JPH0369862B2 - - Google Patents

Info

Publication number
JPH0369862B2
JPH0369862B2 JP23790085A JP23790085A JPH0369862B2 JP H0369862 B2 JPH0369862 B2 JP H0369862B2 JP 23790085 A JP23790085 A JP 23790085A JP 23790085 A JP23790085 A JP 23790085A JP H0369862 B2 JPH0369862 B2 JP H0369862B2
Authority
JP
Japan
Prior art keywords
brazing
alloy
pure
layer
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23790085A
Other languages
Japanese (ja)
Other versions
JPS6297795A (en
Inventor
Koji Hoshino
Akira Mori
Masaki Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP23790085A priority Critical patent/JPS6297795A/en
Publication of JPS6297795A publication Critical patent/JPS6297795A/en
Publication of JPH0369862B2 publication Critical patent/JPH0369862B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、軽量にして、冷却効果が高く、例
えば炭酸ガスレーザーの反射鏡や、真空炉の熱反
射壁材などとしての使用に適した複合ろう付け部
材およびその製造法に関するものである。 〔従来の技術〕 従来、一般に、例えば炭酸ガスレーザーの反射
鏡として、表面を鏡面仕上げした純Cu製のもの
や、さらにこの表面にAuめつきを施したものな
どが用いられている。 しかしながら、これらの純Cu製反射鏡では、
レーザー照射時間が長くなると、表面に加工材か
ら発生した金属や非金属の蒸気が蒸着し、その反
射率が低下するようになるばかりでなく、表面が
レーザーのエネルギーを吸収して溶融し、反射鏡
を破損してしまうなどの事故が発生するようにな
る。 このような事故を防止するには、定期的に表面
の蒸着物を除去しなければならないが、反射鏡を
構成する純Cuや、表面のAuめつきは非常に軟か
いために、蒸着物をふき取るときに表面を傷つけ
易く、反射特性を損なうことが多発していた。 このようなことから、近年、炭酸ガスレーザー
の反射鏡の材料として、純Cuに代つて硬質の金
属Moを使用することが定着しつつある。この金
属Mo製反射鏡としては、特に単結晶のものや、
微細な結晶粒の多結晶のものが蒸着物の付着も少
なく、優れた性能を発揮している。 〔発明が解決しようとする問題点〕 一方、炭酸ガスレーザー装置は、地上設備ばか
りでなく、宇宙ステーシヨンにも設置されるもの
であるため、装置自体の軽量化が要求されるよう
になつており、このことは真空炉の熱反射壁材な
どの炉体構造材などにも云えることであり、これ
ら各種部材の軽量化が急務となつている。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、金属MoやMo合金、さらに金属WやW合金
が用いられている炭酸ガスレーザーの反射鏡や真
空炉の熱反射壁材などの各種部材の軽量化に着目
し、これら重質部材(例えば金属Moの比重は
10.2,金属Wの比重は19.3)の一部を、いずれも
軽量の窒化けい素基焼結材料(以下、Si3N4系材
料という、比重は約3.24)、サイアロン基焼結材
料(以下、サイアロン系材料という、比重は約
3.26)、または炭化けい素基焼結材料(以下、SiC
系材料という、比重は約3.26)で構成すべく研究
を行なつた結果、これら両部材を、通常のろう材
を用いて、高い接合強度でろう付けすることは困
難であるが、前記両部材のろう付け面のそれぞれ
に、イオンプレーテイング法や溶融めつき法など
の通常の表面被覆法を用いて、Cu層を固着形成
し、かつろう材として純AlまたはAl−Si系合金
を用いてろう付けを行なうと、著しく高い接合強
度でのろう付けを無加圧で、しかも直接行なうこ
とができるという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、純Mo,Mo合金,純W,およびW
合金のうちのいずれかからなる被ろう付け部材の
ろう付け面,並びにSi3N4系材料,サイアロン系
材料,およびSiC系材料のうちのいずれかからな
る基体部材のろう付け面に、それぞれ平均層厚:
1〜50μmのCu層を固着形成し、ついで、これら
両部材を、前記Cu層を介し、純AlまたはAl−Si
系合金からなるろう材を用いてろう付けすること
によつて、前記被ろう付け部材と基体部材とが
Al−Si−Cu系合金層を介してろう付けされた複
合ろう付け部材を製造することに特徴を有するも
のである。 なお、この発明におけるCu層には、その形成
時に被ろう付け部材および基体部材の表面を清浄
にし、かつろう付け時には純AlまたはSi系合金
のろう材と良く反応してAl−Si−Cu系合金層を
形成すると共に、ろう材中のSi,または基体部材
からろう材中に取り込まれたSiと前記両部材との
反応を促進して、前記両部材の強固な接合をもた
らす作用があるが、その平均層厚が1μm未満では
前記作用に所望の効果が得られず、一方その平均
層厚が50μmを越えると、Cu層形成時に前記両部
材から剥れ易くなつたり、基体部材に割れが生じ
易くなり、所望の接合強度が得られなくなること
から、Cu層の平均層厚を1〜50μmと定めた。 〔実施例〕 つぎに、この発明を実施例により具体的に説明
する。 被ろう付け部材として、それぞれ第1表に示さ
れる組成を有し、かつ直径:100mm×厚さ:2mm
の寸法をもつた円板状部材を用意し、一方基体部
材として、 (a) Si3N4粉末:96.5%,MgO粉末:3%,SiO2
粉末:0.5%からなる配合組成(以上重量%)
をもつた混合粉末より、300気圧のN2雰囲気
中、温度:1750℃に1時間保持の条件でホツト
プレスして製造したSi3N4系材料。 (b) Si3N4粉末:76%,Al2O3粉末:5%,Y2O3
粉末:3%,TiN粉末:15%,AlN粉末:1
%からなる配合組成(以上重量%)をもつた混
合粉末より成形した圧粉体を、1気圧のN2
囲気中、温度:1800℃に2時間保持の条件で普
通焼結することにより製造したサイアロン系材
料。 (c) SiC粉末:70%,フエノール樹脂:25%,炭
素粉末:3%,ジブチルフタレート:2%から
なる配合組成(以上重量%)をもつた混合粉末
より射出成形された成形体を、温度:700℃に
加熱して焙焼した後、温度:1500℃で1時間、
溶融Siと反応させる反応焼結を行なうことによ
り製造したSiC系材料。 以上(a)〜(c)の3種からなり、かついずれも直
径:100mm×厚さ20mmの寸法をもつたチツプ状部
材を用意し、これら被ろう付け部材および基体部
材のろう付け面である片側面に、それぞれ第1表
に示される平均層厚のCu層をイオンプレーテイ
ング法により固着形成し、ついでこれら被ろう付
け部材と基体部材とを、第1表に示される組合せ
において、そのろう付け面間に、同じく第1表に
示される組成をもつた厚さ:0.3mmのろう材を介
在させて重ね合わせ、上面に5Kgの重りを乗せ
[Industrial Application Field] The present invention provides a composite brazed member that is lightweight, has a high cooling effect, and is suitable for use as, for example, a reflector for a carbon dioxide laser or a heat reflective wall material for a vacuum furnace, and its manufacture. It is about law. [Prior Art] Conventionally, for example, as a reflector for a carbon dioxide laser, a mirror made of pure Cu with a mirror-finished surface, or one whose surface is further plated with Au has been used. However, with these pure Cu reflectors,
As the laser irradiation time increases, metal and non-metal vapors generated from the processed material will deposit on the surface, reducing its reflectance, and the surface will absorb the laser energy and melt, causing reflection. Accidents such as damaging mirrors begin to occur. To prevent such accidents, it is necessary to periodically remove the deposits on the surface, but since the pure Cu that makes up the reflector and the Au plating on the surface are very soft, it is necessary to remove the deposits. The surface was easily damaged when wiping it off, and the reflective properties were often impaired. For these reasons, in recent years, the use of hard metal Mo instead of pure Cu has become popular as a material for carbon dioxide laser reflectors. This metal Mo reflector is particularly suitable for single crystal ones,
Polycrystalline materials with fine crystal grains exhibit excellent performance with less adhesion of vapor deposits. [Problems to be solved by the invention] On the other hand, since carbon dioxide laser devices are installed not only in ground equipment but also in space stations, there is a growing demand for the device itself to be lightweight. This also applies to furnace body structural materials such as heat reflecting wall materials of vacuum furnaces, and there is an urgent need to reduce the weight of these various members. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have developed a carbon dioxide laser reflector and vacuum Focusing on reducing the weight of various components such as heat-reflecting wall materials for furnaces, the specific gravity of these heavy components (for example, metal Mo)
10.2, the specific gravity of the metal W is 19.3), both of which are lightweight silicon nitride-based sintered materials (hereinafter referred to as Si 3 N 4- based materials, with a specific gravity of approximately 3.24) and sialon-based sintered materials (hereinafter referred to as Si 3 N 4-based materials, with a specific gravity of approximately 3.24). Sialon-based material, specific gravity is approx.
3.26) or silicon carbide-based sintered materials (hereinafter referred to as SiC
As a result of our research, we found that it is difficult to braze these two parts with a high bonding strength using ordinary brazing filler metal. A Cu layer is fixedly formed on each of the brazing surfaces using a normal surface coating method such as ion plating or hot melt plating, and pure Al or Al-Si alloy is used as the brazing material. They discovered that brazing can be performed directly with extremely high bonding strength without pressure. This invention has been made based on the above knowledge, and is based on pure Mo, Mo alloy, pure W, and W.
An average of Layer thickness:
A Cu layer of 1 to 50 μm is fixedly formed, and then pure Al or Al-Si is bonded to both members through the Cu layer.
By brazing using a brazing filler metal made of a base alloy, the member to be brazed and the base member are bonded together.
The present invention is characterized in that a composite brazed member is manufactured by brazing through an Al-Si-Cu alloy layer. In addition, the Cu layer in this invention is formed by cleaning the surfaces of the parts to be brazed and the base member at the time of its formation, and reacting well with pure Al or Si alloy brazing material during brazing to form an Al-Si-Cu alloy. In addition to forming an alloy layer, it has the effect of promoting the reaction between the Si in the brazing filler metal or the Si incorporated into the brazing filler metal from the base member and the two members, resulting in a strong bond between the two members. If the average layer thickness is less than 1 μm, the desired effect cannot be obtained; on the other hand, if the average layer thickness exceeds 50 μm, the Cu layer may easily peel off from both members during formation, or cracks may occur in the base member. The average layer thickness of the Cu layer was determined to be 1 to 50 μm because the Cu layer tends to occur easily and the desired bonding strength cannot be obtained. [Example] Next, the present invention will be specifically explained with reference to Examples. Each member to be brazed has the composition shown in Table 1, and diameter: 100 mm x thickness: 2 mm.
A disk-shaped member with dimensions is prepared, and as a base member: (a) Si 3 N 4 powder: 96.5%, MgO powder: 3%, SiO 2
Powder: Compound composition consisting of 0.5% (more than 0.5% by weight)
A Si 3 N 4 based material produced by hot pressing a mixed powder with 300 atmospheres of N 2 at a temperature of 1750°C for 1 hour. (b) Si 3 N 4 powder: 76%, Al 2 O 3 powder: 5%, Y 2 O 3
Powder: 3%, TiN powder: 15%, AlN powder: 1
A green compact formed from a mixed powder having a blend composition (weight %) consisting of Sialon material. (c) A molded body injection-molded from a mixed powder with a composition (weight %) consisting of SiC powder: 70%, phenol resin: 25%, carbon powder: 3%, and dibutyl phthalate: 2%, : After heating to 700℃ and roasting, temperature: 1500℃ for 1 hour,
SiC-based material manufactured by reaction sintering with molten Si. Chip-shaped members consisting of the above three types (a) to (c) and each having dimensions of 100 mm in diameter x 20 mm in thickness are prepared, and the brazing surfaces of these members to be brazed and the base member are prepared. A Cu layer having the average layer thickness shown in Table 1 is fixedly formed on one side of each side by ion plating, and then these brazing members and the base member are bonded together in the combination shown in Table 1. A 0.3 mm thick brazing filler metal having the composition shown in Table 1 is interposed between the attached surfaces, and a 5 kg weight is placed on the top surface.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から明らかなように、本
発明法1〜28においては、いずれの場合も被ろう
付け部材と基体部材とが高い接合強度でろう付け
されており、この種の複合ろう付け部材では、ろ
う付け面が10Kgf・mm-2以上の剪断強度を示すも
のは、その接合がきわめて強固であるとされてい
る。 一方、比較法1〜8に見られるように、Cu層
の平均層厚がこの発明の範囲から外れると、いず
れの場合もろう付け面は約8Kgf・mm-2以下の剪
断強度しか示さず、所望の強固な接合強度が得ら
れないことが明らかである。 上述のように、この発明によれば、純Mo,
Mo合金,純W,およびW合金のうちのいずれか
からなる重質部材の一部を、Si3N4系材料、サイ
アロン系材料、およびSiC系材料のうちのいずれ
かからなる軟質材料で置換することが可能となる
ので、上記重質部材の軽量化をはかることができ
るようになり、さらに前記の軟質材料はすぐれた
冷却効果をもつほか、前記の重質部材とほぼ同じ
熱膨張率をもつので、複合ろう付け部材の残留応
力が小さく抑えられ、熱ひずみによる破損が起り
にくくなることから、これを、例えば炭酸ガスレ
ーザー用反射鏡や真空炉の内壁材などとして用い
た場合、すぐれた性能を長期に亘つて発揮するよ
うになるなど工業上有用な効果がもたらされるの
である。
As is clear from the results shown in Table 1, in all methods 1 to 28 of the present invention, the component to be brazed and the base component are brazed with high bonding strength, and this type of composite brazing It is said that if the brazing surface of a bonded member exhibits a shear strength of 10 Kgf·mm -2 or more, the bond will be extremely strong. On the other hand, as seen in Comparative Methods 1 to 8, when the average layer thickness of the Cu layer falls outside the range of the present invention, the brazed surface exhibits only a shear strength of about 8 Kgf mm -2 or less in all cases. It is clear that the desired strong bonding strength cannot be obtained. As mentioned above, according to this invention, pure Mo,
Part of a heavy member made of Mo alloy, pure W, or W alloy is replaced with a soft material made of Si 3 N 4 material, Sialon material, or SiC material. This makes it possible to reduce the weight of the heavy components, and furthermore, the soft material has an excellent cooling effect and has almost the same coefficient of thermal expansion as the heavy components. As a result, the residual stress in the composite brazed parts is kept small and damage due to thermal strain is less likely to occur, making it an excellent material when used, for example, as a reflector for a carbon dioxide laser or as an inner wall material for a vacuum furnace. This brings about industrially useful effects such as long-term performance.

Claims (1)

【特許請求の範囲】 1 純Mo,Mo合金,純W,およびW合金のう
ちのいずれかからなる被ろう付け部材を、Al−
Si−Cu系合金層を介して、窒化けい素基焼結材
料、サイアロン基焼結材料、および炭化けい素焼
結材料のうちのいずれかからなる基体部分にろう
付けしてなる複合ろう付け部材。 2 純Mo,Mo合金,純W,およびW合金のう
ちのいずれかからなる被ろう付け部材のろう付け
面、並びに窒化けい素基焼結材料、サイアロン基
焼結材料、および炭化けい素焼結材料のうちのい
ずれかからなる基体部材のろう付け面に、それぞ
れ平均層厚:1〜50μmのCu層を固着形成し、 ついで、これら両部材を、前記Cu層を介し、
純AlまたはAl−Si系合金からなるろう材を用い
て、ろう付けすることを特徴とする複合ろう付け
部材の製造法。
[Claims] 1. A member to be brazed made of any one of pure Mo, Mo alloy, pure W, and W alloy is made of Al-
A composite brazing member formed by brazing to a base portion made of any one of a silicon nitride-based sintered material, a sialon-based sintered material, and a silicon carbide sintered material via a Si-Cu alloy layer. 2. The brazing surface of a member to be brazed made of any one of pure Mo, Mo alloy, pure W, and W alloy, as well as silicon nitride-based sintered material, sialon-based sintered material, and silicon carbide sintered material A Cu layer having an average layer thickness of 1 to 50 μm is fixedly formed on the brazing surface of a base member made of one of the above, and then both of these members are bonded via the Cu layer.
A method for manufacturing a composite brazing member, which comprises brazing using a brazing material made of pure Al or an Al-Si alloy.
JP23790085A 1985-10-24 1985-10-24 Composite brazing member and its production Granted JPS6297795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23790085A JPS6297795A (en) 1985-10-24 1985-10-24 Composite brazing member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23790085A JPS6297795A (en) 1985-10-24 1985-10-24 Composite brazing member and its production

Publications (2)

Publication Number Publication Date
JPS6297795A JPS6297795A (en) 1987-05-07
JPH0369862B2 true JPH0369862B2 (en) 1991-11-05

Family

ID=17022089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23790085A Granted JPS6297795A (en) 1985-10-24 1985-10-24 Composite brazing member and its production

Country Status (1)

Country Link
JP (1) JPS6297795A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112975032B (en) * 2021-02-23 2022-09-27 浙江浙能兰溪发电有限责任公司 Brazing method of silicon carbide ceramic

Also Published As

Publication number Publication date
JPS6297795A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
US4602731A (en) Direct liquid phase bonding of ceramics to metals
US6742700B2 (en) Adhesive composition for bonding different kinds of members
CN106944698B (en) SiC ceramic or SiC ceramic reinforced aluminum matrix composite material ultrasonic low-temperature direct brazing method based on thermal oxidation surface modification
JPH0247428B2 (en)
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
EP0301492B1 (en) Method for bonding cubic boron nitride sintered compact
US7270885B1 (en) Method for brazing ceramic-containing bodies, and articles made thereby
JP3539634B2 (en) Silicon nitride substrate for circuit mounting and circuit substrate
JPH025541A (en) Manufacture of bonding tool
US6884511B1 (en) Method for brazing ceramic-containing bodies, and articles made thereby
JPS59137373A (en) Ceramic bonding method
JPH0369862B2 (en)
JP2618155B2 (en) Ceramic bonded body and method of manufacturing the same
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JP3523665B2 (en) Method of forming metal layer on ceramic surface
JPH0338946B2 (en)
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH028828B2 (en)
JPS6065774A (en) Ceramic-metal bonded body and manufacture
JP2001048670A (en) Ceramics-metal joined body
JPS6254569A (en) Production of composite brazed member
JPH0575507B2 (en)
JPS6281267A (en) Production of composite brazing member
JPH0378181B2 (en)
JPH04235246A (en) Alloy for metalizing for ceramics and metalizing method