JPH036641B2 - - Google Patents

Info

Publication number
JPH036641B2
JPH036641B2 JP56201278A JP20127881A JPH036641B2 JP H036641 B2 JPH036641 B2 JP H036641B2 JP 56201278 A JP56201278 A JP 56201278A JP 20127881 A JP20127881 A JP 20127881A JP H036641 B2 JPH036641 B2 JP H036641B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth magnet
single crystal
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56201278A
Other languages
Japanese (ja)
Other versions
JPS58102503A (en
Inventor
Katsuhiko Yahagi
Tadao Iwaki
Yoshio Inokoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56201278A priority Critical patent/JPS58102503A/en
Publication of JPS58102503A publication Critical patent/JPS58102503A/en
Publication of JPH036641B2 publication Critical patent/JPH036641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類元素とその他の元素からなる合
金である単結晶希土類磁石の製造方法である。 希土類磁石は磁気特性が優れており広く用いら
れつつある。そして高い磁気特性を得るために希
土類元素(Rと称す)とその他の元素(Mと称
す)の合金(R・M合金と称す)を粉末とし高密
度に結合して磁石としている。一般には結合方法
として有機バインダーや無機バインダーを混合や
侵入させて固化する方法がある。又プレス成形や
磁場中プレス成形後焼結する方法がとられてい
る。 しかしこのような結晶粒の集合体である多結晶
合金は磁気特性が優れているとは言え、密度が
100%でなく、又磁気の配向度すなわち方位が100
%一方向にそろつていないことから磁気特性が十
分出ていない欠点を有する。 本発明は上記欠点を改良し密度を高く、しかも
配向度が一方にそろつた単結晶を容易に製造する
ことを可能とすることによつて優れた磁気特性を
得ることを可能としたものである。 希土類磁石はRとしてSm、Pr、Ce、ScY、
La、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、
Yb、Luの一種以上とMとしてCo、Fe、Cu、
Mn、Cr、Ni等の一種以上を主成分とするが、場
合によつて添加元素として次の元素を一種以上加
えると磁気特性は向上する。すなわちTi、Zr、
Hf、Nb、Ta、V等の遷移金属、Au、Pt、Ag等
の貴金属、Zn、In、Sn、Sb等の低融点金属、
Be、Mg等のA族、B、Al、Si、Te、C、P、
Ge等の半金属、半導体元素等がある。 そしてこれらの元素を溶解し合金とした後、粉
末にし、磁場中等で成形した後、結合させ固める
ことにより多結晶磁石とする方法が従来から行な
われてきている。しかしこの従来の方法は密度は
粉末集合体の多結合であるため100%でなく低く、
磁場で配向しても100%の配向は難かしく、焼結
でこれらの配向もくずれてしまうことからどうし
ても磁気特性の劣化はさけられない欠点を有す
る。このために密度100%、配向度100%である単
結晶を容易に製造することによりこの欠点を解決
し磁気特性を向上することが可能とした。又単結
晶製造法として溶融法として単純固化法、引上げ
法、ベルヌーイ法、浮遊帯溶融法、ブリツジヤン
法、等がある。しかしこれらは合金を高温で溶融
するため組成が蒸発し変動したり、固化する時に
クラツクや大きな歪が残る。又ルツボ等から不純
物の混入がありこれらの原因で良質な単結晶は得
ることが難かしく、磁気特性も優れた物が得られ
ない欠点を有する。更に任意の形状例えば板状等
の形に固化することは難かしく、工業的にも高価
な材料となる欠点を有する。 本発明はこれらの諸々の欠点を解決できる再結
晶法により良質な磁気特性の優れた、任意の形状
の頼結晶磁石を製造することを可能とした。 本発明はR・M合金インゴツト又は粉末を成形
したブロツクを融点以下の温度で加熱する方法で
ある。そして加熱は一方向からゆつくり行ない再
結晶を一方向から行ない多結晶合金体を単結晶化
して行く方法である。 特に再結晶が十分進行するために、多結晶体に
圧縮、引張り等の機械的変形を若干与え、歪を付
写することによつて良質・大型単結晶が可能とな
る。特に1〜5%位の歪を与えておくと良い。1
%以下では効果が少なく、5%以上ではクラツク
等が発生し好ましくない。合金粉末を固めた多結
晶体を使用する場合特に粉末を磁場中(約1万
Oe)で配向しておくことにより、再結晶が一方
向に進め良質大型単結晶を得ることができ磁気特
性の優れた単結晶となる。又更に磁場中配向した
ブロツク成形体を焼結し固め、十分密度をあげて
おくことにより再結晶は進行しやすく全体が完全
な単結晶になりやすい。これらはやはり変形を与
え、歪を付与しておくと単結晶に容易になりやす
い。 この様に融点以下の温度のため組成の蒸発が少
なく組成変動が防げる、溶融しないため不純物、
ガス等が入らない、溶融から固化することが無い
ため組成の場所による変動が無く、はじめの配合
組成割合のままで単結晶合金が出来る等の諸々の
利点があるために欠陥等の少い良質単結晶が得ら
れる。そのために磁気特性(残留磁束密度Br、
保磁力BHc)の優れた単結晶R・M磁石を得るこ
とが出来る。更にはじめに任意の形状に多結晶体
でつくつておけばそれを全体又は一部分を単結晶
化して容易に任意の形状を持つた単結晶磁石が得
られることから安価に製造できる利点を有する。 以下に本発明の実施例について説明する。 実施例 1 金属Sm36重量%、金属Co64重量%を秤量しア
ルゴン雰囲気中で高周波融解を行なつて多結晶合
金インゴツトを作製した。 このインゴツトから従来の粉末焼結法によつて
製造した磁石、又溶融単結晶育成法としてブリツ
ジマン法でつくつた磁石、そして本発明法によつ
て製造した磁石の磁気特性を測定する。 従来の粉末焼結法とは発明の詳細な説明中にも
示したが、インゴツトを約4μまで粉砕し磁場プ
レス(磁界1万Oe、圧力2〜10t/cm2)した後
1050〜1250℃で約1時間焼結しその後、850℃で
約1時間時効熱処理をして得る。 ブリツジマン法は多結晶合金インゴツトをアル
ミナルツボやカーボンルツボ、ジルコニアルツボ
等のルツボ中で溶融した後下方(一方向)からゆ
つくり1〜15mm/時間でゆつくり冷却して単結晶
化することによつて得られる。場合によつてその
後歪取り熱処理を800℃程度で数時間行なうと良
い結果となる。 本発明では多結晶インゴツトそのもの、あるい
は粉末成形したブロツク(10mm幅、長さ50mm、厚
さ2mm)、あるいはこれを1150℃で1時間焼結し
たブロツク。あるいは粉末成形時に磁場プレス中
で(磁界150e、圧力5t/cm2)で成形したブロツ
ク、更に焼結したブロツク等を製造し得られた多
結晶体合金を用いる。そしてこれらに約1〜5%
の歪を万能試験機によつて与えた。これらのブロ
ツクの先端に約45゜の角度をつけたエツジをつけ、
その先端方向から1050℃から融点の1350℃の間の
温度で加熱をし除々に全体を加熱した結果全体が
一つの単結晶となつた。場合によつてはブロツク
が複数個の単結晶の集合体になるがこの場合は切
断し1つの単結晶を取り出して測定試料とした。 これらの磁気特性の測定値について下に示すと
次の通りとなる。
The present invention is a method for manufacturing a single-crystal rare earth magnet, which is an alloy consisting of rare earth elements and other elements. Rare earth magnets have excellent magnetic properties and are becoming widely used. In order to obtain high magnetic properties, an alloy (referred to as R.M alloy) of a rare earth element (referred to as R) and another element (referred to as M) is made into powder and bonded with high density to form a magnet. Generally, as a bonding method, there is a method of mixing or infiltrating an organic binder or an inorganic binder and solidifying it. Also, methods of press molding or press molding in a magnetic field and then sintering are used. However, although polycrystalline alloys, which are aggregates of crystal grains, have excellent magnetic properties, they have low density.
It is not 100%, and the degree of magnetic orientation, that is, the direction is 100%.
% is not aligned in one direction, so it has the disadvantage of not exhibiting sufficient magnetic properties. The present invention improves the above drawbacks and makes it possible to easily produce single crystals with high density and uniform orientation, thereby making it possible to obtain excellent magnetic properties. . Rare earth magnets are R as Sm, Pr, Ce, ScY,
La, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er,
One or more of Yb, Lu and M as Co, Fe, Cu,
The main component is one or more of Mn, Cr, Ni, etc., but in some cases, the magnetic properties can be improved by adding one or more of the following elements as additional elements. i.e. Ti, Zr,
Transition metals such as Hf, Nb, Ta, and V; noble metals such as Au, Pt, and Ag; low melting point metals such as Zn, In, Sn, and Sb;
A group such as Be, Mg, B, Al, Si, Te, C, P,
There are semimetals such as Ge, semiconductor elements, etc. Conventionally, these elements are melted into an alloy, powdered, molded in a magnetic field, etc., and then bonded and solidified to form a polycrystalline magnet. However, in this conventional method, the density is not 100% and is low because it is a multi-bonded powder aggregate.
Even when oriented in a magnetic field, it is difficult to achieve 100% orientation, and sintering destroys this orientation, so deterioration of magnetic properties cannot be avoided. Therefore, by easily manufacturing a single crystal with 100% density and 100% orientation, it was possible to solve this drawback and improve magnetic properties. Further, as a melting method for producing a single crystal, there are a simple solidification method, a pulling method, a Bernoulli method, a floating zone melting method, a Bridgeyan method, and the like. However, since these alloys are melted at high temperatures, the composition may evaporate and fluctuate, and cracks or large distortions may remain when solidified. In addition, impurities are mixed in from the crucible, etc., and due to these reasons, it is difficult to obtain a single crystal of good quality, and it is difficult to obtain a product with excellent magnetic properties. Furthermore, it is difficult to solidify into an arbitrary shape, such as a plate shape, and it has the disadvantage that it is an industrially expensive material. The present invention has made it possible to manufacture high-quality crystalline magnets of any shape with excellent magnetic properties using a recrystallization method that can solve these various drawbacks. The present invention is a method of heating a block formed from an R.M alloy ingot or powder at a temperature below its melting point. Then, heating is performed slowly from one direction, and recrystallization is performed from one direction to turn the polycrystalline alloy into a single crystal. In particular, in order for recrystallization to proceed sufficiently, high-quality, large-sized single crystals can be obtained by applying some mechanical deformation such as compression or tension to the polycrystalline body to impart strain. In particular, it is best to apply a distortion of about 1 to 5%. 1
If it is less than 5%, the effect will be small, and if it is more than 5%, cracks will occur, which is not preferable. When using polycrystalline solidified alloy powder, the powder should be placed in a magnetic field (approximately 10,000 yen).
Oe), recrystallization proceeds in one direction to obtain a high-quality large single crystal, resulting in a single crystal with excellent magnetic properties. Furthermore, by sintering and solidifying the oriented block molded body in a magnetic field and increasing the density sufficiently, recrystallization can easily proceed and the whole can easily become a perfect single crystal. After all, these materials are easily transformed into single crystals by being deformed and strained. In this way, since the temperature is below the melting point, there is little evaporation of the composition, preventing composition fluctuations, and since it does not melt, impurities,
It has various advantages such as no gas entering, no solidification from melting, so the composition does not vary depending on the location, and a single crystal alloy can be made with the original composition ratio, resulting in high quality with few defects. A single crystal is obtained. Therefore, magnetic properties (residual magnetic flux density Br,
A single crystal R/M magnet with an excellent coercive force (B Hc) can be obtained. Furthermore, if a polycrystalline material is first formed into an arbitrary shape, then the whole or a portion thereof can be made into a single crystal to easily obtain a single crystal magnet having an arbitrary shape, which has the advantage that it can be manufactured at a low cost. Examples of the present invention will be described below. Example 1 36% by weight of metal Sm and 64% by weight of metal Co were weighed and subjected to high frequency melting in an argon atmosphere to produce a polycrystalline alloy ingot. The magnetic properties of magnets manufactured from this ingot by the conventional powder sintering method, magnets manufactured by the Bridgeman method as a fused single crystal growth method, and magnets manufactured by the method of the present invention are measured. The conventional powder sintering method was mentioned in the detailed explanation of the invention, but after crushing the ingot to about 4μ and applying magnetic field pressing (magnetic field of 10,000 Oe, pressure of 2 to 10 t/cm 2 ),
It is obtained by sintering at 1050-1250°C for about 1 hour and then aging heat treatment at 850°C for about 1 hour. The Bridgeman method involves melting a polycrystalline alloy ingot in a crucible such as an aluminum crucible, carbon crucible, or zirconia crucible, and then slowly cooling it from below (in one direction) at a rate of 1 to 15 mm/hour to form a single crystal. You can get it. Depending on the case, good results can be obtained by subsequently performing strain relief heat treatment at about 800°C for several hours. In the present invention, the polycrystalline ingot itself, a powder-molded block (10 mm width, 50 mm length, 2 mm thickness), or a block sintered at 1150°C for 1 hour. Alternatively, a polycrystalline alloy obtained by manufacturing a block molded in a magnetic field press (magnetic field 150 e, pressure 5 t/cm 2 ) during powder molding, a sintered block, etc. is used. And about 1-5% of these
strain was applied using a universal testing machine. Attach an edge at an angle of about 45° to the tip of these blocks,
As a result of gradually heating the whole body by heating it from the tip direction at a temperature between 1050℃ and the melting point of 1350℃, the whole body became one single crystal. In some cases, the block becomes an aggregate of a plurality of single crystals; in this case, it is cut and one single crystal is taken out to be used as a measurement sample. The measured values of these magnetic properties are shown below.

【表】 以上の結果から磁気特性(残留磁束密度、保磁
力)は本発明法によつて製造した磁石は高い値を
示し、残留磁束密度、保磁力の値が同じで非常に
優れた特性を示すことがわかる。 実施例 2 Sm25重量%、Co51重量%、Fe16重量%、Cu5
重量%、Zr3重量%を実施例1と同様にして製造
した。 結果は実施例1とほぼ同様の結果であつた。 実施例 3 Sm15重量%、Pr10重量%、Co49重量%、
Fe19重量%、Cu4重量%、W1.5重量%、Ti1重量
%、C0.5重量%を実施例1と同様にして製造し
た。その結果を示す。
[Table] From the above results, the magnetic properties (residual magnetic flux density, coercive force) of the magnet manufactured by the method of the present invention are high, and the values of residual magnetic flux density and coercive force are the same, indicating very excellent characteristics. I understand what is shown. Example 2 Sm25% by weight, Co51% by weight, Fe16% by weight, Cu5
% by weight and 3% by weight of Zr were produced in the same manner as in Example 1. The results were almost the same as in Example 1. Example 3 Sm15% by weight, Pr10% by weight, Co49% by weight,
It was produced in the same manner as in Example 1, containing 19% by weight of Fe, 4% by weight of Cu, 1.5% by weight of W, 1% by weight of Ti, and 0.5% by weight of C. The results are shown below.

【表】 以上の結果から本発明による磁気特性は残留磁
束密度、保磁力(BHc)いずれも優れた値を示す
ことがわかる。
[Table] From the above results, it can be seen that the magnetic properties according to the present invention exhibit excellent values for both residual magnetic flux density and coercive force ( B Hc).

Claims (1)

【特許請求の範囲】 1 希土類磁石を構成する元素組成からなる多結
晶合金を、再結晶法によつて単結晶合金とする単
結晶希土類磁石の製造方法。 2 希土類磁石を構成する元素組成からなる合金
粉末を磁場中成形し配向した多結晶合金を使用す
ることを特徴とした特許請求の範囲第1項記載の
単結晶希土類磁石の製造方法。 3 希土類磁石を構成する元素組成からなる合金
粉末を磁場中成形した後焼結をした多結晶合金を
使用することを特徴とした特許請求の範囲第1項
記載の単結晶希土類磁石の製造方法。 4 多結晶合金に圧縮力又は引張り力によつて歪
を付与したことを特徴とした特許請求の範囲第1
項、第2項もしくは第3項記載の単結晶希土類磁
石の製造方法。
[Scope of Claims] 1. A method for manufacturing a single-crystal rare earth magnet, in which a polycrystalline alloy having an elemental composition constituting the rare-earth magnet is made into a single-crystal alloy by a recrystallization method. 2. A method for manufacturing a single-crystal rare earth magnet according to claim 1, characterized in that a polycrystalline alloy obtained by molding and orienting alloy powder having the elemental composition constituting the rare earth magnet in a magnetic field is used. 3. A method for producing a single crystal rare earth magnet according to claim 1, characterized in that a polycrystalline alloy is used, which is obtained by molding alloy powder having the elemental composition constituting the rare earth magnet in a magnetic field and then sintering it. 4 Claim 1 characterized in that the polycrystalline alloy is strained by compressive force or tensile force.
2. A method for producing a single crystal rare earth magnet according to item 2, item 3, or item 3.
JP56201278A 1981-12-14 1981-12-14 Manufacture of single crystal rare earth magnet Granted JPS58102503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201278A JPS58102503A (en) 1981-12-14 1981-12-14 Manufacture of single crystal rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201278A JPS58102503A (en) 1981-12-14 1981-12-14 Manufacture of single crystal rare earth magnet

Publications (2)

Publication Number Publication Date
JPS58102503A JPS58102503A (en) 1983-06-18
JPH036641B2 true JPH036641B2 (en) 1991-01-30

Family

ID=16438309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201278A Granted JPS58102503A (en) 1981-12-14 1981-12-14 Manufacture of single crystal rare earth magnet

Country Status (1)

Country Link
JP (1) JPS58102503A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112724A (en) * 1975-03-31 1976-10-05 Nippon Gakki Seizo Kk Production of magnets
JPS566406A (en) * 1979-06-26 1981-01-23 Seiko Instr & Electronics Ltd Monocrystaline rare earth magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112724A (en) * 1975-03-31 1976-10-05 Nippon Gakki Seizo Kk Production of magnets
JPS566406A (en) * 1979-06-26 1981-01-23 Seiko Instr & Electronics Ltd Monocrystaline rare earth magnet

Also Published As

Publication number Publication date
JPS58102503A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
US4131495A (en) Permanent-magnet alloy
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
US5527398A (en) Magnetostrictive materials and methods of making such materials
EP0632471B1 (en) Process of preparing a permanent magnet containing rare earth metal, boron and iron
US4192696A (en) Permanent-magnet alloy
JPH06151132A (en) Manufacture of powder of anisotropic magnet material and manufacture of magnet using anisotropic magnet material powder obtained by same manufacture
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH036641B2 (en)
JPS5911641B2 (en) Bonded permanent magnet powder and its manufacturing method
JPWO2020017529A1 (en) Method for producing rare earth magnet powder
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3385667B2 (en) Iron-terbium-based magnetostrictive material and method for producing the same
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JPS646267B2 (en)
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH02121376A (en) Manufacture of magnetostrictive material
JP2642442B2 (en) Manufacturing method of rare earth-iron based magnetic alloy ribbon
JPH048923B2 (en)
JPH0732102B2 (en) Rare earth alloy permanent magnet manufacturing method
JPH01706A (en) Rare earth magnet manufacturing method