JPH0366340B2 - - Google Patents

Info

Publication number
JPH0366340B2
JPH0366340B2 JP15803582A JP15803582A JPH0366340B2 JP H0366340 B2 JPH0366340 B2 JP H0366340B2 JP 15803582 A JP15803582 A JP 15803582A JP 15803582 A JP15803582 A JP 15803582A JP H0366340 B2 JPH0366340 B2 JP H0366340B2
Authority
JP
Japan
Prior art keywords
weight
adhesive
latex
meth
ester monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15803582A
Other languages
Japanese (ja)
Other versions
JPS5947212A (en
Inventor
Naoyuki Shiratori
Toyohiro Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57158035A priority Critical patent/JPS5947212A/en
Publication of JPS5947212A publication Critical patent/JPS5947212A/en
Publication of JPH0366340B2 publication Critical patent/JPH0366340B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水酸基を含有するジエン系共重合体ラ
テツクスを主成分とする水分散型粘着剤組成物に
関する。 粘着剤(感圧粘着剤)を形態的に分けると粘着
剤成分を溶剤に溶解して使用する溶剤型と水相中
に粘着剤成分が粒子状になつて分散されているラ
テツクス型の2つのタイプが主に使用されてい
る。又原材料別に見ると天然ゴム或いは合成ゴム
を主成分とするゴム系と(メタ)アクリル酸アル
キルエステルの重合体を主成分とするアクリル樹
脂系が主に使用されている。 天然ゴム或いは合成ゴムを主剤とするゴム系粘
着剤はゴム自体のみではタツク(粘着性)がない
為、ポリテルペン樹脂、ロジンエステル樹脂、脂
肪族及び芳香族の合成石油樹脂等の粘着付与剤を
併用しなければならないが、ゴム及び粘着付与剤
を良好な相溶状態にする為に、トルエン、ヘキサ
ン等の溶剤を用いてそれらを溶解混合する方法が
一般的である。 この方法で作られる溶剤型ゴム系粘着剤はゴム
自身のもつている良好な低温特性、自着性、高凝
集力、抗クリープ性、粗面に対するなじみ易さ等
粘着物性の数々の優れた特長を備えている。 然し、トルエンやヘキサン等の揮発性可燃性溶
剤を使用することは避けられず、その為、製造上
大気汚染、火災の危険性、労働衛生上の悪化、更
には溶剤回収にかかわる多額の設備費、維持費、
溶剤コストの高騰等、経済性に関する欠点を内包
している。 水分散型粘着剤は通常の乳化重合法で比較的簡
単に製造できるアクリル酸エステルを主成分とす
る共重合体ラテツクスが主に使用されている。こ
のタイプは溶剤を使用しないので、防災上及び労
働衛生上安全で無公害である特長の他に溶剤回収
の不要といつた経済上のメリツトも兼ね備えてい
るものの、不充分な低温特性、低凝集力、粗面に
対する低接着力、ゴム弾性的性質の欠如等、基本
的な粘着物性でゴム系粘着剤に劣つており、耐
熱・耐候性を必要とされるラベル用途等の分野に
主に展開されているのが現状である。 したがつて、粘着物性面では良好な低温特性、
高凝集力、抗クリープ性、粗面に対する良好なな
じみ易さ等の特長を併せもつたゴム系粘着剤のす
ぐれた特長を備え、且つ製造面では、無公害、防
災・労働衛生上の安全性、溶剤回収の不要等の特
長を併せもつたラテツクス型粘着剤の出現が期待
されていた。 近年になつて、上述した目的を達成する為に、
ラテツクス型ゴム系粘着剤の開発が盛んになり、
例えば、共役ジエンを50重量%以上含有するゲル
分10〜97重量%、膨潤度10〜80のカルボキシ変性
ラテツクスと0.1〜5.0μmの粘着付与樹脂との水
性分散液組成物(特公昭57−26545)、イソプレン
を主成分とするゲル含量65〜98重量%のカルボキ
シ変性ラテツクスの水性分散液(特開昭52−
86438)、0.5%以上のカルボキシル化SBRラテツ
クスと粘着付与樹脂の水性乳剤とからなる感圧接
着乳剤(特開昭55−48270)、共役ジエン、芳香族
ビニル化合物、(メタ)アクリロニトリル、(メ
タ)アクリル酸エステル、エチレン系不飽和カル
ボン酸からなる合成ゴムラテツクスの製造方法及
び感圧接着剤としての使用(特開昭56−145909)、
ブタジエン、(メタ)アクリル酸アルキルエステ
ルを含有する共重合体ラテツクス及び粘着剤組成
物(特開昭57−57707)等の技術が公開されてい
るが、これらのラテツクス型粘着剤はいずれも凝
集力を高める為に、エチレン系不飽和カルボン酸
を含有せしめ、タツクと凝集力のバランスを向上
させており、エチレン系不飽和カルボン酸は必要
不可欠の成分としていた。 従来のこれらのエチレン系不飽和カルボン酸を
含有する共役ジエン系ラテツクスについて種々検
討した結果、粘着剤として必要な耐熱性(65℃、
7日間)が得られ難く、又、紙等の繊維質の基材
の場合、長期間保存しておくと生じ易い粘着剤の
基材表面へのしみ出し現象が顕著に発生する実用
上重要な欠点を有することを確認した 本発明者等はかかる欠点をなくし、実用性のあ
るラテツクス型ゴム系熱着剤が得られれば、工業
的に極めて有意義であると考え、鋭意検討した結
果、驚くべきことには、共役ジエンと(メタ)ア
クリル酸エステル及びヒドロキシアルキルエステ
ルを必要成分として含む共重合体ラテツクスを主
体とする粘着剤が、良好な粘着物性バランスを有
すると共に、耐熱性に優れ、且つ、粘着剤の基材
表面へのしみ出し現象がなく、更に特定の非電解
質型増粘剤と組合せで従来の水分散型粘着剤では
なかなか得られるのが困難であつた粘度の機械的
シエア依存性の少ない粘着剤組成物が得られるこ
とを見出し、本発明に到達した。 即ち、本発明は、ブタジエンやイソプレン、ク
ロロプレン等の共役ジエン単量体5〜80重量%
(メタ)アクリル酸アルキルエステル単量体3〜
80重量%、ヒドロキシアルキルエステル単量体1
〜20重量%及び5〜50重量%の他の共重合可能な
単量体とを乳化重合して得られるラテツクス系粘
着剤にポリエーテルタイプの非電解質型増粘剤を
加えてなる高粘度粘着剤組成物である。なお、上
記単量体は合計量100重量%となるようにして共
重合される。 本発明の粘着剤用共重合体ラテツクス中に含ま
れるブタジエン、イソプレン、クロロプレン等の
ジエン系単量体の配合割合は5〜80重量%が好ま
しいが20〜70重量%が特に好ましい。5重量%未
満の場合はゴム弾性体特有の高凝集力、伸び、抗
クリープ性等が得にくくなり、又80重量%を越え
る場合は耐熱性が急激に低下し好ましくない。 本発明の粘着剤用共重合体ラテツクス中の好適
な(メタ)アルリル酸アルキルエステル単量体は
メチル(メタ)アクリレート、エチル(メタ)ア
クリレート、ブチル(メタ)アクリレート、2−
エチルヘキシル(メタ)アクリレート、ヘキシル
(メタ)アクリレート等があるが、ブチルアクリ
レート、2−エチルヘキシルアクリレート、ラウ
リルメタクリレート、オクタデシルメタクリレー
ト等、その単独重合体のガラス転移温度が−20℃
以下である単量体の使用が、粘着性に好影響を与
えて特に好ましい。 なお、本発明において、“(メタ)アクリル酸ア
ルキルエステル単量体”はアクリル酸アルキルエ
ステル単量体とメタクリル酸エステル単量体の両
方を表わしている。(メタ)は、他の単量体につ
いても同様の意味で用いる。 (メタ)アクリル酸アルキルエステル単量体の
配合量は3〜80重量%が好ましく、5〜50重量%
が特に好ましい。3重量%未満の場合はタツクと
凝集力のバランスが得にくくなり、実用上好まし
くない。又、80重量%を越える場合は、低温特性
及び凝集力が得にくくなる。 本発明に必要なヒドロキシアルキルエステル単
量体は共役ジエン単量体或いは(メタ)アクリル
酸アルキルエステル単量体と共重合可能であれば
いずれでもよく、2−ヒドロキシエチル(メタ)
アクリレート、2−ヒドロキシプロピル(メタ)
アクリレート等が挙げられる。 ヒドロキシアルキルエステル単量体の全単量体
配合中に含まれる配合量は1〜20重量%が好まし
く、特に3〜10重量%が好ましい。1重量%未満
の場合はラテツクスの機械的安定性が悪く、安定
化のため多量の乳化剤を必要とし、それによりタ
ツクが阻害され、又粘着剤の耐水性が悪くなり好
ましくない。20重量%を越える場合は耐水性が極
端に低下し、湿度の影響を受け易くなり、実用上
適さない。 本発明の粘着剤用共重合体ラテツクスはエチレ
ン系不飽和カルボン酸を特に必要としないが、必
要に応じて少量含ませることも可能である。但
し、カルボン酸を多く含ませるとしみ出し現象が
極端に起き易くなり、又、通常使用されるアクリ
ル酸、メタクリル酸等の一塩基酸の場合には耐熱
性が極端に低下するようになる為好ましくなく、
用いた場合でも1重量%以下とすべきである。 ヒドロキシアルキルエステル単量体を配合して
得られる本発明の共重合体が上記のようにしみ出
し現象がないといつた特異的な性質を有するの
は、カルボキシル基を含有する単量体を用いる従
来のものに比して水溶性低分子量重合物の生成が
少ないためと考えられる。 共役ジエン単量体、(メタ)アクリル酸アルキ
ルエステル、或いはヒドロキシアルキルエステル
単量体と共重合可能な単量体としては、スチレ
ン、ビニルトルエン、α−メチルスチレン、ジビ
ニルベンゼン等の芳香族ビニル化合物、グリシジ
ルアクリレート、グリシジルメタクリレート等で
代表されるグリシジル基を有するビニル化合物、
アクリルアミド、N−メチロールアクリルアミド
等のアミド基を有する化合物、酢酸ビニル、プロ
ピオン酸ビニル等のビニルエステル類、ジオクチ
ルマレート、ジオクチルフマレート、ジメチルア
ミノエチルメタクリレート、アクリロニトリル等
があるが、比較的安価で容易に入手出来、本発明
の共重合体ラテツクスに高い凝集力を与えるスチ
レンの使用が最も好ましい。これらの共重合可能
な単量体の好ましい使用割合は単量体の種類によ
つて相違するがあまり多く使用するとタツクと凝
集力のバランスがとれなくなり、またあまり使用
量が少ないと凝集力が低下するため、5〜50重量
%の範囲で使用する必要がある。本発明の粘着剤
用共重合体ラテツクスは通常の乳化重合法によつ
て容易に得ることができる。乳化重合に用いられ
る乳化剤としてはドデシルベンゼンスルホン酸ソ
ーダ、ラウリル硫酸ソーダ、ナトリウムジオクチ
ルスルホサクシネート、ジナトリウムドデシルジ
フエニルエーテルジスルホネート等のアニオン乳
化剤、ポリオキシエチレンアルキルエーテル及び
ポリオキシエチレンアルキルフエニルエーテル等
のノニオン乳化剤等が挙げられる。重合開始剤と
しては過硫酸塩或いはこれに亜硫酸塩又は重亜硫
酸塩等の還元剤を組合せたレドツクス系重合触
媒、有機ヒドロパーオキサイドを使用するレドツ
クス系触媒等が用いられる。分子量調節剤として
はメルカプタン類、四塩化炭素等の公知の連鎖移
動剤を使用することができる。この連鎖移動剤の
使用量は共重合体の適度のタツクを付与するよう
に決められるが、通常の乳化重合で用いられる使
用量よりも多く用いる必要がある。然し、あまり
多量に用いると凝集力がかなり低下し好ましくな
い。その他の電解質、キレート剤、緩衝剤、PH調
整剤等を必要に応じて使用することができる。こ
れらの乳化剤、重合開始剤、分子量調節剤、その
他の助剤は単量体と共に重合開始前に仕込むか、
又は一部を重合開始前に仕込み、残りを重合中に
連続的又は非連続的に添加するか、或いはまた種
ラテツクスの存在下或いは存在しない状態で重合
開始と共に連続的又は非連続的に添加する等、公
知の方法で用いられる。 本発明の粘着剤用共重合体ラテツクスはラテツ
クス単独で使用されるが、目的によつては該ラテ
ツクス同士のブレンド、或いは該ラテツクスと異
種のラテツクス(天然ゴムラテツクス、アクリル
ラテツクス、EVAラテツクス等)をブレンドし
て使用することができる。 本発明の粘着剤用共重合体ラテツクスはラテツ
クス単独でも充分な粘着性能を有しているが、ロ
ジン、ロジンエステル樹脂、ポリテルペン樹脂等
の粘着付与樹脂エマルジヨンを混合することによ
つて、ゴム特有の性質である伸びや自着性、抗ク
リープ性等の卓越した粘着物性を有することが可
能となり、特に粘着テープ用粘着剤として最適と
なる。粘着付与樹脂のブレンド割合は粘着付与樹
脂及び本発明の共重合体ラテツクスの性質によつ
て影響を受け、特に限定されないが、共重合体ラ
テツクス100重量部(固形分)に対して粘着付与
樹脂を5〜200重量部用いるのが好ましい。 本発明の粘着剤用共重合体ラテツクスはカルボ
ン酸を含有していない或いは極く少量しか含有し
ていない為、ポリエーテルタイプの非電解質型増
粘剤との組合せによつて、特異的に粘度を及ぼす
機械的シエア依存性が少なく、ニユートン流動に
近い高粘度粘着剤組成物が得られ、塗工時のロー
ルマークを起こさないレベリングにすぐれた性質
をもたせることが可能となる。増粘剤の使用割合
は特に限定されなく、塗工方法に適する粘度に達
するよう添加され、通常は本発明の共重合体ラテ
ツクス100重量部(固形分)に対して0.5〜5重量
部(増粘剤固形分)の添加で十分目的が達せられ
る。本発明の粘着剤用共重合体ラテツクスは共役
ジエン系に拘らず、カルボキシ変性ラテツクスと
相違して、耐熱性にすぐれ、通常使用される範囲
内であれば、老化防止剤を添加せずに供すること
が可能である。然し、必要に応じて老化防止剤、
紫外線吸収剤及び安定剤を添加することができ
る。 本発明の粘着剤用共重合体ラテツクスと増粘剤
とからなる粘着剤組成物は必要に応じて各種可塑
剤、ポリブテン、ラノリン、プロセスオイル等の
軟化剤、亜鉛華、酸化チタン、炭酸カルシウム等
の充填剤、及び水酸基と反応する架橋剤等を添加
することができる、 以下、実施例を挙げて本発明を更に詳しく説明
する。 実施例1〜5及び比較例1 撹拌機を備えた温度調節可能な加圧反応器(オ
ートクレーブ)の内部を予め窒素置換し、水100
重量部(以下全て部で示す)にラウリル硫酸ソー
ダ1.0部、エチレンジアミン4酢酸ナトリウム塩
0.08部、過硫酸ソーダ1.2部、カセイソーダ0.3部
及び表−1の実施例1〜5に示す単量体100部と
連鎖移動剤を仕込み60〜70℃で15時間重合させ
た。重合終了後、ラテツクスのPHをカセイソーダ
で7に調整し、スチームストリツピングを行い、
残留モノマーを除去した。このようにして得られ
た共重合体ラテツクスの安定性を後述する方法で
測定した。実施例1〜5においては、該ラテツク
スをポリエーテルタイプ増粘剤SNシツクナーA
−801(サンノプコ社製)で約1万センチポイズに
増粘し、比較例1においては実施例1の共重合体
ラテツクスにポリアクリル酸ソーダ系増粘剤で約
1万センチポイズに増粘しそのチキソトロピーイ
ンデツクスを求めた。剥離紙に約25g/m2の量を
塗布し、120℃、2分間乾燥した。次いで上質紙
と塗布された剥離紙を塗布面で圧着させ、粘着剤
を上質紙に転写させ、以下の物性を測定した。表
2に各種物性の測定結果を示した。 物性測定 ラテツクスの機械的安定性:ラテツクスを高速撹
拌機(線速度、最大1400m/分)にて30分撹拌
した後の残渣量を測定した。 チキソトロピーインデツクス:B型粘度計を用い
て6及び60rpmで測定した増粘ラテツクスの粘
度の比で表わした。 タツク:傾斜式ボールタツクによる測定。傾斜板
角度30°、助走距離10cm、ボール(SUS)径
x/32インチで表示。 接着力:ステンレス板上に粘着紙サンプルを一定
の圧力(2Kgローラー)で貼りつけ、180°剥離
を行つた際の引張強度を測定した。引張速度
300mm/min。 凝集力:ステンレス板に粘着紙サンプルを貼り
(接着面積、2cm×2cm)、ステンレス板の表面
を鉛直にセツトした後、粘着紙サンプル下端に
1Kgの荷重をかけ20℃雰囲気中で落下するまで
の時間(分)を測定した。 耐熱性:粘着紙サンプルを離型紙に貼り合わせた
まま、110℃、3日間、その条件下に置いた後
のタツク及び接着力を測定した。 しみ出し:粘着紙サンプルを110℃、3日間の条
件で放置した後の上質紙表面へ粘着剤のしみ出
し具合を視覚評価した。○:変化なし、×:し
み出し 以上の測定はすべて20℃、65%RHの条件下で
行なつた。 比較例 2〜5 実施例の場合と同一の方法で表1に示す本発明
の範囲外の組成を有する共重合体ラテツクスを得
た。また、該ラテツクスをポリアクリル酸ソーダ
で約1万センチポイズに増粘し、該ラテツクスに
ついて実施例の場合と同様に各種物性を測定し
た。その結果を表2に示した。 これらの結果より、本発明の粘着剤組成物は、
機械的安定性、粘着物性を保持しつつ、且つ、粘
着剤の基材へのしみ出しもなく、機械的シエアの
相違による粘度依存性も特異的に小さくまた、耐
熱性も優れていることが明らかである。 比較例 6 比較例2と同組成の共重合体ラテツクスにポリ
エーテルタイプ増粘剤SNシツクナーA−801(サ
ンノプコ社製)で約1万センチポイズに増粘し、
実施例の場合と同様に各種物性を測定した。その
結果を表2に示した。 実施例1〜5、比較例1〜6から、本発明の範
囲内であるエチレン系不飽和カルボン酸の含有量
が少ない共重合体ラテツクスはポリエーテルタイ
プの増粘剤を使用するとチキソトロピーインデツ
クスが小さい塗工性にすぐれた粘着剤組成物にな
ることがわかる。 実施例 6〜7 実施例1及び2と同一組成の共重合体ラテツク
スに表3で示す粘着付与樹脂エマルジヨンを添加
混合して水分散型粘着剤組成物を得た。次いでポ
リエーテルタイプ増粘剤SNシツクナーA−801で
約5000センチポイズに調整した後、実施例1〜5
で示した粘着3物性の他に以下に記す物性を測定
し、表4に示した。 実施例6〜7で明らかなように、粘着付与樹脂
エマルジヨンを添加混合すると、粘着剤に伸び、
自着性、剪断力に対する抗クリープ性(段ボール
封緘性)が発現し、テープ用粘着剤として優れた
物性を保有することができる。 物性測定 自着性:巾10mm、長さ250mmの粘着紙サンプルの
粘着面同士を一定の圧力(2Kgローラー)で貼
り合せ、然る後、それぞれの粘着紙端を300
mm/minの速度で引剥した時の粘着剤同士の接
着強度を測定した。 伸び:自着性を測定する際に剥離している部分の
粘着剤の伸び具合を視覚観察した。○:良、
×:不良 段ボール封緘性:250mm×250mm×150mmの大きさ
の表面が清浄な段ボールの封緘部に巾50mm、長
さ290mmの寸法の粘着剤サンプルを貼り、20℃
の雰囲気中に静置して、段ボールの反撥力によ
る粘着紙のハガレ具合を1週間後に観測した。
封緘性は測定点数8のうち、良好な封緘をして
いる点数nで示した。 以上の測定はすべて20℃、65%RHの条件で実
施した。
The present invention relates to a water-dispersed adhesive composition containing a diene copolymer latex containing hydroxyl groups as a main component. Adhesives (pressure-sensitive adhesives) can be divided into two types: solvent-type, in which the adhesive component is dissolved in a solvent, and latex-type, in which the adhesive component is dispersed in the form of particles in an aqueous phase. type is mainly used. In terms of raw materials, rubber systems mainly composed of natural rubber or synthetic rubber and acrylic resin systems mainly composed of polymers of alkyl (meth)acrylate esters are mainly used. Rubber adhesives based on natural rubber or synthetic rubber do not have tackiness on their own, so tackifiers such as polyterpene resins, rosin ester resins, aliphatic and aromatic synthetic petroleum resins are used in combination. However, in order to make the rubber and tackifier well compatible, a common method is to dissolve and mix them using a solvent such as toluene or hexane. The solvent-based rubber adhesive produced by this method has many excellent adhesive properties, such as the rubber's own good low-temperature properties, self-adhesion, high cohesive strength, anti-creep properties, and ease of adapting to rough surfaces. It is equipped with However, the use of volatile and flammable solvents such as toluene and hexane is unavoidable, resulting in air pollution, fire hazards, deterioration of occupational health, and high equipment costs associated with solvent recovery. ,Maintenance costs,
It has economic disadvantages such as rising solvent costs. As water-dispersed adhesives, copolymer latexes mainly composed of acrylic esters, which can be produced relatively easily by conventional emulsion polymerization methods, are mainly used. This type does not use solvents, so it is safe in terms of disaster prevention and occupational health, and is non-polluting. It also has the economic advantage of not requiring solvent recovery, but it has insufficient low temperature characteristics and low aggregation. It is inferior to rubber-based adhesives in basic adhesive properties such as low adhesive strength, low adhesion to rough surfaces, and lack of rubber elastic properties, and is mainly used in fields such as labels that require heat resistance and weather resistance. The current situation is that Therefore, in terms of adhesive properties, it has good low temperature properties,
It has the excellent features of a rubber adhesive, such as high cohesive strength, anti-creep properties, and good adhesion to rough surfaces.In terms of manufacturing, it is non-polluting and safe in terms of disaster prevention and occupational health. It was expected that a latex-type adhesive would emerge, which has the following features: 1) no need for solvent recovery; In recent years, in order to achieve the above objectives,
The development of latex-type rubber adhesives became active,
For example, an aqueous dispersion composition (Japanese Patent Publication No. 57-26545 ), an aqueous dispersion of carboxy-modified latex containing isoprene as the main component and having a gel content of 65 to 98% by weight (Japanese Unexamined Patent Application Publication No. 1989-1999)
86438), pressure-sensitive adhesive emulsion consisting of 0.5% or more carboxylated SBR latex and an aqueous emulsion of tackifier resin (JP-A-55-48270), conjugated diene, aromatic vinyl compound, (meth)acrylonitrile, (meth) Method for producing synthetic rubber latex consisting of acrylic acid ester and ethylenically unsaturated carboxylic acid and use as a pressure-sensitive adhesive (Japanese Patent Application Laid-Open No. 145909/1983),
Technologies such as copolymer latex and adhesive composition containing butadiene and (meth)acrylic acid alkyl ester have been disclosed (Japanese Patent Application Laid-Open No. 57-57707), but these latex-type adhesives all have low cohesive strength. In order to increase this, it contains ethylenically unsaturated carboxylic acid to improve the balance between tack and cohesive force, and ethylenically unsaturated carboxylic acid is an essential component. As a result of various studies on conventional conjugated diene latexes containing ethylenically unsaturated carboxylic acids, we found that the heat resistance (65℃,
7 days) is difficult to obtain, and in the case of fibrous base materials such as paper, the adhesive seeps onto the surface of the base material, which tends to occur when stored for a long period of time. The inventors of the present invention believed that it would be extremely meaningful industrially if such drawbacks could be eliminated and a practical latex-type rubber thermal adhesive could be obtained. In particular, an adhesive mainly composed of a copolymer latex containing a conjugated diene, a (meth)acrylic acid ester, and a hydroxyalkyl ester as necessary components has a good balance of adhesive physical properties, has excellent heat resistance, and There is no oozing of the adhesive onto the surface of the base material, and in combination with a specific non-electrolyte thickener, the viscosity is mechanically shear dependent, which is difficult to achieve with conventional water-dispersed adhesives. It has been discovered that a pressure-sensitive adhesive composition with a small amount of That is, the present invention uses conjugated diene monomers such as butadiene, isoprene, chloroprene, etc. in an amount of 5 to 80% by weight.
(Meth)acrylic acid alkyl ester monomer 3~
80% by weight, hydroxyalkyl ester monomer 1
A high-viscosity adhesive made by adding a polyether-type non-electrolyte thickener to a latex-based adhesive obtained by emulsion polymerization of ~20% by weight and 5-50% by weight of other copolymerizable monomers. It is a drug composition. The above monomers are copolymerized in a total amount of 100% by weight. The proportion of diene monomers such as butadiene, isoprene, and chloroprene contained in the copolymer latex for pressure-sensitive adhesives of the present invention is preferably 5 to 80% by weight, particularly preferably 20 to 70% by weight. If it is less than 5% by weight, it becomes difficult to obtain the high cohesive force, elongation, anti-creep properties, etc. characteristic of rubber elastic bodies, and if it exceeds 80% by weight, heat resistance will drop rapidly, which is not preferable. Suitable (meth)allylic acid alkyl ester monomers in the copolymer latex for pressure-sensitive adhesives of the present invention include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-
There are ethylhexyl (meth)acrylate, hexyl (meth)acrylate, etc., but the glass transition temperature of their homopolymers such as butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, octadecyl methacrylate is -20℃
The use of the following monomers is particularly preferred as they have a positive influence on the tackiness. In the present invention, "(meth)acrylic acid alkyl ester monomer" refers to both acrylic acid alkyl ester monomer and methacrylic acid ester monomer. (Meta) is used in the same meaning for other monomers. The blending amount of the (meth)acrylic acid alkyl ester monomer is preferably 3 to 80% by weight, and 5 to 50% by weight.
is particularly preferred. If it is less than 3% by weight, it becomes difficult to obtain a balance between tack and cohesive force, which is not preferred in practice. Moreover, if it exceeds 80% by weight, it becomes difficult to obtain low-temperature properties and cohesive strength. The hydroxyalkyl ester monomer necessary for the present invention may be any conjugated diene monomer or (meth)acrylic acid alkyl ester monomer as long as it can be copolymerized with it, and 2-hydroxyethyl (meth)
Acrylate, 2-hydroxypropyl (meth)
Examples include acrylate. The amount of the hydroxyalkyl ester monomer contained in the total monomer blend is preferably 1 to 20% by weight, particularly preferably 3 to 10% by weight. If it is less than 1% by weight, the mechanical stability of the latex will be poor and a large amount of emulsifier will be required for stabilization, which will impede the tackiness and deteriorate the water resistance of the adhesive, which is undesirable. If it exceeds 20% by weight, the water resistance will be extremely reduced and it will be susceptible to the influence of humidity, making it unsuitable for practical use. Although the copolymer latex for pressure-sensitive adhesives of the present invention does not particularly require ethylenically unsaturated carboxylic acid, it may contain a small amount if necessary. However, if a large amount of carboxylic acid is included, the oozing phenomenon will occur extremely easily, and in the case of commonly used monobasic acids such as acrylic acid and methacrylic acid, the heat resistance will be extremely reduced, so this is not recommended. Without,
Even if used, the amount should be 1% by weight or less. The reason why the copolymer of the present invention obtained by blending hydroxyalkyl ester monomers has the above-mentioned unique property of not having the oozing phenomenon is that the monomer containing a carboxyl group is used. This is thought to be due to the fact that less water-soluble low molecular weight polymers are produced than in conventional products. Monomers that can be copolymerized with the conjugated diene monomer, (meth)acrylic acid alkyl ester, or hydroxyalkyl ester monomer include aromatic vinyl compounds such as styrene, vinyltoluene, α-methylstyrene, and divinylbenzene. , glycidyl acrylate, glycidyl methacrylate, and other vinyl compounds having a glycidyl group;
Compounds with amide groups such as acrylamide and N-methylolacrylamide, vinyl esters such as vinyl acetate and vinyl propionate, dioctyl maleate, dioctyl fumarate, dimethylaminoethyl methacrylate, and acrylonitrile are relatively inexpensive and easy to prepare. Most preferred is the use of styrene, which is readily available and provides high cohesive strength to the copolymer latex of the present invention. The preferred proportion of these copolymerizable monomers varies depending on the type of monomer, but if too much is used, the balance between tack and cohesive force cannot be maintained, and if too little is used, the cohesive force decreases. Therefore, it is necessary to use it in a range of 5 to 50% by weight. The copolymer latex for adhesives of the present invention can be easily obtained by a conventional emulsion polymerization method. Examples of emulsifiers used in emulsion polymerization include anionic emulsifiers such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium dioctylsulfosuccinate, disodium dodecyl diphenyl ether disulfonate, polyoxyethylene alkyl ether, and polyoxyethylene alkyl phenyl ether. Nonionic emulsifiers such as As the polymerization initiator, a redox polymerization catalyst using persulfate or a combination thereof with a reducing agent such as sulfite or bisulfite, a redox catalyst using organic hydroperoxide, etc. are used. As the molecular weight regulator, known chain transfer agents such as mercaptans and carbon tetrachloride can be used. The amount of this chain transfer agent to be used is determined so as to impart appropriate tack to the copolymer, but it is necessary to use it in an amount greater than that used in ordinary emulsion polymerization. However, if too large a quantity is used, the cohesive force will be considerably reduced, which is not preferable. Other electrolytes, chelating agents, buffers, PH adjusters, etc. can be used as necessary. These emulsifiers, polymerization initiators, molecular weight regulators, and other auxiliary agents are either added together with the monomers before the start of polymerization, or
Or, a part is charged before the start of polymerization and the rest is added continuously or discontinuously during the polymerization, or added continuously or discontinuously with the start of polymerization in the presence or absence of a seed latex. etc., using known methods. The copolymer latex for adhesives of the present invention can be used alone, but depending on the purpose, it may be used as a blend of these latexes or with a different latex (natural rubber latex, acrylic latex, EVA latex, etc.). Can be used by blending. The copolymer latex for pressure-sensitive adhesives of the present invention has sufficient adhesive performance when used alone, but by mixing a tackifying resin emulsion such as rosin, rosin ester resin, polyterpene resin, etc., it has the characteristic properties of rubber. It is possible to have excellent adhesive physical properties such as elongation, self-adhesion, and anti-creep properties, making it particularly suitable as an adhesive for adhesive tapes. The blending ratio of the tackifying resin is influenced by the properties of the tackifying resin and the copolymer latex of the present invention, and is not particularly limited, but the blending ratio of the tackifying resin to 100 parts by weight (solid content) of the copolymer latex is not particularly limited. It is preferable to use 5 to 200 parts by weight. Since the copolymer latex for adhesives of the present invention does not contain carboxylic acid or contains only a very small amount of carboxylic acid, its viscosity can be specifically adjusted by combining it with a polyether type non-electrolyte thickener. It is possible to obtain a high viscosity adhesive composition with less dependence on mechanical shear, which is close to Newtonian flow, and to have excellent leveling properties that do not cause roll marks during coating. The proportion of the thickener to be used is not particularly limited, and it is added to reach a viscosity suitable for the coating method, and is usually 0.5 to 5 parts by weight (increase) per 100 parts by weight (solid content) of the copolymer latex of the present invention. The purpose can be sufficiently achieved by adding viscous solid content). The copolymer latex for pressure-sensitive adhesives of the present invention, regardless of its conjugated diene type, has excellent heat resistance, unlike carboxy-modified latex, and can be used without adding anti-aging agents within the range normally used. Is possible. However, if necessary, anti-aging agents,
UV absorbers and stabilizers can be added. The adhesive composition comprising the copolymer latex for adhesives of the present invention and a thickener may optionally contain various plasticizers, softeners such as polybutene, lanolin, and process oil, zinc white, titanium oxide, calcium carbonate, etc. The present invention will be described in more detail with reference to Examples below. Examples 1 to 5 and Comparative Example 1 The inside of a temperature-adjustable pressurized reactor (autoclave) equipped with a stirrer was replaced with nitrogen in advance, and 100% water
Part by weight (all parts shown below): 1.0 part of sodium lauryl sulfate, ethylenediaminetetraacetic acid sodium salt
0.08 parts of sodium persulfate, 1.2 parts of sodium persulfate, 0.3 parts of caustic soda, 100 parts of the monomers shown in Examples 1 to 5 in Table 1, and a chain transfer agent were added and polymerized at 60 to 70°C for 15 hours. After polymerization, the pH of the latex was adjusted to 7 with caustic soda, and steam stripping was performed.
Residual monomer was removed. The stability of the copolymer latex thus obtained was measured by the method described below. In Examples 1 to 5, the latex was treated with a polyether type thickener SN Thickener A.
-801 (manufactured by San Nopco) to approximately 10,000 centipoise, and in Comparative Example 1, the copolymer latex of Example 1 was thickened to approximately 10,000 centipoise with a sodium polyacrylate thickener to reduce its thixotropy. I asked for an index. An amount of about 25 g/m 2 was applied to release paper and dried at 120° C. for 2 minutes. Next, the coated surface of the high-quality paper and the coated release paper were pressed together to transfer the adhesive to the high-quality paper, and the following physical properties were measured. Table 2 shows the measurement results of various physical properties. Physical property measurement Mechanical stability of latex: The amount of residue after stirring the latex for 30 minutes using a high speed stirrer (linear speed, maximum 1400 m/min) was measured. Thixotropy index: Expressed as the ratio of the viscosities of thickened latex measured at 6 and 60 rpm using a B-type viscometer. Tack: Measurement using an inclined ball tack. Displayed with slant plate angle of 30°, run-up distance of 10 cm, and ball (SUS) diameter x/32 inches. Adhesive strength: An adhesive paper sample was pasted on a stainless steel plate with a constant pressure (2 kg roller), and the tensile strength was measured when it was peeled off at 180°. tensile speed
300mm/min. Cohesive force: Paste an adhesive paper sample on a stainless steel plate (adhesive area, 2cm x 2cm), set the surface of the stainless steel plate vertically, apply a load of 1 kg to the bottom edge of the adhesive paper sample, and hold it until it falls in an atmosphere of 20℃. Time (minutes) was measured. Heat resistance: The adhesive paper sample was left attached to release paper at 110°C for 3 days, and the tack and adhesive strength were measured. Seepage: After the adhesive paper sample was left at 110°C for 3 days, the degree of seepage of the adhesive onto the surface of the high-quality paper was visually evaluated. ○: No change, ×: Seepage All the above measurements were conducted under conditions of 20°C and 65% RH. Comparative Examples 2 to 5 Copolymer latexes having compositions outside the scope of the present invention shown in Table 1 were obtained in the same manner as in the Examples. Further, the latex was thickened to about 10,000 centipoise with sodium polyacrylate, and various physical properties of the latex were measured in the same manner as in the examples. The results are shown in Table 2. From these results, the adhesive composition of the present invention has the following properties:
While maintaining mechanical stability and adhesive physical properties, the adhesive does not seep into the base material, has a uniquely low viscosity dependence due to differences in mechanical shear, and has excellent heat resistance. it is obvious. Comparative Example 6 A copolymer latex with the same composition as Comparative Example 2 was thickened to about 10,000 centipoise with a polyether type thickener SN Thickner A-801 (manufactured by Sannopco).
Various physical properties were measured in the same manner as in the examples. The results are shown in Table 2. From Examples 1 to 5 and Comparative Examples 1 to 6, copolymer latexes with a low content of ethylenically unsaturated carboxylic acid within the scope of the present invention have a low thixotropy index when a polyether type thickener is used. It can be seen that the pressure-sensitive adhesive composition is small and has excellent coating properties. Examples 6 to 7 The tackifier resin emulsion shown in Table 3 was added to a copolymer latex having the same composition as in Examples 1 and 2 to obtain a water-dispersed adhesive composition. Next, after adjusting to about 5000 centipoise with polyether type thickener SN Thickner A-801, Examples 1 to 5
In addition to the three adhesion properties shown in , the following physical properties were measured and shown in Table 4. As is clear from Examples 6 and 7, when the tackifier resin emulsion is added and mixed, it spreads into the adhesive,
It exhibits self-adhesion and creep resistance against shearing force (corrugated cardboard sealing property), and can have excellent physical properties as a tape adhesive. Measurement of physical properties Self-adhesion: The adhesive sides of adhesive paper samples with a width of 10 mm and a length of 250 mm are pasted together with a constant pressure (2 kg roller), and then the edges of each adhesive paper are
The adhesive strength between the adhesives was measured when they were peeled off at a speed of mm/min. Elongation: When measuring self-adhesion, the degree of elongation of the adhesive in the peeled part was visually observed. ○: Good,
×: Poor cardboard sealability: Paste an adhesive sample with a width of 50 mm and a length of 290 mm onto the sealing part of a cardboard with a clean surface measuring 250 mm x 250 mm x 150 mm, and hold it at 20°C.
The adhesive paper was left to stand still in an atmosphere of 1 week later, and the degree of peeling of the adhesive paper due to the repulsive force of the cardboard was observed after one week.
The sealability was expressed as the number n of good seals out of 8 measurement points. All of the above measurements were performed at 20°C and 65% RH.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 共役ジエン単量体5〜80重量%、(メタ)ア
クリル酸アルキルエステル単量体3〜80重量%、
ヒドロキシアルキルエステル単量体1〜20重量
%、及び他の共重合可能な単量体5〜50重量%を
乳化重合して得られるラテツクス系粘着剤にポリ
エーテルタイプの非電解質型増粘剤を加えてなる
高粘度粘着剤組成物。 2 共役ジエン単量体5〜80重量%(メタ)アク
リル酸アルキルエステル単量体3〜80重量%、ヒ
ドロキシアルキルエステル単量体1〜20重量%及
び他の共重合可能な単量体5〜50重量%を乳化重
合して得られるラテツクス系粘着剤に粘着付与樹
脂エマルジヨン及びポリエーテルタイプの非電解
質型増粘剤を加えてなる高粘度粘着剤組成物。
[Claims] 1. 5 to 80% by weight of conjugated diene monomer, 3 to 80% by weight of (meth)acrylic acid alkyl ester monomer,
A polyether type non-electrolyte thickener is added to a latex adhesive obtained by emulsion polymerization of 1 to 20% by weight of a hydroxyalkyl ester monomer and 5 to 50% by weight of other copolymerizable monomers. A high viscosity adhesive composition. 2 Conjugated diene monomer 5-80% by weight (meth)acrylic acid alkyl ester monomer 3-80% by weight, hydroxyalkyl ester monomer 1-20% by weight, and other copolymerizable monomers 5-80% by weight A high viscosity adhesive composition prepared by adding a tackifier resin emulsion and a polyether type non-electrolyte thickener to a latex adhesive obtained by emulsion polymerization of 50% by weight.
JP57158035A 1982-09-13 1982-09-13 Latex-base self-adhesive and its composition Granted JPS5947212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158035A JPS5947212A (en) 1982-09-13 1982-09-13 Latex-base self-adhesive and its composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158035A JPS5947212A (en) 1982-09-13 1982-09-13 Latex-base self-adhesive and its composition

Publications (2)

Publication Number Publication Date
JPS5947212A JPS5947212A (en) 1984-03-16
JPH0366340B2 true JPH0366340B2 (en) 1991-10-17

Family

ID=15662842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158035A Granted JPS5947212A (en) 1982-09-13 1982-09-13 Latex-base self-adhesive and its composition

Country Status (1)

Country Link
JP (1) JPS5947212A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3710441A1 (en) * 1987-03-30 1988-10-13 Dow Chemical Co IMPROVED ADHESIVE POLYMER COMPOSITION
DE3721097A1 (en) * 1987-06-26 1989-01-05 Dow Chemical Rheinwerk Gmbh IMPROVED ACRYLATE-BASED ADHESIVE POLYMER
DE3721096A1 (en) * 1987-06-26 1989-01-05 Dow Chemical Rheinwerk Gmbh IMPROVED ADHESIVE POLYMER
US5194550A (en) * 1988-06-17 1993-03-16 The Dow Chemical Company Acrylate-based adhesive polymer
US5643992A (en) * 1995-06-02 1997-07-01 Minnesota Mining And Manufacturing Company Coating additives for water-based formulations
JP3598172B2 (en) * 1996-03-28 2004-12-08 株式会社リコー Heat sensitive delayed tack adhesive
JP5726411B2 (en) * 2009-10-14 2015-06-03 電気化学工業株式会社 Emulsion type adhesive and adhesive tape using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115236A (en) * 1974-02-27 1975-09-09
JPS5381590A (en) * 1976-10-06 1978-07-19 Doverstrand Ltd Copolymer latex and paint
JPS57153012A (en) * 1981-03-19 1982-09-21 Sumitomo Naugatuck Co Ltd Production of copolymer latex having excellent adhesiveness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115236A (en) * 1974-02-27 1975-09-09
JPS5381590A (en) * 1976-10-06 1978-07-19 Doverstrand Ltd Copolymer latex and paint
JPS57153012A (en) * 1981-03-19 1982-09-21 Sumitomo Naugatuck Co Ltd Production of copolymer latex having excellent adhesiveness

Also Published As

Publication number Publication date
JPS5947212A (en) 1984-03-16

Similar Documents

Publication Publication Date Title
US4759983A (en) Pressure sensitive adhesives and adhesive articles
JP2522344B2 (en) Water-based pressure sensitive adhesive
JP5221353B2 (en) Chloroprene-based polymer latex and method for producing the same
US20120220686A1 (en) Pressure-sensitive adhesive
TW201638271A (en) Latex composition and one-pack aqueous adhesive
US5435879A (en) Methods of using pressure-sensitive adhesives
EP0048950A1 (en) Latex copolymers for pressure-sensitive adhesives and pressure-sensitive adhesive article comprising them
JP2003027026A (en) Re-releasable water-dispersed pressure-sensitive adhesive
JPH075693B2 (en) Structurally enhanced latex particles and their manufacturing method
JPH0366340B2 (en)
JPH07133473A (en) Tackifier resin emulsion and water-based adhesive composition
US4179415A (en) Pressure sensitive adhesive and process
JPWO2004101670A1 (en) Polychloroprene latex composition and method for producing the same
JP3350910B2 (en) Emulsion type tackifier resin and aqueous pressure sensitive adhesive composition
JP2001181590A (en) Method for producing pressure-sensitive adhesive article
JP4597607B2 (en) Aqueous adhesive composition and method for producing the same
JP4225388B2 (en) Water-based emulsion adhesive for foam
JPH0786190B2 (en) Pressure-sensitive adhesive composition comprising ethylene / vinyl acetate / dioctyl maleate terpolymer
EP2855539B1 (en) Pressure-sensitive adhesives comprising low molecular weight acid-functional acrylic resins and methods of making and using same
JP2001089730A (en) Pressure-sensitive adhesive composition and pressure- sensitiive adhesive sheet made thereof
JPH07188629A (en) Pressure-sensitive adhesive composition
CA1329443C (en) Adhesive polymer compositions
FI97896C (en) Contact adhesive in which contains (Met) acrylate and articles coated with this
JP2001254063A (en) Pressure-sensitive adhesive composition and pressure- sensitive adhesive sheet prepared therefrom
JP2005194448A (en) Acrylic copolymer emulsion for pressure-sensitive adhesive, method for producing the same and pressure-sensitive adhesive sheet