JPH0368786A - Structural member made of titanium or titanium alloy - Google Patents

Structural member made of titanium or titanium alloy

Info

Publication number
JPH0368786A
JPH0368786A JP20428789A JP20428789A JPH0368786A JP H0368786 A JPH0368786 A JP H0368786A JP 20428789 A JP20428789 A JP 20428789A JP 20428789 A JP20428789 A JP 20428789A JP H0368786 A JPH0368786 A JP H0368786A
Authority
JP
Japan
Prior art keywords
phase
titanium
structural member
surface layer
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20428789A
Other languages
Japanese (ja)
Other versions
JPH0699821B2 (en
Inventor
Naoya Watabe
渡部 直也
Tatsuya Takarada
宝田 龍哉
Toshio Tokune
敏生 徳根
Yoshihiko Wajima
輪嶋 善彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1204287A priority Critical patent/JPH0699821B2/en
Priority to US07/563,660 priority patent/US5139585A/en
Publication of JPH0368786A publication Critical patent/JPH0368786A/en
Publication of JPH0699821B2 publication Critical patent/JPH0699821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To impart excellent sliding characteristic and strength to the structural member made of Ti by forming the surface-layer part of the member with a metallic texture in which plural beta phases having a different characteristic are present. CONSTITUTION:A structural member such as a rocker arm material 10 consisting of a base material of Ti (alloy) is moved, and the part 20 corresponding to a slipper surface is irradiated with the carbon dioxide laser, etc., from an oscillator 5. Helium, etc., as a shielding gas are simultaneously supplied from a gas supply nozzle 6, and Mo2C powder, Fe powder, etc., are supplied from a powder supply nozzle 7. By this treatment, the first beta phase b1 is sporadically distributed in the surface-layer part 3, the second beta phase b2 is reticularly developed to enclose the first beta phase b1, and a texture in which hard grains p are uniformly dispersed is obtained. The first beta phase b1 has a high content of Mo, and the second beta phase b2 has a high content of Fe. The surface-layer part 3 is firmly attached to the base material, and stabilized sliding characteristic and strength are obtained.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明はチタンまたはチタン合金製構造部材に関する。[Detailed description of the invention] A0 Purpose of invention (1) Industrial application fields The present invention relates to structural members made of titanium or titanium alloys.

(2)従来の技術 従来、この種構造部材として、その部材の摺動特性要求
部位を、金属組織が単一のβ相であるβ型チタン合金よ
り構成したものが知られている(特開昭61−2478
06号公報参照)。
(2) Conventional technology Conventionally, this type of structural member is known in which the portion of the member requiring sliding properties is made of a β-type titanium alloy whose metal structure is a single β phase (Unexamined Japanese Patent Publication No. Showa 61-2478
(See Publication No. 06).

(3)発明が解決しようとする、課題 しかしながら、前記β型チタン合金は、α型およびα+
β型チタン合金に比べて摺動特性が若干向上するもの\
、高速、且つ高面圧下で使用される構造部材の要求摺動
特性を満たすことはできない。
(3) Problems to be Solved by the Invention However, the β-type titanium alloy is
Slightly improved sliding properties compared to β-type titanium alloys\
, it cannot satisfy the required sliding characteristics of structural members used at high speeds and under high surface pressure.

本発明は前記に鑑み、金属組織を混在組織にして、優れ
た摺動特性および強度を持つ表層部を備えた前記チタン
またはチタン合金製構造部材を提供することを目的とす
る。
In view of the above, an object of the present invention is to provide a structural member made of titanium or a titanium alloy, which has a surface layer having a mixed metal structure and excellent sliding properties and strength.

B9発明の構成 (1)課題を解決するための手段 本発明に係るチタンまたはチタン合金製構造部材は、表
層部の金属組織が、特性を異にする複数種のβ相を混在
させた組織であることを特徴とする。
B9 Structure of the Invention (1) Means for Solving the Problems The titanium or titanium alloy structural member according to the present invention has a metal structure in the surface layer that is a mixture of multiple types of β phases having different characteristics. characterized by something.

(2)作 用 前記のように、表層部において特性を異にする複数種の
β相を混在させると、単一のβ相を有するものに比べて
表層部の摺動特性が大幅に向上し、したがって表層部が
高速、且つ高面圧下においても優れた耐久性を示し、ま
た表層部の強度も大幅に向上する。
(2) Effect As mentioned above, when multiple types of β phases with different properties are mixed in the surface layer, the sliding characteristics of the surface layer are significantly improved compared to those with a single β phase. Therefore, the surface layer exhibits excellent durability even at high speeds and under high surface pressure, and the strength of the surface layer is also significantly improved.

(3)実施例 第1図はチタン合金製構造部材としてのロッカアーム1
を示す、ロッカアーム1は内燃機関用動弁機構に用いら
れるもので、その一端部にカムと摺擦するスリッパ面2
を有する。
(3) Example Figure 1 shows a rocker arm 1 as a titanium alloy structural member.
The rocker arm 1 shown in FIG.
has.

ロッカアームlの製造に当っては、Ti−6Affi−
4Vのm戒を有するα+β型チタン合金製素材が用いら
れ、スリッパ面2を構成する表層部3は素材に改質処理
を施すことによって形成されたものである。
When manufacturing rocker arm l, Ti-6Affi-
An α+β type titanium alloy material having an m precept of 4V is used, and the surface layer 3 forming the slipper surface 2 is formed by subjecting the material to a modification treatment.

表層部3の金属&ll織は、特性を異にする複数種、本
実施例では二種のβ相を混在させた組織である。
The metal ≪ weave of the surface layer portion 3 is a structure in which a plurality of types, in this example, two types of β phases having different characteristics are mixed.

第2図に示す金属組織の概略図から明らかなように、第
1のβ相b1は散点状に分布しており、また第2のβ相
b2は、それら第1のβ相す、を囲繞して網状に展開し
ている。また表層部3は、均一に分散する硬質粒子pを
含有する。
As is clear from the schematic diagram of the metallographic structure shown in FIG. 2, the first β phase b1 is distributed in a scattered manner, and the second β phase b2 is separated from the first β phases. It surrounds and develops into a net. Further, the surface layer portion 3 contains uniformly dispersed hard particles p.

改質処理に当って、Mo、C粉末およびFe粉末を用い
て、高密度エネルギビームによる局所溶融合金化処理を
適用する関係から、第1のβ相b1は、Moを10重量
%以上含有するMo9度の高いβ相であり、また第2の
β相すつはFeを3゜5重量%以上、15重量%以下含
有するFe濃度の高いβ相である。
In the modification treatment, the first β phase b1 contains 10% by weight or more of Mo because the local melting alloying treatment using a high-density energy beam is applied using Mo, C powder, and Fe powder. It is a β phase with a high Mo9 degree, and the second β phase is a β phase with a high Fe concentration, containing Fe in an amount of 3.5% by weight or more and 15% by weight or less.

MOは、全率固溶型β安定化元素であって、母材である
前記α+β型チタン合金と全率固溶体をつくる。Moを
10重量%以上含有させることによって、第1のβ相す
、を室温まで持ちきたすことができる。またMoは第1
のβ相blの摺動特性および耐熱性を向上させる効果を
有する。
MO is a completely solid solution β-stabilizing element, and forms a completely solid solution with the α+β type titanium alloy that is the base material. By containing Mo in an amount of 10% by weight or more, the first β phase can be brought to room temperature. Also, Mo is the first
This has the effect of improving the sliding properties and heat resistance of the β phase BL.

たりし、MOの単独添加では、第1のβ相す。However, when MO is added alone, the first β phase is formed.

の硬さが低く、耐摩耗性が低下する6 Feは共析型β安定化元素である。Feを3.5重量%
以上含有させることによって、第2のβ相b2の安定化
が図られ、また析出硬化作用を生じさせて第2のβ相b
2の硬さおよび強度を向上させることができる。
6Fe, which has low hardness and reduces wear resistance, is a eutectoid β-stabilizing element. 3.5% by weight of Fe
By containing the above, the second β phase b2 is stabilized, and a precipitation hardening effect is caused to form the second β phase b2.
The hardness and strength of No. 2 can be improved.

た\°し、Feの含有量が15重量%を上回ると、Fe
の固溶性が低いことに起因して、偏析等を生じ、安定し
た第2のβ相b2が得られなくなり、強度も低下する。
However, if the Fe content exceeds 15% by weight, Fe
Due to the low solid solubility, segregation etc. occur, making it impossible to obtain a stable second β phase b2, and the strength also decreases.

したがって、Fe含有量の上限は15重量%に設定され
る。
Therefore, the upper limit of the Fe content is set at 15% by weight.

なお、Moを添加せずに、Feのみを添加すると、前記
析出硬化作用に伴い金属間化合物が形成されて第2のβ
相b2が脆化する傾向にあるが、この問題はMOを併用
することによって解消される。
Note that when only Fe is added without adding Mo, an intermetallic compound is formed due to the precipitation hardening effect, and the second β
Although phase b2 tends to become brittle, this problem can be solved by using MO in combination.

第3図は、母材(T 1−6Aj2−4 V)と、その
母材に26重量%MOを含有させた比較表層部と、母材
に26重量%Moおよび8重量%Feを含有させた本発
明表層部の硬さを比較したものである。
Figure 3 shows a base material (T 1-6Aj2-4 V), a comparative surface layer part in which the base material contains 26% by weight of MO, and a comparative surface layer in which the base material contains 26% by weight of Mo and 8% by weight of Fe. The hardness of the surface layer portion of the present invention is compared.

第3図より、MOのみ含有する比較表層部は、母材に比
べて硬さの上昇程度が極めて少ないが、Feを含有させ
ると、硬さが大幅に上昇することが判る。
From FIG. 3, it can be seen that the comparative surface layer containing only MO shows a very small increase in hardness compared to the base material, but when Fe is added, the hardness increases significantly.

表層は、各種表層部の平均組成(推定)、平均硬さ、M
o、C粉末とFeC粉末供給比率を示し、第4図は表層
に基づくグラフを示す。
The average composition (estimated), average hardness, and M of the surface layer are as follows:
o, C powder and FeC powder supply ratio, and FIG. 4 shows a graph based on the surface layer.

表    I 表層部Nα■、■が本発明に該当し、その外は比較例で
ある。
Table I The surface layer parts Nα■ and ■ correspond to the present invention, and the rest are comparative examples.

表1および第4図より、Feの含有量は3.5〜15重
量%、好ましくは5重量%以上であることが判る。
From Table 1 and FIG. 4, it can be seen that the Fe content is 3.5 to 15% by weight, preferably 5% by weight or more.

第2のβ相す、における網目4の直径は、摺動特性およ
び強度向上の観点から、10μm以下といった微細であ
ることが望ましい。
The diameter of the mesh 4 in the second β phase is preferably as fine as 10 μm or less from the viewpoint of improving sliding properties and strength.

硬質粒子Pは、改質処理におけるMo、C→2Mo十C
5Ti+C−+TiCの反応により析出した炭化物、即
ち、Tic粒子であり、その硬質粒子pの体積分率(V
f)は、10%以上、30%以下に設定される。この硬
質粒子pの含有により、表層部3の硬さを確保して、そ
の耐摩耗性を向上させることができる。即ち、前記第1
.第2のβ相す、、b、および硬質粒子Pよりなる表層
部3は、高速、且つ高面圧摺動条件下において、従来の
鉄系焼結摺動部材と同等若しくはそれ以上の耐摩耗性を
発揮する。
The hard particles P are Mo, C→2Mo+C in the modification treatment.
The carbide precipitated by the reaction of 5Ti+C-+TiC is Tic particles, and the volume fraction of the hard particles p (V
f) is set to 10% or more and 30% or less. By containing the hard particles p, the hardness of the surface layer portion 3 can be ensured and its wear resistance can be improved. That is, the first
.. The surface layer 3 made of the second β phase S, b, and hard particles P has wear resistance equal to or higher than that of conventional iron-based sintered sliding members under high speed and high surface pressure sliding conditions. Demonstrate your sexuality.

また、硬質粒子pは析出現象により生じるものであるか
ら、1〜5μmの粒径を有する微細粒子であり、且つ分
散性も良く、その上、粒子形状が丸いので、摺動相手材
の摩耗量を増加させる等の攻撃性が低い、といった利点
を有する。
In addition, since the hard particles p are generated by a precipitation phenomenon, they are fine particles with a particle size of 1 to 5 μm and have good dispersibility. Furthermore, since the particle shape is round, the amount of wear on the sliding partner material is small. It has the advantage of being less aggressive, such as increasing

一般に硬質粒子を分散させる場合、前記粒径を得るには
、必然的に破砕粉を用いることになるが、破砕粉の形状
は角張っていて、砥粒効果を発揮するため摺動相手材に
対する攻撃性が高い、また前記範囲の微小粒径を得るに
は、精密分級処理を行わなければならないので、膨大な
コスト上昇を惹起することになる。
Generally, when dispersing hard particles, crushed powder is inevitably used to obtain the above particle size, but the crushed powder has an angular shape and exerts an abrasive effect, so it attacks the sliding material. In order to obtain particles with high properties and small particle diameters within the above range, precision classification processing must be performed, resulting in a huge increase in cost.

なお、硬質粒子pの体積分率が10%未満では、前記効
果を得ることができず、一方、30%を上回ると、摺動
相手材への攻撃性が増大し、また表要部3が脆化し、さ
らに硬質粒子pが脱落し易くなる。
It should be noted that if the volume fraction of the hard particles p is less than 10%, the above effect cannot be obtained, while if it exceeds 30%, the aggressiveness towards the sliding mating material increases, and the surface part 3 becomes It becomes brittle, and the hard particles p become more likely to fall off.

第5図は、表層部3における硬質粒子pの体積分率(V
f)とビッカース硬さ(最高硬さ)との関係を示す。
FIG. 5 shows the volume fraction (V
The relationship between f) and Vickers hardness (maximum hardness) is shown.

この場合、母材としては前記同様のα十β型チタン合金
が用いられ、Moz C粉末の添加量を変化させてTi
C粒子の析出量を調節したものである。
In this case, the same α-decade-β type titanium alloy as described above is used as the base material, and the amount of Moz C powder added is changed to
The amount of C particles precipitated was adjusted.

第5図より硬質粒子pの体積分率の増加に伴い表層部3
の硬さが上昇することが判る。
From FIG. 5, as the volume fraction of hard particles p increases, the surface layer 3
It can be seen that the hardness increases.

以下、ロッカアーム1の改質処理について説明する。The modification process for the rocker arm 1 will be described below.

第6図は改質処理法を示し、前記母材(Tj −6AI
2−4V)よりなるロッカアーム用素材10を矢印方向
へ移動させ、そのスリッパ面対応部2゜に、オシレータ
5より炭酸ガスレーザを照射し、同時にガス供給ノズル
6よりシールドガスであるヘリウムガスを、また粉末供
給ノズル7よりM。
Figure 6 shows the modification treatment method, in which the base material (Tj -6AI
2-4V) is moved in the direction of the arrow, the slipper surface corresponding portion 2° is irradiated with a carbon dioxide laser from the oscillator 5, and at the same time, helium gas, which is a shielding gas, is supplied from the gas supply nozzle 6. M from powder supply nozzle 7.

2C粉末およびFe粉末をそれぞれ供給するものである
It supplies 2C powder and Fe powder respectively.

改質処理条件は次の通りである。The modification treatment conditions are as follows.

ロッカアーム用素材1゜の移動速度(処理速度) : 
300 m/win 炭酸ガスレーザ:出力 5kW、スポット径2m+、振
幅 5肛、パワー密度5〜6X10’W/cd MozC粉末:直径 10〜44μm、供給量15、7
 g/+ain  ; F C粉末:純度 99%以上
、粒度 200メツシユ以下、供給量 4.6g/鰯i
n 表皮層3の形成は、次の第1〜第4過程を経て行われる
Movement speed of rocker arm material 1° (processing speed):
300 m/win Carbon dioxide laser: Output 5kW, spot diameter 2m+, amplitude 5 anus, power density 5~6X10'W/cd MozC powder: diameter 10~44μm, supply amount 15,7
g/+ain; FC powder: purity 99% or more, particle size 200 mesh or less, supply amount 4.6 g/sardine i
n The formation of the epidermis layer 3 is performed through the following first to fourth steps.

第1過程73200℃以上の腐度域で母材、MOZC粉
末およびFe粉末が溶解する。その際、Moz C→2
Mo十Cの反応が生じる。
In the first step, the base material, MOZC powder, and Fe powder are dissolved in the rottenness range of 73,200°C or higher. At that time, Moz C → 2
A Mo-C reaction occurs.

第2過程:3200°C以下の温度域で、Ti十C−T
iCの反応が生じて、硬質粒子としてのTiC粒子が析
出する。
2nd process: In the temperature range below 3200°C, Ti
An iC reaction occurs and TiC particles as hard particles are precipitated.

第3過程:約2000 ’Cの温度域で、Moz度の高
い第1のβ相す、が晶出を開始する。
Third step: In a temperature range of about 2000'C, the first β phase with a high Moz degree starts to crystallize.

第4過程:約1400°Cの温度域で、Fe濃度の高い
第2のβ相b2が晶出を開始する。
Fourth step: In a temperature range of about 1400°C, the second β phase b2 with a high Fe concentration starts to crystallize.

第7図は前記改質処理により得られた表層部3のXマイ
クロアナライザ(EPMA)による金属組織を示す顕微
鏡写真である。
FIG. 7 is a micrograph showing the metal structure of the surface layer 3 obtained by the above-mentioned modification treatment, taken using an X-micro analyzer (EPMA).

第7図(a)はMoの分布状況を示し、白色部分がMO
であって、Mo濃度の高い第1のβ相b1が散点状に分
布していることが判る。
Figure 7(a) shows the distribution of Mo, and the white part is MO.
It can be seen that the first β phase b1 with a high Mo concentration is distributed in a dotted manner.

第7図〜)はFeの分布状況を示し、白色部分がFeで
あって、Fe濃度の高い第2のβ相b2が黒色のMo1
度の高い第1のβ相す、を囲繞して網状に展開している
ことが判る。
Figure 7~) shows the distribution of Fe, where the white part is Fe and the second β phase b2 with a high Fe concentration is the black Mo1.
It can be seen that the first β phase, which has a high degree of strength, is surrounded by a net-like structure.

第1のβ相b1と第2のβ相b2による網目構造は、再
凝固過程における両相b+、bzの凝固点の差により生
じるものであり、凝固点の高い第1のβ相b1が先に晶
出し、その間隙を第2のβ相す、が埋めることによって
形成される。
The network structure formed by the first β phase b1 and the second β phase b2 is caused by the difference in the freezing point of both phases b+ and bz during the resolidification process, and the first β phase b1, which has a higher freezing point, crystallizes first. The second β phase is formed by filling the gap with the second β phase.

炭酸ガスレーザといった高密度エネルギビームによる局
所溶融合金化処理においては、溶融径自己冷却による急
速凝固作用が得られるので、網目構造が微細で、且つ均
質となり、したがって安定した摺動特性および強度が得
られる。また母材に対する表層部3の密着力も強い。
In local melting alloy processing using a high-density energy beam such as a carbon dioxide laser, rapid solidification is achieved by self-cooling of the melt diameter, resulting in a fine and homogeneous network structure, resulting in stable sliding properties and strength. . Furthermore, the adhesion of the surface layer 3 to the base material is strong.

Moの添加に際し、Mow Cといった炭化物を用いる
理由は、硬質粒子であるTiC粒子を析出させることの
外、次に述べるように炭化物の低融点効果を狙ったもの
である。
The reason for using a carbide such as Mow C when adding Mo is not only to precipitate TiC particles, which are hard particles, but also to aim at the low melting point effect of the carbide, as described below.

即ち、金属Moは、融点が2610″Cといった高融点
材料であり、そのま!では、融点が1668°Cといっ
たチタン合金におけるTiとの合金化が難しいが、炭化
物の状態で用いると、その融点が2400°C程度に低
下するため、Tiとの融点差が小さくなって合金化し易
くなる。
In other words, metal Mo is a high melting point material with a melting point of 2610°C, and until then it is difficult to alloy with Ti in a titanium alloy with a melting point of 1668°C. However, when used in the form of a carbide, its melting point is Since the temperature decreases to about 2400°C, the difference in melting point with Ti becomes smaller and alloying becomes easier.

また炭化物の粉末は、金属Moに比べて吸熱能(吸光能
)が高く、したがってエネルギ効率上からも有利である
Further, carbide powder has a higher endothermic ability (light absorption ability) than metal Mo, and is therefore advantageous in terms of energy efficiency.

前記改質処理により得られた表層部3の平均組成は、T
i−26Mo−11,8Fe−4,IA/!−3,2v
であり、TiC粒子の平均粒径は2.4am。
The average composition of the surface layer 3 obtained by the modification treatment is T
i-26Mo-11,8Fe-4,IA/! -3,2v
The average particle size of the TiC particles is 2.4 am.

体積分率は18.75%であった。The volume fraction was 18.75%.

この場合、第1のβ相す、におけるMoの含有量は40
.5重量%で、またFeの含有量は5.7重量%であり
、したがって第1のβ相す、ではM。
In this case, the Mo content in the first β phase is 40
.. 5% by weight, and the content of Fe is 5.7% by weight, so the first β phase is M.

の濃度が高い、一方、第2のβ相b2におけるFeの含
有量は22.4重量%で、またMoの含有量は10.0
重量%であり、したがって第2のβ相btではFeの濃
度が高い。
On the other hand, the content of Fe in the second β phase b2 is 22.4% by weight, and the content of Mo is 10.0% by weight.
% by weight, and therefore the second β phase bt has a high concentration of Fe.

第8図は前記表層部3の深さと硬さとの関係を示す。図
中、SIは改質処理前のスリッパ面位置を、またS2は
改質処理後のスリッパ面位置をそれぞれ示し、改質処理
により厚さが若干増加する。
FIG. 8 shows the relationship between the depth and hardness of the surface layer 3. In the figure, SI indicates the slipper surface position before the modification treatment, and S2 indicates the slipper surface position after the modification treatment, and the thickness increases slightly due to the modification treatment.

第8図より、改質処理によってスリッパ面2の硬さ(H
v)は約750といった高い値を示すことが判る。
From FIG. 8, the hardness (H
It can be seen that v) exhibits a high value of about 750.

第9図は、本発明における表層部3と、スリッパ面2を
構成する各種チップ材の摺動試験結果を示す0表層は、
第9図における各種テストピースA−Fの材質を示す。
FIG. 9 shows the sliding test results of the surface layer 3 and various chip materials constituting the slipper surface 2 in the present invention.
The materials of various test pieces A to F in FIG. 9 are shown.

表     ■ 摺動試験はチップオンディスク式摺動試験に基づいて行
われ、試験条件は、ディスクの材質:構造用鋼(JIS
  SCM  420H)、浸炭処理;摺動速度: 7
.5 m /sec ;荷重:O〜300kgfまでl
okg/winで上昇;潤滑油:昭和’/エル石油社製
、(商品名10W−30、ウルトラU);潤滑油供給量
: 11 c c/win  (室温)、である。
Table ■ The sliding test was conducted based on the chip-on-disc sliding test, and the test conditions were as follows: Disk material: structural steel (JIS
SCM 420H), carburizing treatment; sliding speed: 7
.. 5 m/sec; Load: 0 to 300 kgf
lubricating oil: manufactured by Showa'/L Oil Co., Ltd. (trade name 10W-30, Ultra U); lubricating oil supply amount: 11 cc/win (room temperature).

限界焼付荷重は、前記荷重上昇に伴い、テストピースが
焼付きを生じときの荷重を求めた。
The limit seizure load was determined by the load at which the test piece caused seizure as the load increased.

第9図から明らかなように、本発明においては限界焼付
荷重が300kgf以上であり、これは従来の高Cr鉄
系焼結材に相当する。
As is clear from FIG. 9, in the present invention, the critical seizure load is 300 kgf or more, which corresponds to the conventional high Cr iron-based sintered material.

なお、本発明はチタン製構造部材にも通用される。Note that the present invention is also applicable to titanium structural members.

C0発明の効果 本発明によれば、表層部の金属Mi織を前記のように特
定することによって、優れた摺動特性および強度を持つ
表層部を備えたチタンまたはチタン合金製構造部材を提
供することができる。
C0 Effects of the Invention According to the present invention, by specifying the metallic Mi weave in the surface layer as described above, a titanium or titanium alloy structural member is provided which has a surface layer with excellent sliding properties and strength. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はロッカアームの要部破断正面図、第2図は表層
部の金属組織を示す概略図、第3図は表層部等のビッカ
ース硬さを示すグラフ、第4図は表層部におけるFe含
有量と平均ビッカース硬さとの関係を示すグラフ、第5
図は表層部における硬質粒子の体積分率とピンカース硬
さとの関係を示すグラフ、第6図は改質処理法の説明図
、第7図は表層部の金属組織を示す顕微鏡写真、第8図
は表層部の深さとピンカース硬さとの関係を示すグラフ
、第9図は表層部等の限界焼付荷重を示すグラフである
。 b、、b、・・・第1.第2のβ相、p・・・硬質粒子
、1・・・ロッカアーム(構造部材)、3・・・表層部
、4・・・綱目 特許 出 願人 本田技研工業株式会社
Figure 1 is a cutaway front view of the main part of the rocker arm, Figure 2 is a schematic diagram showing the metallographic structure of the surface layer, Figure 3 is a graph showing the Vickers hardness of the surface layer, etc., and Figure 4 is the Fe content in the surface layer. Graph showing the relationship between quantity and average Vickers hardness, No. 5
The figure is a graph showing the relationship between the volume fraction of hard particles in the surface layer and Pinkers hardness, Figure 6 is an explanatory diagram of the modification treatment method, Figure 7 is a micrograph showing the metal structure of the surface layer, and Figure 8 9 is a graph showing the relationship between the depth of the surface layer and Pinkers hardness, and FIG. 9 is a graph showing the limit seizure load of the surface layer, etc. b,,b,... 1st. Second β phase, p...Hard particles, 1...Rocker arm (structural member), 3...Surface layer portion, 4...Line patent applicant Honda Motor Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)表層部の金属組織が、特性を異にする複数種のβ
相を混在させた組織であることを特徴とするチタンまた
はチタン合金製構造部材。
(1) Multiple types of β with different metal structures in the surface layer
A structural member made of titanium or a titanium alloy, characterized by a structure containing a mixture of phases.
(2)前記金属組織は散点状に分布する第1のβ相と、
それら第1のβ相を囲繞して網状に展開する第2のβ相
とよりなる、第(1)項記載のチタンまたはチタン合金
製構造部材。
(2) the metal structure includes a first β phase distributed in a dotted manner;
The titanium or titanium alloy structural member according to item (1), comprising a second β phase that surrounds the first β phase and develops in a net shape.
(3)前記第2のβ相における網目の直径が10μm以
下である、第(2)項記載のチタンまたはチタン合金製
構造部材。
(3) The titanium or titanium alloy structural member according to item (2), wherein the diameter of the mesh in the second β phase is 10 μm or less.
(4)前記第1のβ相はMoを10重量%以上含有し、
また前記第2のβ相はFeを3.5重量%以上、15重
量%以下含有している、第(2)または第(3)項記載
のチタンまたはチタン合金製構造部材。
(4) the first β phase contains Mo at 10% by weight or more,
The titanium or titanium alloy structural member according to item (2) or item (3), wherein the second β phase contains Fe in an amount of 3.5% by weight or more and 15% by weight or less.
(5)前記表層部は、均一に分散する硬質粒子を含有し
、その硬質粒子の体積分率(Vf)は、10%以上、3
0%以下である、第(1),第(2),第(3)または
第(4)項記載のチタンまたはチタン合金製構造部材。
(5) The surface layer portion contains uniformly dispersed hard particles, and the volume fraction (Vf) of the hard particles is 10% or more, 3
0% or less, the titanium or titanium alloy structural member according to item (1), item (2), item (3), or item (4).
JP1204287A 1989-08-07 1989-08-07 Structural member made of titanium or titanium-based alloy Expired - Fee Related JPH0699821B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1204287A JPH0699821B2 (en) 1989-08-07 1989-08-07 Structural member made of titanium or titanium-based alloy
US07/563,660 US5139585A (en) 1989-08-07 1990-08-07 Structural member made of titanium alloy having embedded beta phase of different densities and hard metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204287A JPH0699821B2 (en) 1989-08-07 1989-08-07 Structural member made of titanium or titanium-based alloy

Publications (2)

Publication Number Publication Date
JPH0368786A true JPH0368786A (en) 1991-03-25
JPH0699821B2 JPH0699821B2 (en) 1994-12-07

Family

ID=16487981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204287A Expired - Fee Related JPH0699821B2 (en) 1989-08-07 1989-08-07 Structural member made of titanium or titanium-based alloy

Country Status (1)

Country Link
JP (1) JPH0699821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628056A (en) * 2013-12-09 2014-03-12 山东建筑大学 Material for TA15 titanium alloy surface laser cladding and laser cladding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628056A (en) * 2013-12-09 2014-03-12 山东建筑大学 Material for TA15 titanium alloy surface laser cladding and laser cladding method

Also Published As

Publication number Publication date
JPH0699821B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
JPS63157826A (en) Dispersion-strengthened cu-base alloy
JPS62146202A (en) Intermetallic compound for application of mechanical alloying and production of intermetallic compound type precursor alloy
Deng et al. Microstructure and mechanical properties of Cu–12Al–xNi alloy prepared using powder metallurgy
Büyükkayacı et al. Influence of mechanical alloying time on microstructure and wear behaviors of Fe–Cu–C alloy
JPS63149347A (en) Copper alloy for high sleeve abrasion resistance for laser build-up welding
JP6431012B2 (en) Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
US5132083A (en) Laser padding material and a laser padding method using the same
JPH07166278A (en) Coppery sliding material and production thereof
JPH0368786A (en) Structural member made of titanium or titanium alloy
Liu et al. Synthesis of a nickel silicide-base composite coating on austenitic steel by laser cladding
JP2001518143A (en) Method of manufacturing parts from particulate ferrous material
JP3057457B2 (en) Sliding member
MALEQUE et al. TIG Melted Surface Modified Titanium Alloy for automotive cylinder liner application
Judge et al. Powder Metallurgy Aluminum Alloys: Structure and Porosity
Xu et al. Microstructure and mechanical properties of laser-cladded WC–Co composite coatings on Ti–6Al–4V
US5139585A (en) Structural member made of titanium alloy having embedded beta phase of different densities and hard metals
JPH101704A (en) Sliding material and its production
JPS59219468A (en) Aluminum sliding member and its manufacture
EP1067205A1 (en) Iron-based powder blend for use in powder metallurgy
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties
JP3658465B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JPH0372057A (en) Structural member made of titanium or titanium alloy
JP2797201B2 (en) Titanium or titanium alloy structural members
JPS60116761A (en) Sliding member made of cast iron and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees