JPH08269167A - Epoxy resin composition for semiconductor sealing use - Google Patents

Epoxy resin composition for semiconductor sealing use

Info

Publication number
JPH08269167A
JPH08269167A JP7877695A JP7877695A JPH08269167A JP H08269167 A JPH08269167 A JP H08269167A JP 7877695 A JP7877695 A JP 7877695A JP 7877695 A JP7877695 A JP 7877695A JP H08269167 A JPH08269167 A JP H08269167A
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
resin composition
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7877695A
Other languages
Japanese (ja)
Other versions
JP3056667B2 (en
Inventor
Masaru Ota
賢 太田
Hiromi Honda
博美 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP7078776A priority Critical patent/JP3056667B2/en
Publication of JPH08269167A publication Critical patent/JPH08269167A/en
Application granted granted Critical
Publication of JP3056667B2 publication Critical patent/JP3056667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE: To obtain an epoxy resin composition having excellent normal temperature storage characteristics, capable of remarkably improving the curing characteristics in molding, exhibiting excellent soldering crack resistance and having high productivity by using a crystalline epoxy resin, a specific cure accelerator and triphenylphosphine. CONSTITUTION: This epoxy resin composition contains (A) a crystalline epoxy resin having a melting point of 50-150 deg.C, (B) a phenolic resin hardener, (C) a cure accelerator of formula I (R<1> is group of formula II or formula III), (D) triphenylphosphine and (E) an inorganic filler (e.g. spherical silica powder) as essential components. The amount of the component E in the total composition is 75-93wt.%. Preferably, the component A is a resin expressed by formula IV (R<3> is II or CH3 ), the amount of the cure accelerator of formula I in the total cure accelerators is >=50wt.% and the amount of the component D is >=10wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂組成物の常温保存
特性、成形性に優れた表面実装対応の半導体封止用エポ
キシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-mountable epoxy resin composition for semiconductors, which is excellent in room-temperature storage characteristics and moldability of the resin composition.

【0002】[0002]

【従来の技術】IC本体を機械的、化学的作用から保護
するためにエポキシ樹脂系半導体封止樹脂組成物が開
発、生産されてきた。この樹脂組成物に要求される項目
は、ICチップの種類、封止されるパッケージの構造、
使用される環境等によって変化しつつある。現在、最も
大きな要求項目は、パッケージを実装する際に発生する
クラック、いわゆる半田クラックの改善であり、この要
求に対し種々検討された結果、無機充填材量を多く含む
樹脂組成物で耐半田クラックはかなり改善された。この
無機充填材の高充填の手法としては、無機充填材の粒度
分布や形状の変更、エポキシ樹脂及びフェノール樹脂の
粘度の低減である。両手法を同時に用いる場合が殆どで
あるが、樹脂粘度の低減によって以下のような問題が発
生している。樹脂の分子量を小さくして樹脂粘度を低く
しており、これにより分子が動き易くなり、反応の初期
段階では架橋反応が速やかに進み、従って樹脂混練時に
一部の架橋反応が進み所定の流動性が発現せず、又同じ
理由から常温でも反応が起こり易く、従って樹脂組成物
の常温保存特性が低下するという欠点があった。更に他
の欠点として、硬化性が低いということが挙げられる。
即ち、樹脂は元々低分子のために、初期の反応性は高い
が反応の最終段階においては逆に架橋密度が十分に上が
らず、封止樹脂組成物の硬化性が低い。
2. Description of the Related Art Epoxy resin type semiconductor encapsulating resin compositions have been developed and produced in order to protect IC bodies from mechanical and chemical effects. Items required for this resin composition are the type of IC chip, the structure of the package to be sealed,
It is changing depending on the environment in which it is used. Currently, the greatest requirement is to improve cracks that occur when mounting a package, so-called solder cracks, and as a result of various studies on this requirement, solder crack resistance in resin compositions containing a large amount of inorganic filler Has improved considerably. The method of highly filling the inorganic filler is to change the particle size distribution and shape of the inorganic filler and reduce the viscosity of the epoxy resin and the phenol resin. In most cases, both methods are used at the same time, but the following problems occur due to the reduction in resin viscosity. The molecular weight of the resin is reduced to lower the viscosity of the resin, which facilitates the movement of molecules, and the crosslinking reaction proceeds rapidly in the initial stage of the reaction, and therefore some crosslinking reaction proceeds during resin kneading and the desired fluidity is achieved. However, for the same reason, the reaction is likely to occur even at room temperature, and thus the room temperature storage characteristics of the resin composition are deteriorated. Still another drawback is low curability.
That is, since the resin originally has a low molecular weight, the initial reactivity is high, but in the final stage of the reaction, on the contrary, the crosslinking density is not sufficiently increased, and the curability of the encapsulating resin composition is low.

【0003】上記の問題を解決するために種々の検討が
なされてきた。例えば、特に表面実装対応封止材に限っ
ていないが、特公昭51−24399号公報にはテトラ
フェニルホスフォニウム・テトラフェニルボレート(以
下TPP−Kという)が常温保存特性と硬化性改善に有
効であることが記載されている。しかし、表面実装対応
の封止用エポキシ樹脂組成物に対しては、このTPP−
Kでは、十分に効果的であるとはいいがたい。特に、常
温保存特性に関していえば、このTPP−Kは、他の従
来の硬化促進剤同様に良好な特性を有していない。
Various studies have been made to solve the above problems. For example, tetraphenylphosphonium tetraphenylborate (hereinafter referred to as TPP-K) is effective for improving room temperature storage characteristics and curability in JP-B-51-24399, although it is not limited to surface mounting encapsulant. Is described. However, for the epoxy resin composition for encapsulation for surface mounting, this TPP-
It is hard to say that K is sufficiently effective. In particular, regarding the room temperature storage characteristics, this TPP-K does not have good characteristics like other conventional curing accelerators.

【0004】[0004]

【発明が解決しようとする課題】本発明は、これらの問
題を解決するために種々の検討の結果なされたものであ
り、結晶性エポキシ樹脂、式(1)の硬化促進剤及びト
リフェニルホスフィンを用いることにより、耐半田クラ
ック性に優れ、成形時の硬化性を大幅に改善すると同時
に、樹脂組成物の常温保存特性を改善できる半導体封止
用エポキシ樹脂組成物を提供するものである。
The present invention has been made as a result of various studies in order to solve these problems, and includes a crystalline epoxy resin, a curing accelerator of the formula (1) and triphenylphosphine. It is intended to provide an epoxy resin composition for semiconductor encapsulation which, when used, has excellent solder crack resistance, greatly improves curability during molding and, at the same time, improves the room temperature storage characteristics of the resin composition.

【0005】[0005]

【課題を解決するための手段】本発明は、融点50〜1
50℃の結晶性エポキシ樹脂、フェノール樹脂硬化剤、
式(1)で示される硬化促進剤、トリフェニルホスフィ
ン及び無機充填材を必須成分とし、かつ全組成物中に該
無機充填材を75〜93重量%含む半導体封止用エポキ
シ樹脂組成物である。
The present invention has a melting point of 50 to 1
50 ° C crystalline epoxy resin, phenolic resin curing agent,
An epoxy resin composition for semiconductor encapsulation, which comprises a curing accelerator represented by the formula (1), triphenylphosphine, and an inorganic filler as essential components, and contains 75 to 93% by weight of the inorganic filler in the entire composition. .

【0006】[0006]

【化5】 Embedded image

【0007】以下、本発明を詳細に説明する。本発明で
用いられる結晶性エポキシ樹脂は、フェニル、ビフェニ
ル、ビスフェノール、ナフタレン等の平面構造を有する
分子を主鎖に有し、比較的低分子で、その結果、結晶性
を示すものである。耐半田クラック性の向上のために全
組成物中の無機充填材量を75〜93重量%とすると、
組成物の粘度を実用可能な水準まで低減する必要があ
り、粘度の低いエポキシ樹脂の使用が望ましい。従来の
エポキシ樹脂、例えばオルソクレゾールノボラック型エ
ポキシ樹脂の低粘度タイプを用いても、溶融粘度が十分
に低下せず、かつエポキシ樹脂自体が常温で融け易く、
作業性に難点があった。本発明に用いる結晶性エポキシ
樹脂は、これらの難点を一挙に解決することのできるも
のである。このエポキシ樹脂は、結晶性が高いため常温
では固体であるが、一旦溶融すると極めて低粘度の液体
になる特性を有している。結晶性エポキシ樹脂の中で好
ましいものとしては、式(2)のビフェニル型エポキシ
樹脂、式(3)のビスフェノール型エポキシ樹脂及び式
(4)のナフタレン型エポキシ樹脂が挙げられ、これら
は単独でも混合して用いても差し支えない。式(2)中
のR2はメチル基が好ましく、また式(3)中のR3もメ
チル基が好ましい。
Hereinafter, the present invention will be described in detail. The crystalline epoxy resin used in the present invention has a molecule having a planar structure such as phenyl, biphenyl, bisphenol, and naphthalene in the main chain, is a relatively low molecule, and as a result, exhibits crystallinity. When the amount of the inorganic filler in the entire composition is 75 to 93% by weight for improving the solder crack resistance,
It is necessary to reduce the viscosity of the composition to a practical level, and it is desirable to use an epoxy resin having a low viscosity. Even if a conventional epoxy resin, for example, a low-viscosity type of ortho-cresol novolac type epoxy resin is used, the melt viscosity is not sufficiently lowered, and the epoxy resin itself easily melts at room temperature,
There was a difficulty in workability. The crystalline epoxy resin used in the present invention can solve these problems all at once. This epoxy resin is solid at room temperature because of its high crystallinity, but has a property of becoming an extremely low-viscosity liquid once melted. Among the crystalline epoxy resins, preferred are the biphenyl type epoxy resin of the formula (2), the bisphenol type epoxy resin of the formula (3) and the naphthalene type epoxy resin of the formula (4), which may be used alone or as a mixture. You can use it later. R 2 in formula (2) is preferably a methyl group, and R 3 in formula (3) is also preferably a methyl group.

【0008】[0008]

【化6】 [Chemical 6]

【0009】[0009]

【化7】 [Chemical 7]

【0010】[0010]

【化8】 Embedded image

【0011】本発明の結晶性エポキシ樹脂は、常温保存
特性、成形時の硬化特性及び耐半田クラック性を損なわ
ない範囲で他のエポキシ樹脂、例えばオルソクレゾール
ノボラック型エポキシ樹脂、ビスフェノールA型エポキ
シ樹脂、ビスフェノールF型エポキシ樹脂等と併用して
もよい。結晶性エポキシ樹脂の融点(測定方法:DSC
法)は,50〜150℃である必要がある。融点が50
℃未満だと常温にて融解しやすく、前混合工程等での作
業性に難点がある。又融点が150℃を越えると混練装
置中で融解せず、均一な混練ができない。
The crystalline epoxy resin of the present invention is another epoxy resin such as orthocresol novolac type epoxy resin, bisphenol A type epoxy resin, etc. within the range of not impairing the room temperature storage property, the curing property at the time of molding and the solder crack resistance. You may use together with a bisphenol F type epoxy resin etc. Melting point of crystalline epoxy resin (measurement method: DSC
Method) must be 50 to 150 ° C. Melting point 50
If it is less than ℃, it is easy to melt at room temperature, and there is a problem in workability in the pre-mixing process. If the melting point exceeds 150 ° C., it will not melt in the kneading device, and uniform kneading will not be possible.

【0012】本発明に用いられるフェノール樹脂硬化剤
は、上記のエポキシ樹脂と硬化反応を行い架橋構造を形
成することができる少なくとも2個以上のフェノール性
水酸基を有するモノマー、オリゴマー、ポリマー全般を
指し、例えばフェノールノボラック樹脂、パラキシリレ
ン変性フェノール樹脂、メタキシリレン・パラキシリレ
ン変性フェノール樹脂等のフェノールアラルキル樹脂、
テルペン変性フェノール樹脂、ジシクロペンタジエン変
性フェノール樹脂等が挙げられ、これらは単独でも混合
して用いても差し支えない。軟化点、水酸基当量等も特
に規定するものではないが、樹脂中の塩素含有量は極力
低い方が長期信頼性の点から好ましい。表面実装対応の
樹脂組成物には、キシリレン変性フェノール樹脂硬化剤
がより望ましい。これは化学構造から分かるように、水
酸基濃度が低いので、成形品の吸水率が小く、又キシリ
レンとフェノールが結合している構造のために分子が適
度の屈曲性を有し、硬化反応に於ける立体障害が少な
く、かつ硬化性の阻害も少なく、更に平均分子量を小さ
くすることによって低粘度化が可能であり、平均分子量
を小さくしても化学構造から硬化性の低下等を起こしに
くいという特徴を有している。全組成物中の無機充填材
量を75〜93重量%とするには、エポキシ樹脂同様、
粘度の低いフェノール樹脂硬化剤、即ち分子量の小さい
硬化剤を使用することが望ましい。
The phenol resin curing agent used in the present invention refers to all monomers, oligomers and polymers having at least two phenolic hydroxyl groups capable of forming a crosslinked structure by curing reaction with the above epoxy resin, For example, phenol novolac resin, para-xylylene-modified phenol resin, phenol-aralkyl resin such as meta-xylylene / para-xylylene-modified phenol resin,
Examples thereof include terpene-modified phenol resin and dicyclopentadiene-modified phenol resin, and these may be used alone or in combination. Although the softening point, the hydroxyl group equivalent, etc. are not particularly specified, it is preferable that the chlorine content in the resin is as low as possible from the viewpoint of long-term reliability. A xylylene-modified phenolic resin curing agent is more desirable for the surface-mountable resin composition. As you can see from the chemical structure, this is because the hydroxyl group concentration is low, so the water absorption of the molded product is small, and due to the structure in which xylylene and phenol are bonded, the molecule has an appropriate degree of flexibility, which makes it difficult for the curing reaction. There is little steric hindrance in the process, and there is little curability inhibition, and it is possible to lower the viscosity by reducing the average molecular weight, and even if the average molecular weight is reduced, it is difficult for the curability to decrease due to the chemical structure. It has features. In order to set the amount of the inorganic filler in the entire composition to 75 to 93% by weight, the same as with the epoxy resin,
It is desirable to use a phenolic resin hardener having a low viscosity, that is, a hardener having a low molecular weight.

【0013】本発明に用いられる式(1)の硬化促進剤
について詳細に説明する。半導体封止用エポキシ樹脂組
成物に要求される常温保存特性の向上、成形時の硬化性
の向上、及び樹脂組成物の低粘度化等を計るために硬化
促進剤に要求される特性は、常温での活性は低いが高い
温度の印加時のみに活性を発現し、一旦活性が発現する
と、従来の硬化促進剤よりも強い触媒活性を示すことで
ある。リン系の硬化促進剤をベースに、これらの条件を
満たす硬化促進剤を考えてみると、以下の条件が考えら
れる。 常温において低活性、高温において高活性であるこ
と。 活性中心である非共役電子対が何らかの保護基でキャッ
プされていることにより達成できると思われる。常温時
はキャップは外れないが、高温が印加されるとキャップ
が外れて反応性が発現する。式(1)中のキャップに相
当するものは、式(5)に示されるテトラ有機酸ボレー
トである。
The curing accelerator of the formula (1) used in the present invention will be described in detail. The properties required for the curing accelerator in order to improve the room temperature storage properties required for the epoxy resin composition for semiconductor encapsulation, the curability during molding, and the viscosity of the resin composition are The activity is low but the activity is expressed only when a high temperature is applied, and once the activity is expressed, the activity is stronger than that of the conventional curing accelerator. Considering a curing accelerator satisfying these conditions based on a phosphorus-based curing accelerator, the following conditions can be considered. Low activity at room temperature and high activity at high temperature. It could be achieved by capping the active center, the non-conjugated electron pair, with some protecting group. At room temperature, the cap does not come off, but when high temperature is applied, the cap comes off and reactivity develops. The one corresponding to the cap in the formula (1) is the tetraorganic acid borate represented by the formula (5).

【0014】[0014]

【化9】 [Chemical 9]

【0015】低温ではこのテトラ有機酸ボレートは、テ
トラフェニルホスフォニウムカチオンとイオン結合して
おり外れないので、触媒反応を阻害しているが、高温が
印加されるとテトラ有機酸ボレートが解離し、活性中心
であるリンが露出され反応が進行する。テトラフェニル
ホスフォニウム部と、テトラ有機酸ボレート部の解離に
は高い活性化エネルギーが必要であると考えられる。そ
のため触媒反応の活性化エネルギーが高くなり、結果と
して硬化反応速度の温度依存性が高くなり、低温での反
応性は低いが、高温での反応性は非常に高いという理想
的な潜在性硬化促進剤の反応挙動を示す。従って常温に
おける保存性の向上、混練時に反応が少ないために封止
樹脂組成物の低粘度化、更に高温印加時の高い反応性等
が達成可能である。
At a low temperature, the tetraorganic acid borate dissociates with the tetraphenylphosphonium cation because it does not come off, so it inhibits the catalytic reaction. However, when a high temperature is applied, the tetraorganic acid borate dissociates. , The active center, phosphorus, is exposed and the reaction proceeds. It is considered that a high activation energy is required for dissociating the tetraphenylphosphonium portion and the tetraorganic acid borate portion. As a result, the activation energy of the catalytic reaction is high, and as a result, the curing reaction rate is highly temperature dependent, the reactivity at low temperatures is low, but the reactivity at high temperatures is very high. The reaction behavior of the agent is shown. Therefore, it is possible to improve the storage stability at room temperature, reduce the viscosity of the encapsulating resin composition because of less reaction during kneading, and achieve high reactivity at the time of high temperature application.

【0016】活性中心と保護基の結合が強すぎないこ
と。 例えば、TPP−Kはテトラフェニルホスフォニウムカ
チオンと、テトラフェニルボレートのアニオンのイオン
結合が強力なので、融点が300℃となり樹脂組成物の
製造時に、単に混練しても均一分散ができず、硬化促進
剤としての効果を十分に発現させることができない。そ
こでTPP−Kを原料の一部に予め溶融混合した後に樹
脂組成物に混練する手法が一般的である。しかしこの方
法では、TPP−Kが溶融混練時に、既に保護基のテト
ラフェニルボレートが外れた構造となるために、低温で
の反応性が高くなり、常温での保存性が低下し、目的と
する効果が十分に発現しない。そこで、テトラフェニル
ホスフォニウムカチオンとその保護基の結合力をある程
度弱めた構造が望まれる。具体的には、ボロンに結合す
る官能基の種類をフェニル基よりも電子吸引性の高い官
能基に変えれば、ボレートアニオンの陰イオン性が低減
し、テトラフェニルホスフォニウムカチオンとのイオン
結合が弱くなり、その結果、融点が200〜250℃と
なり樹脂組成物の製造時に、単に混練しても均一分散が
可能となる。なお、樹脂組成物の混練温度は、通常80
〜120℃である。従って、これ以上の温度の融点を有
する原料を均一分散させることは一般には困難と考えら
れる。しかし、式(1)の硬化促進剤のように樹脂との
親和性が大きい化合物は、多少融点が高くても溶媒効果
によって均一分散が可能である。但し、TPP−Kのよ
うに融点が300℃を越える材料であると混練のみによ
る分散は困難である。
The bond between the active center and the protecting group should not be too strong. For example, TPP-K has a strong ionic bond between a tetraphenylphosphonium cation and an anion of tetraphenylborate, and thus has a melting point of 300 ° C. and cannot be uniformly dispersed even if it is simply kneaded during the production of the resin composition, and thus cured. The effect as a promoter cannot be fully expressed. Therefore, a method is generally used in which TPP-K is melt-mixed with a part of the raw material in advance and then kneaded with the resin composition. However, in this method, since TPP-K has a structure in which tetraphenylborate, which is a protective group, has already been removed during melt-kneading, reactivity at a low temperature becomes high, and storage stability at a normal temperature is lowered. The effect is not fully expressed. Therefore, a structure in which the binding force between the tetraphenylphosphonium cation and its protective group is weakened to some extent is desired. Specifically, if the type of the functional group that binds to boron is changed to a functional group having a higher electron-withdrawing property than the phenyl group, the anionic property of the borate anion is reduced, and the ionic bond with the tetraphenylphosphonium cation is reduced. As a result, the melting point becomes 200 to 250 ° C., and uniform dispersion is possible by simply kneading during the production of the resin composition. The kneading temperature of the resin composition is usually 80.
~ 120 ° C. Therefore, it is generally considered difficult to uniformly disperse a raw material having a melting point higher than this temperature. However, a compound having a high affinity with a resin, such as the curing accelerator of the formula (1), can be uniformly dispersed by the solvent effect even if the melting point is somewhat high. However, if the material has a melting point exceeding 300 ° C., such as TPP-K, it is difficult to disperse it only by kneading.

【0017】融点が200〜250℃になると、フェノ
ール樹脂硬化剤等の他の材料との溶融混合の工程が不必
要になるのみならず、保護基を外さない状態で硬化促進
剤を樹脂組成物中に分散できるので常温での高い保存
性、混練時の低反応性、即ち低温に於ける低い反応性が
発現可能となる。式(1)中のR1は、芳香族でありフ
ェニル基、ナフチル基が特に望ましい。本発明の硬化促
進剤の融点は特に限定するものではないが、均一分散の
点から250℃以下がより好ましい。
When the melting point is 200 to 250 ° C., not only the step of melt mixing with other materials such as a phenol resin curing agent becomes unnecessary, but also the curing accelerator is added to the resin composition without removing the protective group. Since it can be dispersed therein, high storage stability at room temperature and low reactivity at the time of kneading, that is, low reactivity at low temperature can be exhibited. R 1 in the formula (1) is aromatic, and a phenyl group or a naphthyl group is particularly desirable. The melting point of the curing accelerator of the present invention is not particularly limited, but is preferably 250 ° C. or lower from the viewpoint of uniform dispersion.

【0018】本発明の硬化促進剤は、単独で用いても優
れた効果を発現するが、トリフェニルホスフィンと併用
すると、更にバランスの優れた効果を発現する。しか
し、本発明の硬化促進剤の特徴である低温での反応性の
低さは、混練温度域での反応性の極端な低さにつなが
り、混練時に樹脂中の低分子成分の反応まで抑制され、
成形時のウスバリが発生し易くなる。また、この硬化促
進剤は構造中に有機酸成分を含んでいるために、封止材
としての信頼性が若干ではあるが低下する傾向にある。
本発明の硬化促進剤と比べて潜在性や硬化性は劣るが、
信頼性に優れ、低温での反応促進作用があるトリフェニ
ルホスフィンを併用することによって、性能のバランス
をとることができる。本発明に用いる硬化促進剤は、式
(1)の硬化促進剤とトリフェニルホスフィンを必須成
分とするが、他の硬化促進剤と併用してもかまわない。
全硬化促進剤中に占める式(1)の硬化促進剤量は50
重量%以上で、かつトリフェニルホスフィン量は10重
量%以上が好ましい。式(1)の硬化促進剤が50重量
%未満だと、上記の効果が充分に発現されず、従来の硬
化促進剤系と同様の結果となる。トリフェニルホスフィ
ンが、10重量%未満だと成形時のウスバリ特性や信頼
性が低下する。併用できる硬化促進剤としては、例えば
テトラフェニルホスフォニウム・テトラフェニルボレー
ト、1,8−ジアザビシクロ(5,4,0)ウンデセン
−7、2−メチルイミダゾール等が挙げられる。
The curing accelerator of the present invention exhibits excellent effects when used alone, but when it is used in combination with triphenylphosphine, an even more excellent effect is exhibited. However, the low reactivity at low temperature, which is a characteristic of the curing accelerator of the present invention, leads to an extremely low reactivity in the kneading temperature range, and even the reaction of low molecular components in the resin is suppressed during kneading. ,
It is easy for usability to occur during molding. Further, since this curing accelerator contains an organic acid component in its structure, the reliability as a sealing material tends to be slightly reduced.
Although the latency and curability are inferior as compared with the curing accelerator of the present invention,
The performance can be balanced by using triphenylphosphine, which is highly reliable and has a reaction promoting action at low temperature, in combination. The curing accelerator used in the present invention contains the curing accelerator of formula (1) and triphenylphosphine as essential components, but it may be used in combination with other curing accelerators.
The amount of the curing accelerator of the formula (1) in the total curing accelerator is 50.
The amount of triphenylphosphine is preferably not less than 10% by weight and the amount of triphenylphosphine is not less than 10% by weight. When the amount of the curing accelerator of the formula (1) is less than 50% by weight, the above effect is not sufficiently exhibited and the same result as that of the conventional curing accelerator system is obtained. If the content of triphenylphosphine is less than 10% by weight, the usability characteristics and reliability during molding are deteriorated. Examples of the curing accelerator that can be used in combination include tetraphenylphosphonium tetraphenylborate, 1,8-diazabicyclo (5,4,0) undecene-7, and 2-methylimidazole.

【0019】本発明で用いられる無機充填材としては、
溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2
次凝集シリカ粉末、アルミナ等が挙げられ、特に封止用
樹脂組成物の流動性の向上という点から、球状シリカ粉
末が望ましい。球状シリカ粉末の形状は、流動性改善の
ために粒子自体の形状は限りなく真球状であること、更
に粒度分布がブロードで有ることが望ましい。又無機充
填材の配合量としては、耐半田クラック性から全組成物
中に75〜93重量%が望ましい。無機充填材量が75
重量%未満だと、低吸水率化が得られず耐半田クラック
性が不十分である。93重量%を越えると高粘度化によ
り半導体パッケージ内部の金線変形を引き起こす。
As the inorganic filler used in the present invention,
Fused silica powder, spherical silica powder, crystalline silica powder, 2
Examples of the secondary agglomerated silica powder, alumina, and the like are preferable, and spherical silica powder is preferable from the viewpoint of improving the fluidity of the encapsulating resin composition. As for the shape of the spherical silica powder, it is desirable that the shape of the particles themselves be infinitely spherical in order to improve fluidity, and that the particle size distribution is broad. Further, the amount of the inorganic filler compounded is preferably 75 to 93% by weight in the whole composition from the viewpoint of solder crack resistance. The amount of inorganic filler is 75
If it is less than weight%, the water absorption cannot be lowered and the solder crack resistance is insufficient. If it exceeds 93% by weight, the high viscosity causes deformation of the gold wire inside the semiconductor package.

【0020】本発明の樹脂組成物は、エポキシ樹脂、フ
ェノール樹脂硬化剤、硬化促進剤及び無機充填材以外
に、必要に応じてカーボンブラック等の着色剤、ブロム
化エポキシ樹脂、三酸化アンチモン等の難燃剤、γ−グ
リシドキシプロピルトリメトキシシラン等のカップリン
グ剤、シリコーンオイル、ゴム等の低応力成分を添加す
ることができる。本発明のエポキシ樹脂組成物は、エポ
キシ樹脂、フェノール樹脂硬化剤、硬化促進剤、無機充
填材、その他添加剤をミキサーにて常温混合し、ロー
ル、押し出し機等の混練機にて混練し、冷却後粉砕し成
形材料とすることができる。
The resin composition of the present invention contains, in addition to the epoxy resin, the phenol resin curing agent, the curing accelerator and the inorganic filler, a coloring agent such as carbon black, a brominated epoxy resin, antimony trioxide and the like, if necessary. A flame retardant, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a low stress component such as silicone oil and rubber can be added. The epoxy resin composition of the present invention is an epoxy resin, a phenol resin curing agent, a curing accelerator, an inorganic filler, and other additives are mixed at room temperature with a mixer, kneaded with a kneader such as a roll or an extruder, and cooled. It can be pulverized afterwards to obtain a molding material.

【0021】以下本発明を実施例にて具体的に説明す
る。 実施例1 下記組成物 式(6)のビフェニル型エポキシ樹脂 9.37重量部
The present invention will be specifically described below with reference to examples. Example 1 The following composition 9.37 parts by weight of biphenyl type epoxy resin of formula (6)

【0022】[0022]

【化10】 (融点105℃)[Chemical 10] (Melting point 105 ° C)

【0023】 式(9)のフエノールノボラック樹脂 5.08重量部5.08 parts by weight of phenol novolac resin of formula (9)

【0024】[0024]

【化11】 (軟化点80℃、水酸基当量105、n=3.2)[Chemical 11] (Softening point 80 ° C., hydroxyl equivalent 105, n = 3.2)

【0025】 球状シリカ(平均粒径15μm) 84重量部 式(13)の硬化促進剤B 0.35重量部Spherical silica (average particle size 15 μm) 84 parts by weight Curing accelerator B of formula (13) 0.35 parts by weight

【0026】[0026]

【化12】 (融点212℃)[Chemical 12] (Melting point 212 ° C)

【0027】 トリフェニルホスフィン 0.10重量部 カーボンブラック 0.2重量部 カルナバワックス 0.3重量部 臭素化フェノールノボラック型エポキシ樹脂(エポキシ当量275) 0.2重量部 三酸化アンチモン 0.4重量部 を、ミキサーにて常温混合後100℃で二軸ロールにて
混練し、冷却後粉砕し成形材料とした。得られた成形材
料のスパイラルフロー、ゲルタイム、ウスバリ、常温保
存性、硬化性、更にこの成形材料で半導体素子を封止し
た成形品の耐半田性を評価した。評価結果を表1に示
す。
Triphenylphosphine 0.10 parts by weight Carbon black 0.2 parts by weight Carnauba wax 0.3 parts by weight Brominated phenol novolac type epoxy resin (epoxy equivalent 275) 0.2 parts by weight Antimony trioxide 0.4 parts by weight Was mixed at room temperature with a mixer, kneaded with a biaxial roll at 100 ° C., cooled, and then pulverized to obtain a molding material. The spiral flow, gel time, usability, room temperature preservability and curability of the obtained molding material, and the solder resistance of a molded article in which a semiconductor element was sealed with this molding material were evaluated. Table 1 shows the evaluation results.

【0028】評価方法 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用い、金型温度175℃、注
入圧力70kg/cm2、硬化時間2分で測定。 ゲルタイム :175℃に加熱した熱板上で樹脂組
成物を溶融後、へらで練りながら硬化するまでの時間を
測定。 ウスバリ :16pDIP成形時のベントバリの
長さを測定。 常温保存性 :樹脂組成物を25℃にて1週間保存
した後、スパイラルフローを測定。初期のスパイラルフ
ロー長さを100%としたときの割合を%で示す。 硬化性 :ショアD硬度計を用い、金型温度1
75℃、硬化時間2分で測定。 耐半田性 :80pQFP(厚さ1.5mm)を
8個、85℃、85%、168時間処理した後、IRリ
フロー(240℃)にて10秒処理後のパッケージクラ
ック個数を目視で観察。 PCBT :16pDIPを15個、ピン間に2
0Vの電圧を印加しながら125℃、100%RHにて
200時間処理した後の不良の数。
Evaluation method Spiral flow: Measured at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes using a mold for spiral flow measurement according to EMMI-I-66. Gel time: Measure the time until the resin composition is melted on a hot plate heated to 175 ° C. and then cured while kneading with a spatula. Usvari: Measures the length of vent burrs during 16 pDIP molding. Normal temperature storability: The spiral flow was measured after the resin composition was stored at 25 ° C for 1 week. The ratio is shown in% when the initial spiral flow length is 100%. Curability: Using a Shore D hardness meter, mold temperature 1
Measured at 75 ° C and curing time of 2 minutes. Solder resistance: Eight 80 pQFP (thickness 1.5 mm) were treated at 85 ° C., 85% for 168 hours, and then visually observed for the number of package cracks after IR reflow (240 ° C.) for 10 seconds. PCBT: 15 16pDIP, 2 between pins
The number of defects after processing for 200 hours at 125 ° C. and 100% RH while applying a voltage of 0V.

【0029】実施例2〜13 表1、表2の処方に従って配合し、実施例1と同様にし
て成形材料を得、同様に評価した。これらの評価結果を
表1、表2に示す。 比較例1〜11 表3、表4の処方に従って配合し、実施例1と同様にし
て成形材料を得、同様に評価した。比較例8で用いるテ
トラフェニルホスフォニウム・テトラフェニルボレート
の溶融混合物とは、式(10)のフェノール樹脂80重
量部に対し、テトラフェニルホスフォニウム・テトラフ
ェニルボレート20重量部を溶融混合したものである。
評価結果を表3、表4に示す。以下に実施例、比較例に
用いたエポキシ樹脂の式(4)、式(7)、式(1
1)、フェノール樹脂硬化剤の式(10)及び硬化促進
剤Aの式(12)の構造式を示す。
Examples 2 to 13 Compounding was performed according to the formulations shown in Tables 1 and 2, and molding materials were obtained in the same manner as in Example 1 and evaluated in the same manner. The evaluation results are shown in Tables 1 and 2. Comparative Examples 1 to 11 Compounding was performed according to the formulations shown in Tables 3 and 4, and a molding material was obtained in the same manner as in Example 1 and evaluated in the same manner. The melt mixture of tetraphenylphosphonium / tetraphenylborate used in Comparative Example 8 is a mixture of 80 parts by weight of the phenol resin of the formula (10) and 20 parts by weight of tetraphenylphosphonium / tetraphenylborate. Is.
The evaluation results are shown in Tables 3 and 4. The formulas (4), (7) and (1) of the epoxy resins used in Examples and Comparative Examples are shown below.
1), structural formulas of the phenol resin curing agent (10) and the curing accelerator A (12) are shown.

【0030】式(4)Equation (4)

【化13】 (融点51℃)[Chemical 13] (Melting point 51 ° C)

【0031】式(7)Equation (7)

【化14】 (融点80℃)Embedded image (Melting point 80 ° C)

【0032】式(11)Equation (11)

【化15】 (軟化点55℃、エポキシ当量201、n=3.4)[Chemical 15] (Softening point 55 ° C., epoxy equivalent 201, n = 3.4)

【0033】式(10)Formula (10)

【化16】 (軟化点73℃、水酸基当量175、n=2.5)Embedded image (Softening point 73 ° C., hydroxyl equivalent 175, n = 2.5)

【0034】式(12)Equation (12)

【化17】 (融点240℃)[Chemical 17] (Melting point 240 ° C)

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【発明の効果】本発明による樹脂組成物は、常温保存特
性に優れ、成形時の硬化特性を大幅に改善でき、かつ耐
半田クラック性に優れており生産性を大きく向上でき
る。
EFFECT OF THE INVENTION The resin composition according to the present invention has excellent room temperature storage characteristics, can significantly improve the curing characteristics at the time of molding, and has excellent solder crack resistance, and can greatly improve productivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 23/31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 融点50〜150℃の結晶性エポキシ樹
脂、フェノール樹脂硬化剤、式(1)で示される硬化促
進剤、トリフェニルホスフィン及び無機充填材を必須成
分とし、かつ全組成物中に該無機充填材を75〜93重
量%含むことを特徴とする半導体封止用エポキシ樹脂組
成物。 【化1】
1. A crystalline epoxy resin having a melting point of 50 to 150 ° C., a phenol resin curing agent, a curing accelerator represented by the formula (1), triphenylphosphine and an inorganic filler as essential components, and in the entire composition. An epoxy resin composition for semiconductor encapsulation, comprising 75 to 93% by weight of the inorganic filler. Embedded image
【請求項2】 結晶性エポキシ樹脂が、式(2)、式
(3)及び式(4)から選択される1種以上の樹脂であ
る請求項1記載の半導体封止用エポキシ樹脂組成物。 【化2】 【化3】 【化4】
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the crystalline epoxy resin is one or more resins selected from the formula (2), the formula (3) and the formula (4). Embedded image Embedded image [Chemical 4]
【請求項3】 全硬化促進剤量中に、式(1)で示され
る硬化促進剤が50重量%以上で、かつトリフェニルホ
スフィンが10重量%以上である請求項1又は請求項2
記載の半導体封止用エポキシ樹脂組成物。
3. The curing accelerator represented by the formula (1) is 50% by weight or more and the triphenylphosphine is 10% by weight or more in the total amount of the curing accelerator.
The epoxy resin composition for semiconductor encapsulation described.
JP7078776A 1995-04-04 1995-04-04 Epoxy resin composition for semiconductor encapsulation Expired - Lifetime JP3056667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7078776A JP3056667B2 (en) 1995-04-04 1995-04-04 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7078776A JP3056667B2 (en) 1995-04-04 1995-04-04 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH08269167A true JPH08269167A (en) 1996-10-15
JP3056667B2 JP3056667B2 (en) 2000-06-26

Family

ID=13671312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7078776A Expired - Lifetime JP3056667B2 (en) 1995-04-04 1995-04-04 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3056667B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233933A (en) * 2000-02-23 2001-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US6306792B1 (en) * 1997-12-03 2001-10-23 Sumitomo Bakelite Company Limited Evaluating moisture resistance reliability of phosphonium borate catalyst
KR100500067B1 (en) * 1997-01-24 2005-09-26 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy Resin Composition and Semiconductor Device
KR100564857B1 (en) * 1997-01-08 2006-08-30 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy Resin Composition for Sealing Semiconductor and Semiconductor Device
WO2011041340A1 (en) * 2009-09-30 2011-04-07 Dow Global Technologies Inc. Epoxy resin compositions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564857B1 (en) * 1997-01-08 2006-08-30 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy Resin Composition for Sealing Semiconductor and Semiconductor Device
KR100500067B1 (en) * 1997-01-24 2005-09-26 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy Resin Composition and Semiconductor Device
US6306792B1 (en) * 1997-12-03 2001-10-23 Sumitomo Bakelite Company Limited Evaluating moisture resistance reliability of phosphonium borate catalyst
US6524989B2 (en) 1997-12-03 2003-02-25 Sumitomo Bakelite Company Limited Tetraorganophosponium dicyclic tetraorganoborate catalyst
US6881812B2 (en) 1997-12-03 2005-04-19 Sumitomo Bakelite Company, Ltd. Thermosetting resin and tetraorganophosphonium dicyclic tetraorganoborane catalyst
US6946421B2 (en) 1997-12-03 2005-09-20 Sumitomo Bakelite Company Limited Latent catalyst
JP2001233933A (en) * 2000-02-23 2001-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2011041340A1 (en) * 2009-09-30 2011-04-07 Dow Global Technologies Inc. Epoxy resin compositions

Also Published As

Publication number Publication date
JP3056667B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JPH0329259B2 (en)
JP3056667B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JPH09328535A (en) Latent catalyst and thermosetting resin composition containing the same
JPS6326128B2 (en)
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3102276B2 (en) Method for producing epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP2576713B2 (en) Epoxy resin composition and semiconductor device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP2003327666A (en) Epoxy resin composition and semiconductor sealed device
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JPH11116775A (en) Epoxy resin composition for semiconductor sealing and production thereof
JP2939166B2 (en) Latent catalyst and thermosetting resin composition containing the catalyst
JPH1045872A (en) Epoxy resin composition
JPH0645740B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4794706B2 (en) Epoxy resin composition and semiconductor device
JPH1045873A (en) Epoxy resin composition for sealing of semiconductor
JPH08109246A (en) Epoxy resin composition for sealing of semiconductor
JP4270059B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2000212397A (en) Epoxy resin composition and semiconductor apparatus
JP2003155329A (en) Epoxy resin composition and semiconductor device
JP3145686B2 (en) Epoxy resin composition and semiconductor encapsulation device
KR101125118B1 (en) Epoxy resin composition
JP3317473B2 (en) Epoxy resin composition
JPH02245055A (en) Sealing resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

EXPY Cancellation because of completion of term