JPH0371594A - Manufacture of fluorescent thin film - Google Patents

Manufacture of fluorescent thin film

Info

Publication number
JPH0371594A
JPH0371594A JP1207531A JP20753189A JPH0371594A JP H0371594 A JPH0371594 A JP H0371594A JP 1207531 A JP1207531 A JP 1207531A JP 20753189 A JP20753189 A JP 20753189A JP H0371594 A JPH0371594 A JP H0371594A
Authority
JP
Japan
Prior art keywords
thin film
reducing atmosphere
film
transparent electrode
oxide transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1207531A
Other languages
Japanese (ja)
Inventor
Yoshiki Nakabachi
中鉢 善樹
Kiyoaki Kojima
清明 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP1207531A priority Critical patent/JPH0371594A/en
Publication of JPH0371594A publication Critical patent/JPH0371594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To prevent an oxide transparent electrode from being reduced by a method wherein after a thin film is formed, an oxide transparent electrode portion is coated by a protective film which has conductivity and is not affected by reducing atmosphere and is subjected to heat treatment in reducing atmosphere. CONSTITUTION:Prior to formation of a first insulation film 3, a portion where an oxide transparent electrode 2 is likely to be exposed is coated by a protective film 7 having conductivity like a metallic film such as Al and using a material free from influence of reducing atmosphere, and after the insulation film 3 and a fluorescent layer 4 are formed, annealing is performed in reducing atmosphere such as hydrogen. Thus the electrode 2 is not exposed to reducing gas so that the fluorescent layer 4 can be annealed in reducing atmosphere without the electrode 2 reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蛍光体薄膜製造方法に係るもので。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a phosphor thin film.

特にEL素子の蛍光体薄膜製造方法の改良に関するもの
である。
In particular, the present invention relates to improvements in methods for manufacturing phosphor thin films for EL devices.

[発明の概要] 本発明は、アルカリ土類硫化物蛍光体薄膜の製造におい
て、薄膜を還元性雰囲気中にて熱処理しても、酸化物透
明電極が還元を受けないようにしたものである。
[Summary of the Invention] According to the present invention, in the production of an alkaline earth sulfide phosphor thin film, an oxide transparent electrode is prevented from being reduced even if the thin film is heat-treated in a reducing atmosphere.

[従来の技術] 近時、ILa−VIb族化合物、特にアルカリ土類金属
の硫化物であるSrS、CaSを蛍光膜として用いる薄
膜EL素子が、フルカラー薄WAELパネルを実現しう
る重要な材料として注目されている。
[Prior Art] Recently, thin-film EL devices using ILa-VIb group compounds, especially SrS and CaS, which are alkaline earth metal sulfides, as fluorescent films have attracted attention as important materials that can realize full-color thin WAEL panels. has been done.

ことに、従来のZnS 系蛍光膜では実現できなかった
高輝度の青色ELが実現できる可能性があるため、近年
、盛んに検討されつつある。ここで、フルカラー化に必
要な三原色(赤、緑、青)のそれぞれの現在の技術水準
をZnS 系材料および硫化アルカリ土類金属材料につ
いて、以下に述べる61)緑色EL ZnS : TbF、は色純度に優れ、かつ高輝度のも
のが得られており、すでに実用レベルに達している。特
にスパッター法で作成したものは高輝度のものが得られ
ており、約137Cd/ff1(60胞)程度である。
In particular, it has been actively studied in recent years because it has the potential to realize high-brightness blue EL, which was not possible with conventional ZnS-based fluorescent films. Here, the current technological level of each of the three primary colors (red, green, and blue) necessary for full color production is described below for ZnS-based materials and alkaline earth metal sulfide materials.61) Green EL ZnS: TbF, color purity It has excellent brightness and high brightness, and has already reached a practical level. In particular, those produced by the sputtering method have high brightness, about 137 Cd/ff1 (60 cells).

2)赤色EL ZnS:Sm系では、SlをS m F z HS m
l CQ z wSmPの形で導入する方法がそれぞれ
試みられており、SmCQ、のものが最も色純度が優れ
ている。
2) In the red EL ZnS:Sm system, change Sl to S m F z HS m
Various methods have been tried to introduce it in the form of l CQ z wSmP, and SmCQ has the best color purity.

輝度は約12Cd/耐(601(z)程度で、 これは
実用レベルに達するには最低で2倍、望ましくは4倍程
度の向上が更に必要な値である。
The luminance is about 12 Cd/distance (601(z)), which is a value that needs to be further improved by at least two times, preferably about four times, to reach a practical level.

CaS:Eu系も色純度は優れている。輝度はEB蒸着
法で作成したもので、約10Cd/m(60Hz)、ス
パッター法のものは実用レベルの最低線にごく近づいて
いる。
The CaS:Eu system also has excellent color purity. The brightness was approximately 10 Cd/m (60 Hz) for those created using the EB evaporation method, and the brightness for those created using the sputtering method was very close to the lowest practical level.

3)青色EL ZnSHTm系のものは占くから検討されているが5色
純度はよいものの、輝度は0.14Cd/m(60Hz
)と実用にはほど遠い。
3) Blue EL ZnSHTm type is being considered for fortune-telling, but although the five-color purity is good, the luminance is 0.14Cd/m (60Hz
) and is far from practical.

SrS HCe系は色純度に問題があるものの(青緑色
)、輝度については、約40 Cd/ボ(60H7)が
実現されており、実用レベルを越えている。ただ、TV
映像のような応用には、色フィルターを通すことが必要
で、輝度は約10分の1に低下する(約4Cd/ボ、6
0亀)a したがって、この場合には、実用レベルに達
するには、少なくとも2倍、望ましくは5倍程度の輝度
の向上が必要となる。しかし、もしも、この輝度向上が
実現できれば、一つの蛍光膜で青と緑の2原色を出せる
可能性がある。
Although the SrS HCe system has a problem with color purity (blue-green color), a luminance of approximately 40 Cd/bo (60H7) has been achieved, which exceeds the practical level. However, TV
For applications such as video, it is necessary to pass through a color filter, which reduces the brightness by about a tenth (approximately 4 Cd/vo, 6
Therefore, in this case, in order to reach a practical level, it is necessary to improve the brightness by at least two times, preferably about five times. However, if this improvement in brightness could be achieved, it would be possible to produce two primary colors, blue and green, with a single fluorescent film.

したがって、赤色および青色ELについては、Ha −
VI b族化合物の蛍光体を中心に一般の輝度向」二が
必要である。更に、これらのIIa−VIh族化合物蛍
光体の問題点である輝度の不安定性や劣化の問題に関す
る有効な解決策を見出す努力も同時に並行して進める必
要がある。
Therefore, for red and blue ELs, Ha −
A general brightness direction is required mainly for phosphors of group VIb compounds. Furthermore, it is necessary to simultaneously proceed with efforts to find an effective solution to the problems of luminance instability and deterioration that are problems of these IIa-VIh group compound phosphors.

[発明が解決しようとする課題] 青色発光材料の最も有力な候補となっている上記SrS
は、 かなり酸化され易い。乾燥雰囲気中においても、
水分または二酸化炭素の作用により分解すると云われて
いる。
[Problem to be solved by the invention] The above-mentioned SrS is the most promising candidate for a blue light emitting material.
is quite easily oxidized. Even in a dry atmosphere,
It is said to be decomposed by the action of moisture or carbon dioxide.

このように、一般にアルカリ土類硫化物を使用した蛍光
膜は、大気中にて極めて不安定である。
As described above, fluorescent films using alkaline earth sulfides are generally extremely unstable in the atmosphere.

特に蒸着に用いる前記SrS のペレソトそのものが、
SrS  が酸化されてできた5rSO,をかなり大量
に混入している可能性があるため、このペレッ1−を使
用して薄膜を作成すると、SrSO4の配向膜、もしく
は、これの混入した膜が得られ、EL素子としての特性
を大幅に劣化させる原因となる。
In particular, the SrS material itself used for vapor deposition is
There is a possibility that a large amount of 5rSO, which is formed by oxidation of SrS, is mixed in, so if a thin film is made using this pellet, an oriented film of SrSO4 or a film mixed with this may be obtained. This causes a significant deterioration of the characteristics of the EL element.

これより、5rSO,の混入の少ないS r S 薄膜
を作成することが、EL特性を向上させるうえで極めて
重要である。この問題について、本発明者は、 EL特
性を劣化させる原因となっている5rSO,の如き酸化
物の混入をできるだけ低減させる方法として、成膜後の
薄膜を還元性雰囲気中にて熱処理を施す蛍光体薄膜製造
方法を提案した。
From this, it is extremely important to create a S r S thin film with less 5rSO, in order to improve the EL characteristics. Regarding this problem, the present inventor proposed a method for reducing as much as possible the contamination of oxides such as 5rSO, which cause deterioration of EL characteristics, by heat-treating the thin film after it has been formed in a reducing atmosphere. A method for producing body thin film was proposed.

しかしながら、通常、EL素子起して使用する透明電極
はITO(酸化インジウム!!l)のように、酸化物で
ある。
However, the transparent electrode used in EL devices is usually an oxide such as ITO (indium oxide!!l).

このような酸化物の透明電極を還元性雰囲気中にて熱処
理すると、還元されるため、その透明度を失うことにな
る。とくに、ITOの場合、実際に550℃、30分の
熱処理を行った場合、還元されるが、金属のインジウム
や錫は融点が低いため蒸発してしまい、後に島状の残留
物が残り、これは導電性を示さなくなる。そのため還元
性II囲気中においても、透明電極が還元を受番づない
ようにする必要がある。
When a transparent electrode made of such an oxide is heat-treated in a reducing atmosphere, it is reduced and loses its transparency. In particular, in the case of ITO, when it is actually heat treated at 550°C for 30 minutes, it is reduced, but metals such as indium and tin have low melting points and evaporate, leaving behind island-shaped residues. no longer exhibits conductivity. Therefore, it is necessary to prevent the transparent electrode from undergoing reduction even in a reducing II atmosphere.

[発明の目的コ 本発明は、−上記問題に鑑みてなされたものであって、
アルカリ土類硫化物蛍光体薄膜の製造において、薄膜を
還元性雰囲気中にて熱処理しても、酸化物透明電極が還
元を受けないようにした蛍光体薄膜製造方法を提供する
ものである。
[Object of the Invention] The present invention has been made in view of the above problems, and
The present invention provides a method for producing an alkaline earth sulfide phosphor thin film in which an oxide transparent electrode is not reduced even when the thin film is heat-treated in a reducing atmosphere.

[課題を解決するための手段] 本発明は、アルカリ土類硫化物蛍光体薄膜を形成する薄
膜製造方法において、前記薄膜形成後、露出する酸化物
透明電極部位を、導電性を有するとともに還元性雰囲気
にて影響されない保護膜で被覆し、その後に還元性雰囲
気中にて熱処理を施すことを特徴としているものである
[Means for Solving the Problems] The present invention provides a thin film manufacturing method for forming an alkaline earth sulfide phosphor thin film. It is characterized in that it is coated with a protective film that is not affected by the atmosphere, and then heat-treated in a reducing atmosphere.

[作用] 上記製造方法によれば、露出する酸化物透明電極部位は
保護膜で被覆されているので、還元性雰囲気中での熱処
理を受けても、還元されることはない。
[Function] According to the above manufacturing method, since the exposed oxide transparent electrode portion is covered with a protective film, it will not be reduced even if it is subjected to heat treatment in a reducing atmosphere.

[実施例] 第1図は1本発明方法によって製造するEL素子構造を
示し、第2図は従来のELの基本的な素子構造を示すも
のである。両図面において、同一または類似する部材に
は同じ符号が付されている。
[Example] FIG. 1 shows the structure of an EL device manufactured by the method of the present invention, and FIG. 2 shows the basic structure of a conventional EL device. Identical or similar parts are given the same reference numerals in both figures.

即ち、1はガラス基板、2はITOの透明電極、3は第
1絶縁層、4は蛍光層、5は第2絶縁層、6はAQによ
る背面電極であり、第1図で符号7で示したものは、露
出する透明電極部位を被覆している保護膜である。この
保護膜7にはAQその他の金属膜のような、導電性を有
するとともに還元性雰囲気にて影響されない材料が用い
られている。
That is, 1 is a glass substrate, 2 is an ITO transparent electrode, 3 is a first insulating layer, 4 is a fluorescent layer, 5 is a second insulating layer, and 6 is a back electrode made of AQ, which is indicated by the reference numeral 7 in FIG. The other thing is a protective film that covers the exposed transparent electrode parts. This protective film 7 is made of a material such as AQ or other metal film that has conductivity and is not affected by a reducing atmosphere.

ここで、第2図に示した従来のEL素子の作成工程を下
記に述べる。
Here, the manufacturing process of the conventional EL element shown in FIG. 2 will be described below.

■)ガラス基板面にITOをエツチングし、パターンを
形成する。
(2) Etching ITO on the glass substrate surface to form a pattern.

2)第I絶縁層を形成する。2) Form a first insulating layer.

3)蛍光体薄膜を形成する。必要に応じてアニール処理
を行う。
3) Form a phosphor thin film. Annealing is performed as necessary.

4)第2絶縁層を形成する。4) Form a second insulating layer.

5)背面電極を形成する。5) Form a back electrode.

これに対し、本発明方法を示す第1図において、最も特
徴的な点は、第1絶縁膜を形成するに先立ち、露出する
可能性のある透明電極部位を、前記保護膜7で被覆して
おき、第1絶縁膜および蛍光膜を形成したあと、蛍光膜
の特性を改良する目的で、本素子を水素などの還元性雰
囲気中にてアニール処理を行う工程において、還元ガス
にさらさないようにしたものである。以下に本発明方法
によるEL素子の作成方法を述べる。
On the other hand, in FIG. 1 showing the method of the present invention, the most characteristic point is that, prior to forming the first insulating film, the transparent electrode portion that may be exposed is covered with the protective film 7. After forming the first insulating film and fluorescent film, the device is annealed in a reducing atmosphere such as hydrogen in order to improve the characteristics of the fluorescent film, so that it is not exposed to reducing gas. This is what I did. A method for producing an EL element using the method of the present invention will be described below.

1〉ガラス基板面にITOをエツチングし、パターンを
形成する。
1> Etch ITO on the glass substrate surface to form a pattern.

2)還元性雰囲気中にて露出する可能性のある透明電極
部位にAQ等の金属による保護膜を形成する。
2) A protective film made of a metal such as AQ is formed on a transparent electrode portion that may be exposed in a reducing atmosphere.

3)第1絶縁膜を形成iる。3) Form a first insulating film.

4)蛍光体薄膜を形成する。4) Form a phosphor thin film.

5)還元性雰囲気中にて薄膜をアニールする。5) Anneal the thin film in a reducing atmosphere.

6)第2絶縁層を形成する。6) Form a second insulating layer.

7)背面電極を形成する。7) Form a back electrode.

[発明の効果] 以上に述べたように、本発明によれば、アルカリ土類硫
化物蛍光体薄膜を形成する薄膜の製造において、ITO
等の透明電極を還元させることなく、水素などの還元性
雰囲気中にて、蛍光体薄膜をアニールすることができ、
その特性を大幅に改善することを可能とした点で、顕著
な効果がある。
[Effects of the Invention] As described above, according to the present invention, in the production of a thin film forming an alkaline earth sulfide phosphor thin film, ITO
The phosphor thin film can be annealed in a reducing atmosphere such as hydrogen without reducing the transparent electrode, such as
It has a remarkable effect in that it makes it possible to significantly improve its characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって製造したEL素子の要部の断面
図、第2図は従来法によって製造したEL素子の要部の
断面図である。 1・・・・・・・・・ガラス基板、2・・・・・・・・
・透明電極、3・・・・・・・・・第1絶縁層、4・・
・・・・・・・蛍光層、5・・・・・・・・・第2絶縁
層、6・・・・・・・・・背面電極、7・・・・・・・
・・保護層。 第1図 第2図
FIG. 1 is a sectional view of a main part of an EL device manufactured by the present invention, and FIG. 2 is a sectional view of a main part of an EL device manufactured by a conventional method. 1...Glass substrate, 2...
・Transparent electrode, 3...First insulating layer, 4...
...... Fluorescent layer, 5... Second insulating layer, 6... Back electrode, 7...
...Protective layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  アルカリ土類硫化物蛍光体薄膜を形成する薄膜製造方
法において、前記薄膜形成後、露出する酸化物透明電極
部位を、導電性を有するとともに還元性雰囲気にて影響
されない保護膜で被覆し、その後に還元性雰囲気中にて
熱処理を施すことを特徴とする蛍光体薄膜製造方法。
In a thin film manufacturing method for forming an alkaline earth sulfide phosphor thin film, after forming the thin film, the exposed oxide transparent electrode portion is covered with a protective film that is conductive and unaffected by a reducing atmosphere, and then A method for producing a phosphor thin film characterized by performing heat treatment in a reducing atmosphere.
JP1207531A 1989-08-09 1989-08-09 Manufacture of fluorescent thin film Pending JPH0371594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207531A JPH0371594A (en) 1989-08-09 1989-08-09 Manufacture of fluorescent thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207531A JPH0371594A (en) 1989-08-09 1989-08-09 Manufacture of fluorescent thin film

Publications (1)

Publication Number Publication Date
JPH0371594A true JPH0371594A (en) 1991-03-27

Family

ID=16541267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207531A Pending JPH0371594A (en) 1989-08-09 1989-08-09 Manufacture of fluorescent thin film

Country Status (1)

Country Link
JP (1) JPH0371594A (en)

Similar Documents

Publication Publication Date Title
KR100669688B1 (en) Thin film transistor and flat display device comprising it
US5445899A (en) Color thin film electroluminescent display
US4916360A (en) Thin film electroluminescent device with ZnS as host material
EP1458901B1 (en) Sputter deposition process for electroluminescent phosphors
JPH0371594A (en) Manufacture of fluorescent thin film
JPS61260594A (en) Manufacture of multicolor emission el element
JP2848277B2 (en) EL element manufacturing method
JP3027286B2 (en) Method for manufacturing thin film EL element
JPH01186589A (en) Electroluminescence element
US6689630B2 (en) Method of forming an amorphous aluminum nitride emitter including a rare earth or transition metal element
JPS61121290A (en) Manufacture of thin film el element
JP3976892B2 (en) Thin film EL device
JP3487618B2 (en) Electroluminescence element
JP2857624B2 (en) Method for manufacturing electroluminescent element
JPH01246790A (en) Thin film el element and its manufacture
JPS6298595A (en) Manufacture of thin film el device
JPH02306585A (en) Manufacture of thin film electroluminescence element
JPS60172196A (en) Electroluminescent element and method of producing same
JPH0765955A (en) Manufacture of electroluminescence element
JP3446542B2 (en) Thin film EL element
JPS61214395A (en) Manufacture of thin film electroluminescence element
JPH0439893A (en) Manufacturing selenium-including compound semiconductor thin film and electroluminescence element
JPS63136491A (en) Manufacture of thin film el device
JPH0834125B2 (en) Method for manufacturing multicolor thin film EL device
JPS61253797A (en) Manufacture of electroluminescence element