JPH0366744A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH0366744A
JPH0366744A JP20265489A JP20265489A JPH0366744A JP H0366744 A JPH0366744 A JP H0366744A JP 20265489 A JP20265489 A JP 20265489A JP 20265489 A JP20265489 A JP 20265489A JP H0366744 A JPH0366744 A JP H0366744A
Authority
JP
Japan
Prior art keywords
particles
particle size
epoxy resin
average particle
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20265489A
Other languages
Japanese (ja)
Other versions
JP2741254B2 (en
Inventor
Masatsugu Yamaguchi
雅嗣 山口
Naoki Noda
野田 直喜
Kazuyoshi Otani
大谷 和良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16460930&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0366744(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP20265489A priority Critical patent/JP2741254B2/en
Publication of JPH0366744A publication Critical patent/JPH0366744A/en
Application granted granted Critical
Publication of JP2741254B2 publication Critical patent/JP2741254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title composition excellent in both heat resistance and moldability with greater quantities of filler incorporable by incorporating an epoxy resin with a filler made up of specified proportion of two kinds of granules differing in average size from each other. CONSTITUTION:The objective composition can be obtained by incorporating (A) an epoxy resin with (B) an inorganic filler. Said inorganic filler has the following characteristics; (1) made up of two kinds of granules differing in average size from each other; granules with greater size are non-spherical (the average size being 6-25mum), and granules with smaller size spherical (the average size being 3-10mum): (2) containing 10-80wt.% of such granules that the size distribution is 0.9-0.6 in terms of the n-value in Rosin-Rammler's distribution: and (3) the ratio of the average size of the spherical granules to that of the non- spherical ones is 0.1-0.9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 に関する。[Detailed description of the invention] [Industrial application field] Regarding.

〔従来技術とその課題〕[Conventional technology and its issues]

10%LSIなどの半導体の素子は電気的特性、耐湿性
などの性能を確保するために封止されている。封止の方
法はセラミック封止と樹脂を用いた樹脂封止が一般的で
ある。現在広く行われている封止方法は、無機質充填剤
を含有するエポキシ樹脂を用いて封止するエポキシ樹脂
封止である。
Semiconductor elements such as 10% LSI are sealed to ensure performance such as electrical characteristics and moisture resistance. Common sealing methods include ceramic sealing and resin sealing using resin. A currently widely used sealing method is epoxy resin sealing, which uses an epoxy resin containing an inorganic filler.

ところで、近年半導体の集積度が上がってきているため
、封止材には無機質充填剤の含有量の高いものが求めら
れている。これは、集積度の上昇により1半導体の素子
から発生する熱が多くなう、この熱によシ発生する応力
を軽減する目的で、無機質充填剤のエポキシ樹脂組成物
への充填量を多くする必要があるためである。
Incidentally, as the degree of integration of semiconductors has increased in recent years, sealing materials with a high content of inorganic filler are required. As the degree of integration increases, more heat is generated from a single semiconductor element.In order to reduce the stress generated by this heat, the amount of inorganic filler added to the epoxy resin composition is increased. This is because it is necessary.

しかし、無機質充填剤の充填量を多くすると、充填量に
したがって樹脂組成物の溶融粘度が増大し、流動性が極
端に低下してしまい、ボンディングワイヤーの変形など
の悪影響を及ぼすようになる。そのため、耐熱性、成型
性共に優れた性能を有する封止樹脂組成物はまだ得られ
てはいない。
However, when the filling amount of the inorganic filler is increased, the melt viscosity of the resin composition increases in accordance with the filling amount, and the fluidity is extremely reduced, resulting in adverse effects such as deformation of the bonding wire. Therefore, a sealing resin composition having excellent performance in both heat resistance and moldability has not yet been obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記問題点を解決するぺく、鋭意検討を行
った結果、特定の粒度分布と平均粒径を持った球状粒子
を、それよう大きな特定の平均粒径を持った破砕状粒子
に配合することで、この問題点を解決できることを見い
だし、この発明を完成するに至ったものである。
In order to solve the above problems, the present inventors conducted intensive studies and found that spherical particles with a specific particle size distribution and average particle size can be transformed into crushed particles with a larger specific average particle size. It was discovered that this problem could be solved by blending the two, leading to the completion of this invention.

すなわち、本発明は、無機質充填剤として、平均粒径の
異なる2種類の粒子を含み、平均粒径の大きい粒子が破
砕状粒子であり、その平均粒径が6〜25μmの範囲に
アシ、平均粒径の小さい粒子が球状粒子でsb、その平
均粒径が3〜10μ隅であり、かつロジンラムラー分布
のn値が0.9〜0、6の範囲にある粒度分布を持つ粒
子であり、無機質充填剤の10〜80 wt%を占めて
シb、前記球状粒子と前記破砕状粒子の平均粒径の比が
0.1〜0.9であるものを含有してなるエポキシ樹脂
組成物である。
That is, the present invention contains two types of particles with different average particle sizes as an inorganic filler, the particles with a larger average particle size are crushed particles, and the average particle size is in the range of 6 to 25 μm. Particles with a small particle size are spherical particles sb, the average particle size is 3 to 10 μ corner, and the n value of the rosin Rammler distribution is a particle size distribution in the range of 0.9 to 0.6, and it is an inorganic particle. The epoxy resin composition comprises 10 to 80 wt% of the filler, and the ratio of the average particle diameter of the spherical particles to the crushed particles is 0.1 to 0.9. .

本発明における無機質充填剤は10〜80wt%が球状
粒子であり、残シは平均粒径が球状粒子よシも大きい破
砕状粒子である。平均粒径の異なる2種類の粒子を含ん
でいる。ここであげる無機質充填剤としては、例えばシ
リカ粉末、アルミナ粉末、炭酸カルシウム等が必要に応
じて使用されるが、熱伝導度、熱膨張率等の点から、シ
リカ、アルミナが好適である。球状粒子の平均粒径は、
3〜10μmであることが必要である。球状粒子が10
μmよシも大きい場合は、球状粒子と破砕状粒子との粒
径に差がなくな夛、本発明組成物の流動性やパリ特性が
良好でなくなってしまう。また、球状粒子が3μ扉よシ
も小さく、かつ所定の粒度分布を持つ粒子をエポキシ樹
脂組成物に使用することは、製造コストが大きくなるた
めに不適尚である。粒度分布の広がシについては、ロジ
ンラムラー分布におけるn値が0.9〜0.6であるこ
とが必要である。ロジンラムラー分布のn値が0.9を
越えると、粒度分布が狭くなシ、平均粒径が3〜10μ
陽の範囲に入っていても、流動性、パリ特性にすぐれた
樹脂組成物が見られなくなってし1う。tた、ロジンラ
ムラー分布のn値が0.6 j D小さい粒子は、製造
が困難であるために、エポキシ樹脂組成物に用いること
は不適尚である。
The inorganic filler in the present invention is comprised of spherical particles in an amount of 10 to 80 wt%, and the remainder is crushed particles having an average particle size larger than that of the spherical particles. Contains two types of particles with different average particle sizes. As the inorganic filler mentioned here, for example, silica powder, alumina powder, calcium carbonate, etc. are used as necessary, but silica and alumina are preferable from the viewpoint of thermal conductivity, coefficient of thermal expansion, etc. The average particle size of spherical particles is
It is necessary that it is 3 to 10 μm. 10 spherical particles
If the particle size is larger than μm, there will be no difference in particle size between the spherical particles and the crushed particles, and the fluidity and crisp properties of the composition of the present invention will not be good. Further, it is inappropriate to use particles in which the spherical particles are as small as 3 μm and have a predetermined particle size distribution in an epoxy resin composition because the manufacturing cost increases. Regarding the spread of the particle size distribution, it is necessary that the n value in the rosin Rammler distribution is 0.9 to 0.6. If the n value of Rosin Rammler distribution exceeds 0.9, the particle size distribution will be narrow and the average particle size will be 3 to 10μ.
Even if it falls within the positive range, resin compositions with excellent fluidity and Paris properties are no longer found. Furthermore, particles with a small n value of 0.6 j D in the rosin Rammler distribution are difficult to manufacture, and therefore are not suitable for use in epoxy resin compositions.

破砕状粒子の平均粒径の範囲は6〜25μ隅であること
が必要である。破砕状粒子が25μmよシ大きい場合は
、大粒子による金型ゲート部の目づgを起こす結果未充
填部を生じて、完全な樹脂封止が困難となる。平均粒径
が6μmよシ小さい粒子は、球状粒子との粒径の差がな
くなシ、流動性、パリ特性に特徴がなくなってしまう。
It is necessary that the average particle size of the crushed particles ranges from 6 to 25 microns. When the crushed particles are larger than 25 μm, the large particles cause the mold gate to become clogged, resulting in unfilled areas, making complete resin sealing difficult. Particles with an average particle size as small as 6 μm have no difference in particle size from spherical particles, and have no characteristics in fluidity or Paris properties.

図−1は、この発明に適用できる球状粒子と比較用球状
粒子とにつき、ロジンラムラー線図とn値の関係を表し
た図でアシ、人は表−1に示しである球状粒子Aに相当
し、B、Cは表−1に示しである比較球状粒子B、Cに
相当している。この図は球状粒子の粒度分布を示してい
るものに過ぎないが、上記分布線図に示されるような粒
度分布を持つ球状粒子Aは、前記したこの発明の要件を
満たすものといえる。
Figure 1 is a diagram showing the relationship between the Rosin Rammler diagram and the n value for spherical particles applicable to this invention and spherical particles for comparison. , B, and C correspond to comparative spherical particles B and C shown in Table-1. Although this diagram merely shows the particle size distribution of the spherical particles, it can be said that the spherical particles A having the particle size distribution as shown in the above distribution diagram satisfy the requirements of the present invention described above.

球状粒子が、無機質充填剤の10wt%よシ少ない場合
は、破砕状粒子100係の場合とほとんど変わらず、筐
た8Q wt%を越えると、本発明組成物の流動性など
の成型性はすぐれているが、ノイリ特性が破砕状粒子1
00%の場合と比べ低下してし1い、成型性の向上を目
的として球状粒子を配合する意味がなくなってしまう。
When the amount of spherical particles is less than 10 wt% of the inorganic filler, there is almost no difference from the case of crushed particles of 100%, but when the amount exceeds 8Q wt%, the moldability such as fluidity of the composition of the present invention is excellent. However, the noise characteristic is crushed particles 1
00%, and there is no point in adding spherical particles for the purpose of improving moldability.

特に、球状粒子100%でエポキシ樹脂組成物をつくり
、成型性を評価すると、パリ特性が極端に悪化すること
が判っている。球状粒子の平均粒径が、破砕状粒子のそ
れよシも大きhときには、成型性が向上しない。また、
粒度分布が狭い球状粒子の場合は、平均粒径が3〜10
μ専の間でも成型性の向上の効果は不充分である。
In particular, it has been found that when an epoxy resin composition is made with 100% spherical particles and its moldability is evaluated, the Paris properties are extremely deteriorated. When the average particle diameter of the spherical particles is larger than that of the crushed particles, the moldability is not improved. Also,
In the case of spherical particles with a narrow particle size distribution, the average particle size is 3 to 10
The effect of improving moldability is insufficient even among μ-specialized materials.

本発明の組成物は、前記無機質充填剤の他に通常エポキ
シ樹脂、硬化剤及び硬化促進剤を含む。
In addition to the inorganic filler, the composition of the present invention usually contains an epoxy resin, a curing agent, and a curing accelerator.

更に必要に応じて離型剤、難燃剤、表面処理剤、顔料な
どを含む。
Furthermore, it contains a mold release agent, a flame retardant, a surface treatment agent, a pigment, etc. as necessary.

前記エポキシ樹脂としては、ビスフェノール型、フェノ
ールノボラック型もしくはクレゾールノボラック型の各
エポキシ樹脂、トリアジン核含有エポキシ樹脂、グリシ
ジルイソシアネート樹脂等を例示できる。
Examples of the epoxy resin include bisphenol type, phenol novolac type, and cresol novolac type epoxy resins, triazine nucleus-containing epoxy resins, and glycidyl isocyanate resins.

前記硬化剤としては、フェノールノボラック樹脂、酸無
水物、アミン類等を例示できる。
Examples of the curing agent include phenol novolac resins, acid anhydrides, and amines.

前記硬化促進剤としてはフェノール硬化エポキシ樹脂の
硬化反応の触媒となるものは全て用いることができ、例
えばトリエチレンシアよン、2,4゜5−トリ(ジメチ
ルアミノメチル)フェノール、l、8−ジアザビシクロ
(5,4,6)ウンデセン等の三級アミン類、2−メチ
ルイミダゾール等のイミダゾール類、トリフェニルホス
フィン等のリン系化合物等を例示できる。
As the curing accelerator, any catalyst for the curing reaction of the phenol-cured epoxy resin can be used, such as triethylene cyanide, 2,4°5-tri(dimethylaminomethyl)phenol, l,8- Examples include tertiary amines such as diazabicyclo(5,4,6)undecene, imidazoles such as 2-methylimidazole, and phosphorus compounds such as triphenylphosphine.

前記難燃剤としては、臭素化エポキシ樹脂、三酸化アン
チモン等を例示できる。
Examples of the flame retardant include brominated epoxy resin and antimony trioxide.

前記無機質充填剤のしF量は、本発明組成物単を基準と
して60〜80重 量係とするのがよい。60重i%よシ少ないと本発明組
成物の熱膨脹率が大きくなシ、半導体素子から発生する
熱による応力が太きくなう、半導体成形品のリードと封
止樹脂との間のはがれ現象が生じて耐湿性が低下するこ
とがある。一方、80重重量よシ多いとスパイラルフロ
ー値が小さくなり充填不良が生じることがある。
The amount of the inorganic filler is preferably 60 to 80% by weight based on the composition of the present invention. If it is less than 60% by weight, the coefficient of thermal expansion of the composition of the present invention becomes large, the stress due to heat generated from the semiconductor element increases, and the peeling phenomenon between the leads of the semiconductor molded product and the sealing resin occurs. This may result in a decrease in moisture resistance. On the other hand, if the weight is more than 80 weight, the spiral flow value becomes small and filling defects may occur.

本発明組成物は、前述の配合成分をロール、ニーグー、
バンバリーミキサ−等の通常の混練手段で混練すること
によυ、得ることができる。
The composition of the present invention contains the above-mentioned ingredients in rolls, niegoo,
It can be obtained by kneading with a conventional kneading means such as a Banbury mixer.

〔実施例〕〔Example〕

以下に実施例を示すが、本発明はこれらによって限定さ
れるものではない。
Examples are shown below, but the present invention is not limited thereto.

以下の実施例、比較例で用いた原料は次のとおシである
The raw materials used in the following Examples and Comparative Examples are as follows.

エポキシ樹脂: オルトクレゾールノボラック型エポキ
シ樹脂17wt部 硬 化 剤: フェノールノボラック樹脂  IQwt
部硬化仮硬化促進剤リフェニルホスフィン O,15w
t部離 型 剤: モンタン酸ワックス   0.2w
t部難 燃 剤: 臭素化エポキシ樹脂    a  
wt部三酸化アンチモン  1.5wt部 顔   料二 カーボンブラック   0.2wt部無
機質充填剤ニジリカ        82.4vt部実
施例1〜2、比較例1〜4 前述したエポキシ樹脂等を、上記の配合割合で混練し、
冷却後粉砕して封止材を作製した。ここで用いた無機質
充填剤は、表−1に示した球状粒子と破砕状粒子の混合
したものを用いた。
Epoxy resin: Orthocresol novolac type epoxy resin 17wt part Curing agent: Phenol novolak resin IQwt
Partial curing Temporary curing accelerator Riphenylphosphine O, 15w
T part mold release agent: Montan acid wax 0.2w
Part t Flame retardant: Brominated epoxy resin a
wt part Antimony trioxide 1.5 wt part Pigment 2 Carbon black 0.2 wt part Inorganic filler Nisilica 82.4 wt part Examples 1 to 2, Comparative Examples 1 to 4 The above-mentioned epoxy resin etc. were kneaded in the above blending ratio. death,
After cooling, it was crushed to produce a sealing material. The inorganic filler used here was a mixture of spherical particles and crushed particles shown in Table 1.

これらのエポキシ樹脂組成物の評価として、スパイラル
フロー(注1)、パリ特性(注2)を測定した。
As an evaluation of these epoxy resin compositions, spiral flow (Note 1) and Paris properties (Note 2) were measured.

比較例1は、従来用いられている標準的無機質充填材を
使用した例でちる。スパイラルフローはこの比較例1の
値を100として相対値を示しである。比較例2は、球
状粒子が100%の場合であシパリ特性が、実施例と比
較して極端に低下している。また、比較例1の標準的破
砕状粒子の場合と比較しでも、パリ特性は低下している
Comparative Example 1 is an example in which a conventionally used standard inorganic filler was used. The spiral flow is a relative value with the value of Comparative Example 1 being 100. Comparative Example 2 is a case in which spherical particles account for 100%, and the cipher characteristics are extremely lower than those in Examples. Moreover, even when compared with the case of standard crushed particles of Comparative Example 1, the Paris properties are lowered.

比較例3は、実施例とほぼ同じ平均粒径であるが、球状
粒子の粒度分布が狭く、ロジンラムラー分布のn値が1
.5の球状粒子であう、パリ特性が低下しているのが判
る。また、比較例4での球状粒子は、平均粒径が破砕状
粒子よシも大きい粒子であり、この場合は、スパイラル
フローの値が、比較例1の場合とかわらなかった。これ
に対して実施例1〜2に示した本発明による例では、ス
パイラルフローが著しく伸びているにもかかわらず、パ
リ特性は、従来の破砕状粒子よシも向上しておシ、成型
性がよいことがわかる。
Comparative Example 3 has almost the same average particle size as the Example, but the particle size distribution of the spherical particles is narrow, and the n value of the Rosin Rammler distribution is 1.
.. It can be seen that the Paris characteristics of the spherical particles of No. 5 are decreased. Further, the spherical particles in Comparative Example 4 had a larger average particle diameter than the crushed particles, and in this case, the value of spiral flow was not different from that in Comparative Example 1. On the other hand, in the examples according to the present invention shown in Examples 1 and 2, although the spiral flow was significantly extended, the powder properties were improved compared to the conventional crushed particles, and the moldability was improved. It turns out that it is good.

注1) スパイラルフロー EMMI−1−69に準じて測定した。Note 1) Spiral flow Measured according to EMMI-1-69.

パリ特性 1辺が15crILでその中心から放射状に幅が5朋で
、ふかさが10.30.50,75.100μ扉の溝を
つけてなる金型を使用し、この金型に上記で得た樹脂を
充填し、温度175度、圧力50kg/−の条件で成型
を行い、この成型後、溝に流れ出したパリの長さを測定
した。
A mold with a door groove of 15 cr IL on one side, 5 mm in width radially from the center, and a height of 10, 30, 50, 75, 100 μ is used in this mold, and the mold obtained above is used. The resin was filled and molded at a temperature of 175 degrees Celsius and a pressure of 50 kg/-. After molding, the length of the mold that flowed into the groove was measured.

注2) 〔発明の効果〕 本発明によれば、耐熱性及び成形性にすぐれた封止剤を
提供することができる。
Note 2) [Effects of the Invention] According to the present invention, a sealant with excellent heat resistance and moldability can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、実施例及び比較例で用いた無機質球状粒子A
、B及びCのロジンラムラー線図とn値の関係を示す図
である。 以上
Figure-1 shows inorganic spherical particles A used in Examples and Comparative Examples.
, B and C and the relationship between the n value and the rosin Rammler diagram. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)無機質充填剤として、平均粒径の異なる2種類の
粒子を含み、平均粒径の大きい粒子が破砕状粒子であり
、その平均粒径が6〜25μmの範囲にあり、平均粒径
の小さい粒子が球状粒子であり、その平均粒径が3〜1
0μmであり、かつロジンラムラー分布のn値が0.9
〜0.6の範囲にある粒度分布を持つ粒子であり、無機
質充填剤の10〜80wt%を占めており、前記球状粒
子と前記破砕状粒子の平均粒径の比が0.1〜0.9で
あるものを含有してなるエポキシ樹脂組成物。
(1) The inorganic filler contains two types of particles with different average particle sizes, the particles with the larger average particle size are crushed particles, and the average particle size is in the range of 6 to 25 μm. The small particles are spherical particles, and the average particle size is 3 to 1
0 μm, and the n value of the rosin Rammler distribution is 0.9
The particles have a particle size distribution in the range of 0.6 to 0.6, account for 10 to 80 wt% of the inorganic filler, and have a ratio of average particle diameters of the spherical particles to the crushed particles of 0.1 to 0.6. An epoxy resin composition comprising No. 9.
JP20265489A 1989-08-04 1989-08-04 Epoxy resin composition Expired - Lifetime JP2741254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20265489A JP2741254B2 (en) 1989-08-04 1989-08-04 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20265489A JP2741254B2 (en) 1989-08-04 1989-08-04 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH0366744A true JPH0366744A (en) 1991-03-22
JP2741254B2 JP2741254B2 (en) 1998-04-15

Family

ID=16460930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20265489A Expired - Lifetime JP2741254B2 (en) 1989-08-04 1989-08-04 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP2741254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032553A1 (en) * 1997-12-23 1999-07-01 Cookson Singapore Pte Ltd. Epoxy mold compound and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032553A1 (en) * 1997-12-23 1999-07-01 Cookson Singapore Pte Ltd. Epoxy mold compound and method
US6214905B1 (en) 1997-12-23 2001-04-10 Cookson Singapore Pte Ltd C/O Alpha Metals, Inc. Epoxy mold compound and method

Also Published As

Publication number Publication date
JP2741254B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US5940688A (en) Epoxy resin composition and semiconductor device encapsulated therewith
JPH0375570B2 (en)
JPS6157347B2 (en)
JP4264991B2 (en) Thermosetting resin composition and semiconductor device
JPS627211B2 (en)
JPH0366744A (en) Epoxy resin composition
JPH01266152A (en) Silica used as filler in sealing resin
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2576713B2 (en) Epoxy resin composition and semiconductor device
JPH03211A (en) Manufacture of epoxy resin forming material
JPS6296538A (en) Inorganic filler and resin composition
JPS6243452B2 (en)
JPH01263131A (en) Silica for filling sealing resin
JPH11116775A (en) Epoxy resin composition for semiconductor sealing and production thereof
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH08269167A (en) Epoxy resin composition for semiconductor sealing use
JPH02219814A (en) Epoxy resin composition
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP4505888B2 (en) Epoxy resin composition and semiconductor device
JPS61101523A (en) Sealing resin composition
JPH0415262A (en) Filling silica and resin composition containing the same
JP2586002B2 (en) Epoxy resin sealing material
JPS63160255A (en) Semiconductor device
JPS6310616A (en) Sealing resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12