JPH0129390B2 - - Google Patents

Info

Publication number
JPH0129390B2
JPH0129390B2 JP4917784A JP4917784A JPH0129390B2 JP H0129390 B2 JPH0129390 B2 JP H0129390B2 JP 4917784 A JP4917784 A JP 4917784A JP 4917784 A JP4917784 A JP 4917784A JP H0129390 B2 JPH0129390 B2 JP H0129390B2
Authority
JP
Japan
Prior art keywords
rectangular
wire
polyurethane
added
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4917784A
Other languages
Japanese (ja)
Other versions
JPS60195168A (en
Inventor
Juzo Yamazaki
Toshiro Nishizawa
Akihiko Umemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP4917784A priority Critical patent/JPS60195168A/en
Publication of JPS60195168A publication Critical patent/JPS60195168A/en
Publication of JPH0129390B2 publication Critical patent/JPH0129390B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な平角ポリウレタン絶縁電線の製
造方法に関するものである。 平角絶縁電線は、スピーカのボイスコイルや
VTR用の小型モーターのステーターコイルなど
に用いられ、丸線に比べ占積率が良いことから軽
薄短小の要求を満たし、その用途も年々増大の傾
向にある。平角絶縁電線の製造方法は、1つは丸
線を圧延し平角導体としその外側に常法に従つて
絶縁ワニスを塗布焼付する方法、もう1つは丸導
体の外側に絶縁ワニスを塗布焼付した後これを圧
延して平角絶縁電線に変形する方法がある。しか
しこれら従来の製造方法による平角絶縁電線は下
記するような欠点を有する。即ち前者の場合は、
厚さの均一な塗膜を得ることが困難で、特に角部
は塗膜が薄くなり甚しくは角部の導体表面が露出
し絶縁不良の原因となる。また後者の場合は平角
線の厚みに対する幅の比率を大きくすることがで
きず(1:2〜2.5程度)、かつ圧延後の平角線の
耐熱衝撃性が劣つており、特に上記用途の巻線に
は不適当であつた。これらの欠点を改良した平角
線の製造方法として、例えば特公昭49−7428号公
報に記載のものが提案されたが、ここに使用され
る絶縁皮膜は、ポリアミドイミド、ポリイミド、
ポリヒダトイン、ポリエステルイミド、等の耐熱
性の高い絶縁材料に限定されており、いずれも絶
縁皮膜に鑞着性を有していないため、コイル端部
の半田付の際に、絶縁皮膜を機械的・化学的手段
により剥離しなければならない欠点があり、特に
導体径0.1mm前後の丸線を圧延した細い平角線で
は、コイルの端末処理作業が著しく煩雑となり、
製造ラインの自動化に大きな障害となつていた。 本発明は丸導体のエナメル絶縁電線を圧延して
平角絶縁電線を得る方法において、絶縁ワニスの
樹脂組成について検討することにより、上記諸欠
点を改良した平角ポリウレタン絶縁電線を得るこ
とに成功したもので、以下説明する。 ポリウレタン絶縁電線の鑞着特性と耐熱特性と
は、一方を改良すると他方の性質が阻害されると
いう二律背反の関係にあり、また導体と絶縁皮膜
の密着性は、使用する絶縁皮膜の耐熱性が、例え
ばポリウレタン、ポリエステル、ポリエステルイ
ミド等と高くなるに従つて向上し、耐熱衝撃性も
良好となる。したがつて従来一般のポリイソシア
ネートブロツク体を架橋成分として使用するので
は、特性向上に限界があるため、本発明では新規
なポリイソシアネートブロツク化合物を合成し、
これと活性化水素を有するオリゴマー又はプレポ
リマーを有機溶剤に溶解してなるポリウレタン絶
縁塗料を、丸導体上に塗布焼付した後、圧延加工
することにより、鑞着性を有し、かつ厚さと幅の
比率の大きい平角ポリウレタン絶縁電線を提供し
得たものである。 本発明者らの開発になる新規なイソシアネート
架橋剤は、スピロアセタール環を有するジオール
とジイソシアネート化合物とを反応させ残余のイ
ソシアネート基をフエノール系の化合物で閉塞し
たジイソシアネートブロツク体で、具体的には、
構造式 (式中R1
The present invention relates to a novel method for manufacturing a rectangular polyurethane insulated wire. Flat insulated wires are used for speaker voice coils and
It is used in stator coils of small motors for VTRs, etc., and because it has a better space factor than round wire, it satisfies the requirements for lighter, thinner, shorter and smaller wires, and its uses are increasing year by year. There are two methods for manufacturing rectangular insulated wires: one is to roll a round wire to form a rectangular conductor, and the other is to apply insulating varnish to the outside of the round conductor and bake it according to a conventional method. There is a method in which the wire is then rolled and transformed into a rectangular insulated wire. However, these rectangular insulated wires manufactured by conventional methods have the following drawbacks. In other words, in the former case,
It is difficult to obtain a coating film with a uniform thickness, and the coating film is particularly thin at corners, which may expose the conductor surface at the corners, causing poor insulation. In the latter case, the ratio of the width to the thickness of the flat wire cannot be increased (approximately 1:2 to 2.5), and the thermal shock resistance of the flat wire after rolling is poor, especially for winding wires for the above-mentioned purposes. It was inappropriate. As a manufacturing method for rectangular wire that improves these drawbacks, for example, the method described in Japanese Patent Publication No. 49-7428 has been proposed, but the insulating film used here is made of polyamideimide, polyimide,
It is limited to highly heat-resistant insulating materials such as polyhydatoin and polyesterimide, and none of them have solderability to the insulating film, so when soldering the coil ends, the insulating film must be mechanically or It has the disadvantage that it must be peeled off by chemical means, and the end treatment of the coil is extremely complicated, especially for thin rectangular wires made from rolled round wires with a conductor diameter of around 0.1 mm.
This was a major obstacle to automating production lines. The present invention has succeeded in obtaining a rectangular polyurethane insulated wire that improves the above-mentioned drawbacks by studying the resin composition of the insulating varnish in a method of obtaining a rectangular insulated wire by rolling a round conductor enamelled insulated wire. , will be explained below. The brazing properties and heat resistance properties of polyurethane insulated wires are in a trade-off relationship, meaning that improving one will impede the other property, and the adhesion between the conductor and the insulating film depends on the heat resistance of the insulating film used. For example, the higher the polyurethane, polyester, polyester imide, etc., the better the thermal shock resistance becomes. Therefore, there is a limit to the improvement of properties when conventionally used general polyisocyanate block compounds are used as crosslinking components, so in the present invention, a novel polyisocyanate block compound is synthesized,
A polyurethane insulating paint made by dissolving this and an oligomer or prepolymer containing activated hydrogen in an organic solvent is coated on a round conductor, baked, and then rolled to provide solderability, thickness and width. This provides a rectangular polyurethane insulated wire with a high ratio of The novel isocyanate crosslinking agent developed by the present inventors is a diisocyanate block obtained by reacting a diol having a spiroacetal ring with a diisocyanate compound and blocking the remaining isocyanate groups with a phenol compound. Specifically,
Structural formula (In the formula, R 1 is

【式】【formula】

【式】【formula】

【式】R2[Formula] R 2 is

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】の各基を示す。) で示される。 スピロアセタール環を有するジオールは、スピ
ロアセール環を骨格とし両端末にアルコール性水
酸基を有しているため、ジイソシアネート化合物
と簡単に反応しウレタン結合を形成する。この反
応の仕込量はジイソシアネート過剰で行われ、残
余のイソシアネート基をフエノール系の化合物で
閉塞し安定化したジイソシアネートブロツク体
は、2官能で従来のジイソシアネートブロツク体
に比較して、分子鑞がきわめて長い。 以下に本発明の実施例を示す。 合成例 スピロアセタール変成ジフエニルメタンジイソ
シアネートブロツク架橋剤の合成 温度計、撹拌機、冷却管、分液ロート、窒素ガ
ス導入孔を有する4ツ口セパラブルフラスコに、
スピロアセタールグリコール91.2g(0.3モル)、
反応稀釈剤としてキシロール306g、触媒として
トリエチルアミン0.8gを秤量し加え、十分に撹
拌し均一に分散させる。次いで分液ロート中に、
45℃に加熱秤量したジフエニルメタンジイソシア
ネート150g(0.6モル)を入れ、徐々にこれを滴
下させスピロアセタールグリコールと反応させ
る。このとき反応系の温度は約50〜60℃に上昇す
る。この間撹拌は十分に行う。反応系の温度が室
温に戻つた時点で、残余のイソシアネート基をブ
ロツクするため、さらにm−クレゾール64.8gを
加え、イソシアネートの赤外吸収帯2240cm-1のな
くなるのが確認されるまで撹拌を継続する。反応
が終了した時点で反応系の固形部が30%となるよ
うにm−クレゾール408gを加え、スピロアセタ
ール変成ジフエニルメタンジイソシアネートクレ
ゾールブロツク化合物の溶液とした。 平角ポリウレタン絶縁電線の製造 合成例により得たスピロアセタール変性ジイソ
シアネート化合物の溶液500gを用い、これにア
ルコール性水酸基を有する分子量3000のエポキシ
プレポリマー94gを秤量し加え、更に可とう性付
与成分としてポリアミド樹脂244gを添加し、こ
れらをクレゾールとキシロールの混合溶剤に樹脂
濃度15%となるように溶解し調整したポリウレタ
ン絶縁塗料を、導体径0.270mmの軟銅線上に塗膜
厚さが10.0〜10.5μとなるように炉温380℃、線速
50m/minで焼付け、ポリウレタン絶縁電線を製
造した。次いでこれをロール径25mmの4軸圧延機
で圧延し、本発明に係る平角ポリウレタン絶縁電
線を得た。 尚、ここで可とう性付与成分として添加するポ
リアミド樹脂の具体例としては、ウルトラミツド
1C(独国BASF社商品名)、アミランCM−4000
(東レ社商品名)、ブラタボンドM1276(日本リル
サン社商品名)、ダイアミドL−1801ダイアミド
N−1901(ダイセル社商品名)等を挙げることが
できる。 実施例の平角ポリウレタン絶縁電線の特性を下
表に示す。なお比較例として示したものは、汎用
のポリイソシアネート化合物、例えばトルエンジ
イソシアネートとトリメチロールプロパンを反応
させて残余のイソシアネート基をフエノールで閉
塞した架橋剤であるコロネートAP−ステイブル
(日本ポリウレタン社商品名)を用い、ポリオー
ル成分として分子量3000のエポキシプレポリマー
を使用した従来公知のポリウレタン塗料を、丸導
体上に塗布焼付した後、圧延加工した平角ポリウ
レタン絶縁電線の特性である。なお、下表の諸特
性は日本工業規格(JIS)「エナメル銅線及びエナ
メルアルミニウム線試験方法(JIS C 3003−
1976)」に従つて測定したもので、導体厚、導体
幅、仕上厚、仕上幅についてはJIS C 3003.5.
(2)項の平角線の寸法測定試験方法によつた。また
ピンホール特性についてはJIS S C 3003.6.2
項の無処理法によるピンホール試験方法に準拠
し、ピンホール試験液へ浸す各供試試験片の長さ
を3mにして測定した。また鑞着特性について
は、溶融はんだ温度を400±5℃に設定し、JIS
C 3003.19項のはんだ付け性試験方法に準拠し
て試験し、特性値は供試試験片に一様に完全には
んだが付くに要した浸漬時間で示した。
Each group of [Formula] is shown. ). Since a diol having a spiroacetal ring has a spiroacetal ring as its backbone and alcoholic hydroxyl groups at both terminals, it easily reacts with a diisocyanate compound to form a urethane bond. This reaction is carried out with an excess amount of diisocyanate, and the remaining isocyanate groups are blocked and stabilized with a phenol-based compound.The diisocyanate block is difunctional and has an extremely long molecular wire compared to conventional diisocyanate blocks. . Examples of the present invention are shown below. Synthesis Example Synthesis of spiroacetal modified diphenylmethane diisocyanate block crosslinking agent In a 4-neck separable flask equipped with a thermometer, stirrer, cooling tube, separating funnel, and nitrogen gas inlet,
Spiroacetal glycol 91.2g (0.3mol),
Weigh and add 306 g of xylene as a reaction diluent and 0.8 g of triethylamine as a catalyst, and stir thoroughly to uniformly disperse. Then in a separatory funnel,
150 g (0.6 mol) of weighed diphenylmethane diisocyanate was heated to 45° C. and gradually added dropwise to react with spiroacetal glycol. At this time, the temperature of the reaction system rises to about 50-60°C. During this time, stir thoroughly. When the temperature of the reaction system returned to room temperature, 64.8 g of m-cresol was added to block the remaining isocyanate groups, and stirring was continued until it was confirmed that the infrared absorption band of isocyanate at 2240 cm -1 disappeared. do. When the reaction was completed, 408 g of m-cresol was added so that the solid content of the reaction system was 30% to obtain a solution of spiroacetal-modified diphenylmethane diisocyanate cresol block compound. Production of rectangular polyurethane insulated wire Using 500 g of the solution of the spiroacetal-modified diisocyanate compound obtained in the synthesis example, 94 g of an epoxy prepolymer with a molecular weight of 3000 having alcoholic hydroxyl groups was weighed and added, and polyamide resin was further added as a flexibility imparting component. A polyurethane insulation paint prepared by adding 244g of polyurethane and dissolving these in a mixed solvent of cresol and xylene to a resin concentration of 15% is applied to an annealed copper wire with a conductor diameter of 0.270mm to a coating thickness of 10.0 to 10.5μ. Furnace temperature 380℃, line speed
A polyurethane insulated wire was manufactured by baking at 50 m/min. Next, this was rolled in a 4-axis rolling mill with a roll diameter of 25 mm to obtain a rectangular polyurethane insulated wire according to the present invention. In addition, as a specific example of the polyamide resin added as a flexibility imparting component, Ultramid
1C (product name of BASF, Germany), Amiran CM-4000
(trade name of Toray Industries, Inc.), Bratabond M1276 (trade name of Nippon Rilsan Corporation), Diamide L-1801, Diamide N-1901 (trade name of Daicel Corporation), and the like. The characteristics of the rectangular polyurethane insulated wire of the example are shown in the table below. The comparative example shown is Coronate AP-Stable (trade name of Nippon Polyurethane Co., Ltd.), which is a crosslinking agent made by reacting toluene diisocyanate with trimethylolpropane and blocking the remaining isocyanate groups with phenol. These are the characteristics of a rectangular polyurethane insulated wire made by applying and baking a conventionally known polyurethane paint using an epoxy prepolymer with a molecular weight of 3000 as a polyol component onto a round conductor, and then rolling it. The characteristics in the table below are based on the Japanese Industrial Standards (JIS) "Testing method for enamelled copper wire and enamelled aluminum wire (JIS C 3003-
1976), and the conductor thickness, conductor width, finished thickness, and finished width are measured in accordance with JIS C 3003.5.
The test method for measuring the dimensions of a rectangular wire in section (2) was used. Regarding pinhole characteristics, JIS S C 3003.6.2
Measurements were made in accordance with the non-treatment pinhole test method in Section 1, with the length of each test piece immersed in the pinhole test solution being 3 m. Regarding the soldering characteristics, the molten solder temperature was set at 400±5℃, and the JIS
The test was conducted in accordance with the solderability test method specified in Section C 3003.19, and the characteristic values were expressed as the immersion time required to uniformly and completely adhere the solder to the test piece.

【表】 本発明の製造方法により得られた平角ポリウレ
タン絶縁電線は、ポリウレタン皮膜の架橋成分と
して嵩だかで分子鑞の長いスピロアセタール環を
有するブロツクイソシアネート化合物を用いてい
るので、架橋間隔が長くなり、更にポリアミド樹
脂の添加により皮膜の可とう性がよいため、皮膜
が外部からの応力に対して比較的容易に変形する
構造となる。したがつて導体と絶縁皮膜の密着性
がよく、導体の変形に対し皮膜が十分に追随でき
皮膜中の応力歪も小さいことから、従来平角線の
厚と幅の比が1:2.5以上になると皮膜に無数の
亀裂が発生し実用に供し得なかつたところ、本発
明においては実施例の結果にみられる如く、超薄
型の平角線としても皮膜の特性を保ち得る。また
皮膜はウレタン結合による三次元網状構造をとつ
ているので、鑞着性を有し、コイル端末部の作業
能率を向上し得る。 なおブロツクイソシアネート架橋剤のイソシア
ネート基と活性化水素原子を有するプレポリマー
の水酸基との反応当量比を1:0.7〜2.5なる率に
限定したのは、この範囲を逸脱する場合はいづれ
も架橋反応が不十分となり、絶縁皮膜が熱的、機
械的にもろくなるためである。 以上説明したように、本発明により鑞着性を有
しかつ厚さと幅の比率の大きい平角ポリウレタン
線が得られたことは意義深く、本発明が産業に寄
与するところ極めて大である。
[Table] The rectangular polyurethane insulated wire obtained by the manufacturing method of the present invention uses a blocked isocyanate compound having a bulky spiroacetal ring with a long molecular bran as the crosslinking component of the polyurethane film, so the crosslink interval is long. Furthermore, since the film has good flexibility due to the addition of polyamide resin, the film has a structure that deforms relatively easily in response to external stress. Therefore, the adhesion between the conductor and the insulating film is good, the film can sufficiently follow the deformation of the conductor, and the stress strain in the film is small. In contrast, in the present invention, as seen in the results of the examples, the properties of the coating can be maintained even when used as an ultra-thin rectangular wire. Furthermore, since the film has a three-dimensional network structure formed by urethane bonding, it has brazing properties and can improve the working efficiency of the coil end portion. The reason for limiting the reaction equivalent ratio of the isocyanate groups of the blocked isocyanate crosslinking agent to the hydroxyl groups of the prepolymer having activated hydrogen atoms to a ratio of 1:0.7 to 2.5 is because if it deviates from this range, the crosslinking reaction will not occur. This is because the insulation film becomes thermally and mechanically brittle. As explained above, it is significant that a rectangular polyurethane wire with solderability and a large thickness-to-width ratio can be obtained by the present invention, and the present invention will greatly contribute to industry.

Claims (1)

【特許請求の範囲】[Claims] 1 スピロアセタール環を有するジオールとジイ
ソシアネート化合物との反応により得られるブロ
ツクイソシアネートを架橋成分とし、これに活性
化水素原子を有するプレポリマーを、上記ブロツ
クイソシアネート架橋剤のイソシアネート基と上
記プレポリマーの水酸基との反応当量比が1:
0.7〜2.5なる率で加え、更に可とう性付与成分と
してポリアミド樹脂を添加し、これらを有機溶剤
に溶解してなる絶縁塗料を、丸導体上に塗布焼付
した後、平角状に圧延することを特徴とする平角
ポリウレタン絶縁電線の製造方法。
1 A blocked isocyanate obtained by the reaction of a diol having a spiroacetal ring and a diisocyanate compound is used as a crosslinking component, and a prepolymer having an activated hydrogen atom is added to this, and the isocyanate group of the blocked isocyanate crosslinking agent and the hydroxyl group of the prepolymer are combined. The reaction equivalent ratio of is 1:
A polyamide resin is added as a flexibility imparting component at a ratio of 0.7 to 2.5, and an insulating paint made by dissolving these in an organic solvent is applied and baked on a round conductor, and then rolled into a rectangular shape. A manufacturing method for rectangular polyurethane insulated wires.
JP4917784A 1984-03-16 1984-03-16 Manufacture of flat-type polyurethane-insulated electric wire Granted JPS60195168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4917784A JPS60195168A (en) 1984-03-16 1984-03-16 Manufacture of flat-type polyurethane-insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4917784A JPS60195168A (en) 1984-03-16 1984-03-16 Manufacture of flat-type polyurethane-insulated electric wire

Publications (2)

Publication Number Publication Date
JPS60195168A JPS60195168A (en) 1985-10-03
JPH0129390B2 true JPH0129390B2 (en) 1989-06-09

Family

ID=12823770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4917784A Granted JPS60195168A (en) 1984-03-16 1984-03-16 Manufacture of flat-type polyurethane-insulated electric wire

Country Status (1)

Country Link
JP (1) JPS60195168A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393494B (en) * 1997-08-14 2000-06-11 Ajinomoto Kk Curable resin composition for overcoat of flexible circuit
JP5843151B2 (en) * 2011-12-21 2016-01-13 日立金属株式会社 Electric wire and cable using cross-linked resin composition

Also Published As

Publication number Publication date
JPS60195168A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
JP3356441B2 (en) Lacquer for enamel, lacquer manufacturing method and application of lacquer to enameled wire
JPS5836018B2 (en) Manufacturing method of heat-resistant resin
US5750257A (en) Insulated electric wire
JPH08218007A (en) Insulating coating and insulating wire using the same
JPH0129390B2 (en)
JP4190589B2 (en) Insulated wire
JPH04212206A (en) Insulating paint, solderable insulated wire, manufacture of the insulated wire, and flyback transformer using the insulated wire
US4480007A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
JPH0368490B2 (en)
JPH0259574B2 (en)
US20060122353A1 (en) Method of producing a modified diisocyanate,method of producing a self-lubricating enamelling varnish and method of producing an enameled electrical conductor
JP3497525B2 (en) Insulated wire
EP1176611B1 (en) Insulated wire
JPS633401B2 (en)
JPH0363164B2 (en)
JPS5927921A (en) Production of heat-resistant resin
JPH028627B2 (en)
JPS5816561B2 (en) Self-bonding insulated wire
JP3809535B2 (en) Polyurethane electrical insulating paint
JPS6185710A (en) Manufacture of heat resistant flat insulated wire
JPH0130871B2 (en)
JPH05295324A (en) Self-lubricating insulating varnish
JPH0345728B2 (en)
JP2002334613A (en) Resin composite for electric insulation and enamel wire