Giken Kogyo Kabushiki Kaisha Welding condition monitoring device
JP4532977B2 (en) * 2004-05-06 2010-08-25 新日本製鐵株式会社 Welding method for ERW steel pipe with excellent welding quality
JP5549963B2 (en) * 2011-11-09 2014-07-16 新日鐵住金株式会社 Monitoring device, method, program, and storage medium for electric seam welding operation
WO2015069753A1 (en) 2013-11-08 2015-05-14 Thermatool Corp. Heat energy sensing and analysis for welding processes
JP6028765B2 (en) * 2014-05-19 2016-11-16 Jfeスチール株式会社 ERW welding monitoring method and monitoring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124585A (en) * 1981-01-27 1982-08-03 Kawasaki Steel Corp Monitoring method for temperature distribution of weld zone
JPS57137082A (en) * 1981-02-20 1982-08-24 Nippon Kokan Kk <Nkk> Measuring method for cross-sectional shape of weld zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124585A (en) * 1981-01-27 1982-08-03 Kawasaki Steel Corp Monitoring method for temperature distribution of weld zone
JPS57137082A (en) * 1981-02-20 1982-08-24 Nippon Kokan Kk <Nkk> Measuring method for cross-sectional shape of weld zone

Also Published As

Publication number Publication date
JPS61140384A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
US4365307A (en) Temperature pattern measuring device
KR100685206B1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
EP0599297B1 (en) Method of detecting impurities in molten resin
JPS63298101A (en) Non-contact determination method and apparatus for position of linear feature of article
JPH0371946B2 (en)
JPH09267186A (en) Seam copying method in laser welded tube manufacturing method
JPS6114508A (en) Shape measuring instrument
JP2593016B2 (en) Method for measuring alloying degree of hot-dip galvanized steel strip
JPS6117366A (en) Method and device for automatic welding
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP3067285B2 (en) Fire detection device using image processing
JPH01307645A (en) Inspecting method for sample
JPH0711414B2 (en) Glass bottle uneven thickness inspection method
JP3385761B2 (en) Inspection device for picture tube inner surface
JPH0694660A (en) Method and device for surface defect inspection
JPH05164703A (en) Inspecting method for surface of workpiece
JPH06213624A (en) Labeled line position measurement method for belt-like member
JP3580137B2 (en) Method and apparatus for measuring crystal grain size
JP2683248B2 (en) Inspection method of colored periodic pattern
JPH05123874A (en) Welding point detecting method for resistance seam welding
JPH0551944B2 (en)
KR20240067222A (en) Device for measuring irregularities in sheet-shaped objects, method for measuring irregularities in sheet-shaped objects
JP2000180130A (en) Glass tube drawing device with tube diameter measuring instrument, and tube diameter measuring method for glass tube
JPH01313742A (en) Method for inspecting periodic pattern
JPS6365348A (en) Method and instrument for measuring fusion characteristic of inorganic body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees