JPH0368490B2 - - Google Patents

Info

Publication number
JPH0368490B2
JPH0368490B2 JP60197080A JP19708085A JPH0368490B2 JP H0368490 B2 JPH0368490 B2 JP H0368490B2 JP 60197080 A JP60197080 A JP 60197080A JP 19708085 A JP19708085 A JP 19708085A JP H0368490 B2 JPH0368490 B2 JP H0368490B2
Authority
JP
Japan
Prior art keywords
film
resin
conductor
insulated wire
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60197080A
Other languages
Japanese (ja)
Other versions
JPS6258519A (en
Inventor
Toshiro Nishizawa
Toyotoshi Tsuruta
Kyomi Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP60197080A priority Critical patent/JPS6258519A/en
Publication of JPS6258519A publication Critical patent/JPS6258519A/en
Publication of JPH0368490B2 publication Critical patent/JPH0368490B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は新規な耐熱平角絶縁電線の製造方法に
関する。詳しくはスピーカのボイスコイルや
VTR用小型モーターのステーターコイルなどに
用いられる耐熱平角絶縁電線の製造方法に関する
ものである。 〔従来の技術〕 平角絶縁電線の製造方法は、一つは丸線を圧延
し平角導体としその外側に常法に従つて絶縁ワニ
スを塗布焼付する方法、もう一つは丸導体の外側
に絶縁ワニスを塗布焼付した後これを圧延して平
角絶縁電線に変形する方法があるが、いずれの方
法もそれぞれ下記のような欠点がある。前者の方
法では、平角導体に絶縁ワニスを塗布焼付する
際、ワニスの温度上昇と共にその流動性が増大
し、焼付後の角部の皮膜が薄くなりがちで、厚さ
の均一な皮膜を得ることが困難である。角部の皮
膜が薄く甚しくは導体表面が露出した平角絶縁電
線を電気機器のコイル巻線に用いた場合、絶縁不
良の原因となり機器の信頼性が著しく低下する。
一方、後者の方法では、厚さの均一な皮膜を得る
ことができる反面、圧延による導体の加圧硬化と
絶縁皮膜の加工劣化による特性低下の問題があ
る。導体の加工硬化は、熱処理をすることによつ
て軟らかさを与えることができるが、加工劣化し
た皮膜は、耐熱衝撃性が劣り、熱処理工程で亀裂
が発生したり、剥がれが生ずる。皮膜の亀裂は、
平角絶縁電線の厚さと幅の比が大きくなるにした
がつて顕著に大きくなり特にその比が1:5以上
となると無数に発生し、絶縁特性が大幅に低下す
る。このため前記用途の巻線に適用し得なかつ
た。 〔発明が解決しようとする問題点〕 本発明は、導体の外側に絶縁ワニスを塗布焼付
した後、これを圧延して平角絶縁電線を得る方法
において、圧延及び熱処理による絶縁皮膜の加工
劣化と絶縁衝撃性の低下の問題を解決するために
なされたものである。 〔問題を解決するための手段〕 本発明者らは、上記課題の解決のために、導体
上に塗布する絶縁ワニスの樹脂構成について検討
した。 導体と絶縁皮膜の密着性は、使用する絶縁材料
の耐熱性が、例えばポリウレタン樹脂、ポリエス
テル樹脂、ポリエステルイミド樹脂等と高くなる
にしたがつて向上し、密着性、耐熱衝撃性も良好
となる。反面、耐熱性に優れた絶縁材料は、一般
に架橋密度が高く絶縁皮膜は可とう性に欠け、従
つて圧延時に導体の塑性変形に対応して皮膜の塑
性変形が追随できず、一定の変形量を越えると皮
膜に亀裂が発生することになる。 そこで本発明は、絶縁ワニスとして、特定のポ
リエーテルイミド樹脂に、ポリエステルイミド樹
脂及びフエノール系化合物で閉塞したポリイソシ
アネートブロツク体を添加し、これを有機溶剤を
溶解した塗料を用いることにより、上記問題の解
決を図つたもので、以下にその詳細を説明する。 ポリエーテルイミド樹脂は、下記の構造式で示
される熱可塑性の直鎖状高分子である。 (式中nは整数、Rは6〜30の炭素原子を有する
二価の芳香族有機基、R′は2〜20の炭素原子を
有するアルキレン基、シクロアルキレン基より選
ばれた二価の有機基である。) 構造式が示すように2個のベンゼン核がジエー
テル分子で結ばれ、残りは耐熱成分であるイミド
結合から成立つておりエーテル結合は皮膜に可と
う性を付与し、またベンゼン核、イミド結合が皮
膜の耐熱性保持に寄与している。この熱可塑性ポ
リエーテルイミド樹脂の一例を挙げれば、2,
2′−ビス〔3−(3,4−ジカルボキシフエノキ
シ)−フエニル〕プロパンジ酸無水物と4,4′−
ジアミノジフエニルメタンとをオルソジクロルベ
ンゼンを溶媒とし溶液重縮合(形成される水は常
法に従つて共沸により除去)し合成される樹脂で
あるULTEM(米国GE社製商品名)がこれに相当
する。 ポリエステルイミド樹脂は、耐熱架橋成分とし
て上記熱可塑性ポリエーテルイミド樹脂に添加さ
れるもので、導体と皮膜の密着性を向上させかつ
耐熱衝撃性が良好であるため、導体の加工硬化を
回復するための熱処理時において、皮膜の亀裂の
発生や導体からの剥れを防止する作用がある。こ
のポリエステルイミド樹脂は、トリメリツト酸無
水物と芳香族ジアミンとの反応によつて得られる
イミド酸成分、テレフタル酸、テレフタル酸無水
物及びテレフタル酸低級アルキルエステルよりな
る群から選ばれたテレフタル酸成分並びにエチレ
ングリコール、ポリエチレングリコール又はグリ
セリンをエステル化反応させて得られ、併用する
ポリエーテルイミド樹脂と共通のイミド基を有
し、両樹脂の相溶性が良好で、ポリエーテルイミ
ド樹脂中に偏在することなく分散し、皮膜中に架
橋点が均一に分布する。ポリエステルイミド樹脂
の具体例としては、TSF500(東特塗料社商品
名)、FS−2(大日精化工業社商品名)、
XWE1743(日触スケネクタデイ社商品名)、HI−
460(日立化成社商品名)等を挙げることができ
る。 上記ポリエステルイミド樹脂と共に配合される
ポリイソシアネートブロツク体は、活性なイソシ
アネート基をフエノール系化合物で閉塞し安定化
させたポリイソシアネート化合物であり、皮膜の
ろう着性向上を目的に添加される。具体例として
は、デスモジユールAPステーブル、同CTステー
ブル(バイエル社商品名)、コロネート2503、
MS−50(日本ポリウレタン社商品名)等を挙げ
ることができる。 上記配合組成からなる絶縁塗料を導体上に塗布
焼付した皮膜は、B種以上の耐熱性を有し、かつ
皮膜を剥離せず半田付が可能なろう着性を有す
る。 〔実施例〕 例 1 熱可塑性のポリエーテルイミド樹脂である
ULTEM140g、ポリエステルイミド樹脂である
TSF500 60g及びポリイソシアネートブロツク
体12gを秤量しクレゾールとキシロールの混合溶
剤848gに樹脂濃度が20%となるように溶解し調
製した絶縁塗料を、導体径0.300mmの軟銅線上に
皮膜厚さが10μmとなるように炉温400℃、線速
40m/minで焼付け、耐熱絶縁電線を製造した。
次いでこれをロール径25mmの二軸圧延機で圧延
し、本発明に係る耐熱平角絶縁電線を得た。 例 2 ポリエーテルイミド樹脂100g、ポリエステル
イミド樹脂100g及びポリイソシアネートブロツ
ク体20gを秤量し、クレゾールとキシロールの混
合溶剤880gに溶解し調製した樹脂濃度20%の絶
縁塗料を用い、実施例1と同様の条件で、耐熱平
角絶縁電線を製造した。 例 3 ポリエーテルイミド樹脂60g、ポリエステルイ
ミド樹脂140g及びポリイソシアネートブロツク
体28gを秤量し、クレゾールとキシロールの混合
溶剤912gに溶解し調製した樹脂濃度20%の絶縁
塗料を用い、実施例1と同様の条件で、耐熱平角
絶縁電線を製造した。 種々の導体厚・幅の平角絶縁電線について、
JIS C3003(6.2)に基くピンホール試験を行つた。
また得られた平角絶縁電線について、加工硬化し
た導体を軟らかくするために炉温400℃、線速40
m/minの熱処理を行つた後の平角絶縁電線につ
いても、同様の試験を行つた結果を下表に示す。
なお比較例として示したものは、絶縁塗料として
汎用のエナメル線用ポリエステルイミド絶縁塗料
を用い炉温450℃、線速40m/minで焼付したほ
かは、実施例と同様の条件で製造した平角ポリエ
ステルイミド絶縁電線の特性である。
[Industrial Field of Application] The present invention relates to a method for manufacturing a novel heat-resistant rectangular insulated wire. For more information, please refer to the speaker voice coil.
This invention relates to a method for manufacturing heat-resistant rectangular insulated wires used in stator coils of small motors for VTRs, etc. [Prior art] There are two methods for manufacturing rectangular insulated wires: one is to roll a round wire to form a rectangular conductor, and the other is to apply and bake an insulating varnish on the outside of the rectangular conductor according to a conventional method, and the other is to insulate the outside of the round conductor. There is a method of coating and baking varnish and then rolling it to transform it into a rectangular insulated wire, but each method has the following drawbacks. In the former method, when applying insulating varnish to a rectangular conductor and baking it, the fluidity of the varnish increases as the temperature rises, and the film tends to become thinner at the corners after baking, making it difficult to obtain a film with a uniform thickness. is difficult. When a rectangular insulated wire with a thin coating at the corners or an exposed conductor surface is used in the coil winding of an electrical device, it causes poor insulation and significantly reduces the reliability of the device.
On the other hand, in the latter method, although it is possible to obtain a film with a uniform thickness, there is a problem in that properties deteriorate due to pressure hardening of the conductor due to rolling and deterioration in processing of the insulating film. Work-hardening of a conductor can be made softer by heat treatment, but a film deteriorated by work has poor thermal shock resistance and may crack or peel during the heat treatment process. Cracks in the film are
As the ratio of thickness to width of the rectangular insulated wire increases, the number of cracks increases significantly, and especially when the ratio exceeds 1:5, countless numbers of cracks occur, and the insulation properties are significantly deteriorated. For this reason, it could not be applied to the winding wire for the above-mentioned purpose. [Problems to be Solved by the Invention] The present invention provides a method for obtaining a rectangular insulated wire by applying and baking an insulating varnish on the outside of a conductor, and then rolling it to obtain a rectangular insulated wire. This was done to solve the problem of reduced impact resistance. [Means for Solving the Problem] In order to solve the above problem, the present inventors studied the resin composition of the insulating varnish applied on the conductor. The adhesion between the conductor and the insulating film improves as the heat resistance of the insulating material used increases, such as polyurethane resin, polyester resin, polyester imide resin, etc., and the adhesion and thermal shock resistance also improve. On the other hand, insulating materials with excellent heat resistance generally have a high crosslinking density and the insulating film lacks flexibility. Therefore, the plastic deformation of the film cannot follow the plastic deformation of the conductor during rolling, and the amount of deformation is constant. If it exceeds this, cracks will occur in the film. Therefore, the present invention solves the above-mentioned problems by adding a polyisocyanate block plugged with a polyesterimide resin and a phenolic compound to a specific polyetherimide resin as an insulating varnish, and using a paint in which this is dissolved in an organic solvent. The details are explained below. Polyetherimide resin is a thermoplastic linear polymer represented by the following structural formula. (In the formula, n is an integer, R is a divalent aromatic organic group having 6 to 30 carbon atoms, and R' is a divalent organic group selected from an alkylene group and a cycloalkylene group having 2 to 20 carbon atoms. ) As the structural formula shows, two benzene nuclei are connected by a diether molecule, and the rest is made up of imide bonds, which are heat-resistant components.The ether bonds give flexibility to the film, and the benzene nuclei , imide bonds contribute to maintaining the heat resistance of the film. An example of this thermoplastic polyetherimide resin is 2,
2'-bis[3-(3,4-dicarboxyphenoxy)-phenyl]propanedic anhydride and 4,4'-
ULTEM (trade name, manufactured by GE, USA) is a resin synthesized by solution polycondensation of diaminodiphenylmethane and orthodichlorobenzene (the water formed is removed by azeotropy according to a conventional method). Equivalent to. Polyesterimide resin is added to the above thermoplastic polyetherimide resin as a heat-resistant crosslinking component, and it improves the adhesion between the conductor and the film and has good thermal shock resistance, so it is used to recover the work hardening of the conductor. It has the effect of preventing the film from cracking and peeling from the conductor during heat treatment. This polyester imide resin includes an imide acid component obtained by the reaction of trimellitic anhydride and an aromatic diamine, a terephthalic acid component selected from the group consisting of terephthalic acid, terephthalic anhydride, and terephthalic acid lower alkyl ester, and It is obtained by esterifying ethylene glycol, polyethylene glycol, or glycerin, and it has a common imide group with the polyetherimide resin used in combination, so both resins have good compatibility and are not unevenly distributed in the polyetherimide resin. The crosslinking points are distributed uniformly in the film. Specific examples of polyesterimide resins include TSF500 (trade name of Totoku Toyo Co., Ltd.), FS-2 (trade name of Dainichiseika Kogyo Co., Ltd.),
XWE1743 (Nippon Schenectaday Co., Ltd. product name), HI−
460 (product name of Hitachi Chemical Co., Ltd.). The polyisocyanate block blended with the above polyesterimide resin is a polyisocyanate compound whose active isocyanate groups are blocked and stabilized with a phenol compound, and is added for the purpose of improving the brazing properties of the film. Specific examples include Desmodyur AP Stable, Desmodyur CT Stable (Bayer product name), Coronate 2503,
Examples include MS-50 (trade name of Nippon Polyurethane Co., Ltd.). A film obtained by coating and baking an insulating paint having the above-mentioned composition on a conductor has a heat resistance of class B or higher, and has brazing properties that allow soldering without peeling the film. [Example] Example 1 Thermoplastic polyetherimide resin
ULTEM140g, polyesterimide resin
Weighed 60 g of TSF500 and 12 g of polyisocyanate block and dissolved them in 848 g of a mixed solvent of cresol and xylene to a resin concentration of 20%.The insulating paint was prepared on an annealed copper wire with a conductor diameter of 0.300 mm to a film thickness of 10 μm. Furnace temperature 400℃, linear speed
A heat-resistant insulated wire was produced by baking at 40 m/min.
Next, this was rolled in a biaxial rolling mill with a roll diameter of 25 mm to obtain a heat-resistant rectangular insulated wire according to the present invention. Example 2 Weighed 100 g of polyetherimide resin, 100 g of polyesterimide resin, and 20 g of polyisocyanate block, and dissolved them in 880 g of a mixed solvent of cresol and xylene. Using an insulating paint with a resin concentration of 20%, the same method as in Example 1 was used. A heat-resistant rectangular insulated wire was manufactured under the following conditions. Example 3 Weighed 60 g of polyetherimide resin, 140 g of polyesterimide resin, and 28 g of polyisocyanate block, and dissolved them in 912 g of a mixed solvent of cresol and xylene. Using an insulating paint with a resin concentration of 20%, the same method as in Example 1 was used. A heat-resistant rectangular insulated wire was manufactured under the following conditions. Regarding rectangular insulated wires with various conductor thicknesses and widths,
A pinhole test was conducted based on JIS C3003 (6.2).
In addition, for the obtained rectangular insulated wire, in order to soften the work-hardened conductor, the furnace temperature was 400℃ and the wire speed was 40℃.
The table below shows the results of a similar test performed on a rectangular insulated wire after heat treatment at m/min.
The comparative example is a rectangular polyester manufactured under the same conditions as the example except that a general-purpose polyester imide insulating paint for enamelled wires was used as the insulating paint and baked at a furnace temperature of 450°C and a wire speed of 40 m/min. These are the characteristics of imide insulated wire.

【表】【table】

〔作用〕[Effect]

本発明において用いられる絶縁塗料は、熱可塑
性の直鎖状高分子であるポリエーテルイミド樹脂
に熱硬化性のポリエステルイミド樹脂を添加し、
有機溶剤に溶解したものであるから、分子鎖の長
いポリエーテルイミド樹脂分子中にポリエステル
イミド樹脂が相互に絡み合い、焼付時に反応して
相互浸入型網目構造をつくる。この皮膜は外部か
らの応力に対して比較的容易に変形する分子構造
をもち、導体の変形に対して十分追随でき皮膜中
の応力歪も小さい。従つて圧延時に絶縁皮膜が受
ける応力歪を分子内で緩和できるため、絶縁処理
工程で絶縁皮膜に亀裂が発生するようなことはな
い。絶縁塗料組成がポリエーテルイミド樹脂のみ
の場合は、皮膜の可とう性は良好であるが、耐熱
性、機械的特性及び電気絶縁性が不十分であり、
ここに添加されるポリエステル樹脂は、上記特性
の不足分を補うものとして欠かせない成分であ
る。さらにここに添加されるポリイソシアネート
ブロツク体は、ポリエステルイミド樹脂中の活性
化水素と反応しウレタン結合を形成し、分子間架
橋密度を高め機械的強度を高めるとともに、ウレ
タン結合の解重合性が寄与し皮膜にろう着性が付
与され、電工作業の際に皮膜剥離工程を省略でき
る。なお上記三成分の配合比率を適宜選定し前記
相互侵入型網目構造の密度の大小を調整すれば、
皮膜の密着性、可とう性、耐熱性を制御すること
が可能である。 〔発明の効果〕 本発明の製造方法により得られた耐熱平角絶縁
電線は、絶縁ワニスとして特定のポリエーテルイ
ミド樹脂とポリエステルイミド樹脂との組合せか
らなる塗料を用いたので、従来の平角絶縁電線が
厚さと幅の比で1:5以上になると絶縁皮膜に無
数の亀裂が発生しさらには皮膜剥離により実用に
供し得なかつたところ、より薄型の平角絶縁電線
でも皮膜の特性を保ち得る。したがつて本発明の
方法に係る平角絶縁電線を電気機器のコイル巻線
として用いることにより、機器の信頼性を著しく
向上せしめ得る。
The insulating paint used in the present invention is made by adding thermosetting polyesterimide resin to polyetherimide resin, which is a thermoplastic linear polymer, and
Since it is dissolved in an organic solvent, the polyesterimide resin molecules intertwine with each other in the polyetherimide resin molecules, which have long molecular chains, and react during baking to create an interpenetrating network structure. This film has a molecular structure that deforms relatively easily in response to external stress, and can sufficiently follow the deformation of the conductor, and the stress strain in the film is small. Therefore, the stress strain that the insulating film receives during rolling can be relaxed within the molecules, so that cracks do not occur in the insulating film during the insulation treatment process. When the insulating coating composition is made only of polyetherimide resin, the film has good flexibility, but the heat resistance, mechanical properties and electrical insulation are insufficient.
The polyester resin added here is an essential component to compensate for the deficiencies in the above properties. Furthermore, the polyisocyanate block added here reacts with activated hydrogen in the polyesterimide resin to form urethane bonds, increasing intermolecular crosslink density and increasing mechanical strength, and the depolymerizability of urethane bonds contributes. The film is given brazing properties, and the process of peeling the film can be omitted during electrical work. In addition, if the blending ratio of the above three components is appropriately selected and the density of the interpenetrating network structure is adjusted,
It is possible to control the adhesion, flexibility, and heat resistance of the film. [Effects of the Invention] The heat-resistant rectangular insulated wire obtained by the manufacturing method of the present invention uses a paint consisting of a combination of a specific polyetherimide resin and polyesterimide resin as an insulating varnish, so that the conventional rectangular insulated wire is different from the conventional rectangular insulated wire. If the ratio of thickness to width was 1:5 or more, countless cracks would occur in the insulating film, and the film would peel off, making it unusable. However, even thinner rectangular insulated wires can maintain the properties of the film. Therefore, by using the rectangular insulated wire according to the method of the present invention as a coil winding of an electrical device, the reliability of the device can be significantly improved.

Claims (1)

【特許請求の範囲】 1 下記の構造式で示されるポリエーテルイミド
樹脂に、ポリエステルイミド樹脂及びフエノール
系化合物で閉塞したポリイソシアネートブロツク
体を添加し、これを有機溶剤に溶解してなる絶縁
塗料を、導体上に塗布焼付した後、平角状に圧延
することを特徴とする耐熱平角絶縁電線の製造方
法。 (式中nは整数、Rは6〜30の炭素原子を有する
二価の芳香族有機基、R′は2〜20の炭素原子を
有するアルキレン基、シクロアルキレン基より選
ばれた二価の有機基である。)
[Claims] 1. An insulating paint made by adding a polyisocyanate block plugged with a polyesterimide resin and a phenolic compound to a polyetherimide resin represented by the following structural formula, and dissolving this in an organic solvent. A method for manufacturing a heat-resistant rectangular insulated wire, which comprises coating and baking a conductor and then rolling it into a rectangular shape. (In the formula, n is an integer, R is a divalent aromatic organic group having 6 to 30 carbon atoms, and R' is a divalent organic group selected from an alkylene group and a cycloalkylene group having 2 to 20 carbon atoms. It is the basis.)
JP60197080A 1985-09-06 1985-09-06 Manufacture of heat resistant insulated wire Granted JPS6258519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197080A JPS6258519A (en) 1985-09-06 1985-09-06 Manufacture of heat resistant insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197080A JPS6258519A (en) 1985-09-06 1985-09-06 Manufacture of heat resistant insulated wire

Publications (2)

Publication Number Publication Date
JPS6258519A JPS6258519A (en) 1987-03-14
JPH0368490B2 true JPH0368490B2 (en) 1991-10-28

Family

ID=16368384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197080A Granted JPS6258519A (en) 1985-09-06 1985-09-06 Manufacture of heat resistant insulated wire

Country Status (1)

Country Link
JP (1) JPS6258519A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189456A (en) * 1987-01-30 1988-08-05 Hitachi Chem Co Ltd Resin composition having solderability
JP2801189B2 (en) * 1987-04-02 1998-09-21 古河電気工業株式会社 Heat resistant electrical insulation paint
JPH01230680A (en) * 1988-03-11 1989-09-14 Furukawa Electric Co Ltd:The Heat-resistant insulating paint
JPH02142853A (en) * 1988-11-24 1990-05-31 Hitachi Chem Co Ltd Resin composition having solderability and insulated wire prepared by using same
JPH0584992U (en) * 1992-04-17 1993-11-16 澄夫 山本 Tailpiece device for stringed instruments
US6288342B1 (en) 1998-12-15 2001-09-11 Sumitomo Electric Industries, Ltd. Insulated wire
US20100132975A1 (en) * 2007-04-12 2010-06-03 Toru Shimizu Insulated electrical wire, electrical coil, and motor
EP3960794A4 (en) 2019-04-26 2022-12-14 Daikin Industries, Ltd. Magnet wire and coil

Also Published As

Publication number Publication date
JPS6258519A (en) 1987-03-14

Similar Documents

Publication Publication Date Title
JPH0368490B2 (en)
JPH0473242B2 (en)
JP3164949B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JP3525060B2 (en) Self-fusing insulating paint and self-fusing insulated wire using the same
JP3490895B2 (en) Insulated wire
JPS633401B2 (en)
JPS5978405A (en) Lead wire for electric device
JPS5848304A (en) Self-adhesive insulated wire
JP2968641B2 (en) Insulated wire
JP6769024B2 (en) Polyesterimide paint, insulated wires and coils formed using it
JP3345835B2 (en) Heat resistant insulating paint
JP3504858B2 (en) Solder peelable insulated wire
JP3364007B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JPS6136330B2 (en)
JP2000260233A (en) Flat polyester imide enameled wire
JPH0794025A (en) Robust enamel-insulated electric wire
JPH03241608A (en) Self-fusing insulated wire
JPH05325654A (en) Insulated electric wire
JPH02270211A (en) Self-welding insulated wire
JPS581925A (en) Method of producing double coating insulated wire
JPH05339540A (en) Quick-curing insulating varnish and insulated wire
JPH0773746A (en) Self-fusional insulated electric wire
JP2001006444A (en) Insulated electric wire
JPH0129390B2 (en)
JP2009286825A (en) Resin composition for electric insulation and enameled wire using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees