JPH0366146B2 - - Google Patents

Info

Publication number
JPH0366146B2
JPH0366146B2 JP22620286A JP22620286A JPH0366146B2 JP H0366146 B2 JPH0366146 B2 JP H0366146B2 JP 22620286 A JP22620286 A JP 22620286A JP 22620286 A JP22620286 A JP 22620286A JP H0366146 B2 JPH0366146 B2 JP H0366146B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
resin pipe
metal joint
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22620286A
Other languages
Japanese (ja)
Other versions
JPS6382728A (en
Inventor
Ichiro Kobayashi
Tadashi Hayashida
Masataka Kumada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP22620286A priority Critical patent/JPS6382728A/en
Publication of JPS6382728A publication Critical patent/JPS6382728A/en
Publication of JPH0366146B2 publication Critical patent/JPH0366146B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、車両の動力伝達軸等に利用される金
属継手付き繊維強化樹脂管の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a fiber-reinforced resin pipe with a metal joint used for a power transmission shaft of a vehicle or the like.

〔従来技術〕[Prior art]

車両の軽量化のため、繊維強化樹脂製品を各部
品に応用することが試みられている。このうち、
動力伝達軸に利用する場合には、繊維強化樹脂を
管状に形成し、その管端に金属継手を連結した構
造にしたのが使われている。
In order to reduce the weight of vehicles, attempts are being made to apply fiber-reinforced resin products to various parts. this house,
When used as a power transmission shaft, fiber-reinforced resin is formed into a tube, and a metal joint is connected to the end of the tube.

このような動力伝達軸に使用する金属継手付き
繊維強化樹脂管では、その繊維強化樹脂管と金属
継手との間の伝達トルクによつて簡単に剥離する
ことがないように、強固に連結することが技術的
に重要な課題になつている。そのためこの金属継
手付き繊維強化樹脂管の製作にあたつては、繊維
強化樹脂管の管端に金属継手を挿入状態で接着す
るとき、繊維をき金属継手外周に固く巻き締める
ようにするのが有効であるとされている。
Fiber-reinforced resin pipes with metal joints used for such power transmission shafts must be firmly connected so that they will not easily separate due to the transmitted torque between the fiber-reinforced resin pipe and the metal joint. has become an important technological issue. Therefore, when manufacturing this fiber-reinforced resin pipe with a metal joint, when gluing the metal joint to the end of the fiber-reinforced resin pipe while inserting it, it is recommended to wrap the fiber tightly around the outer circumference of the metal joint. It is said to be effective.

第6図は、このような金属継手付き繊維強化樹
脂管の従来の製造法を説明するもので、まずマン
ドレル15上に紙管なからなる長いスペーサ16
と短いスペーサ17とを介在させて、金属継手1
2を交互に嵌合するようにする。長いスペーサ1
6は金属継手12,12の間隔の規制し、その金
属継手12と面一の表面を形成するためのもので
あり、また短いスペーサ17は後工程で複数本の
(図では3本の)金属継手付き繊維強化樹脂管a1
a2、a3に分離するときの切断代として介在させる
ものである。
FIG. 6 explains the conventional manufacturing method of such a fiber-reinforced resin pipe with a metal joint. First, a long spacer 16 made of a paper tube is placed on a mandrel 15.
and a short spacer 17, the metal joint 1
2 should be fitted alternately. long spacer 1
6 is for regulating the distance between the metal joints 12, 12 and forming a surface flush with the metal joint 12, and a short spacer 17 is used to control the distance between the metal joints 12, 12, and to form a surface flush with the metal joint 12, and a short spacer 17 is used to control the distance between the metal joints 12, 12, and to form a surface flush with the metal joint 12. Fiber reinforced resin pipe with fittings a 1 ,
It is provided as a cutting allowance when separating into a 2 and a 3 .

このようにマンドレル15上に連続状に組み付
けた金属継手12とスペーサ16,17の外周面
に接着剤を塗布し、その上から未硬化樹脂を含浸
したフイラメント状炭素繊維等の強化用繊維を螺
旋状に繰り返し巻き付け、繊維強化樹脂管11を
形成する。しかるのち、その繊維強化樹脂管11
を加熱し、繊維強化樹脂管と接着剤とを同時に一
体キユアさせる〔一般にコ・キユア(co−cura)
法と呼ばれている〕。次いでスペーサ17の部分
で切断し、複数本の金属継手付き繊維強化樹脂管
a1、a2、a3に分離させるようにする。
Adhesive is applied to the outer circumferential surfaces of the metal joint 12 and spacers 16, 17 that are continuously assembled on the mandrel 15, and reinforcing fibers such as filament carbon fibers impregnated with uncured resin are spirally applied thereon. The fiber-reinforced resin pipe 11 is formed by repeatedly winding the fiber into a shape. After that, the fiber reinforced resin pipe 11
is heated to simultaneously cure the fiber-reinforced resin pipe and adhesive (generally known as co-cura).
It is called the law. Next, it is cut at the spacer 17, and a plurality of fiber-reinforced resin pipes with metal joints are made.
Separate it into a 1 , a 2 , and a 3 .

また、上記金属継手12にヨーク等のような連
結手段を取り付ける場合には、上述のようにスペ
ーサ17の部分を取り除くとともに、金属継手1
2の端部を露出させ、その露出部分に上記連結手
段を溶接等によつて取り付けるようにしている。
In addition, when attaching a connecting means such as a yoke to the metal joint 12, the spacer 17 is removed as described above, and the metal joint 1
2 is exposed, and the connecting means is attached to the exposed portion by welding or the like.

しかし、上記従来の製造方法によると、繊維強
化樹脂管11を加熱硬化するとき、金属継手12
の部分とスペーサ16,17の部分とで熱伝導が
異なるため、一様に硬化させることができず、製
品の歩留まり不良が多くなつて生産性を低くする
という欠点がある。また、スペーサ17の部分を
カツトするため繊維強化樹脂の一部が屑となつて
捨てられることになり、コストアツプになる問題
もあり、またスペーサ16の方は、内部に残存し
たままになるので、軽量化の目的からも不利にな
らざるを得ない欠点がある。
However, according to the above conventional manufacturing method, when the fiber-reinforced resin pipe 11 is heated and hardened, the metal joint 12
Since the heat conduction is different between the spacers 16 and 17, uniform curing cannot be achieved, resulting in an increased yield of products and lower productivity. In addition, since the spacer 17 is cut, part of the fiber reinforced resin becomes waste and is thrown away, which increases the cost.Also, the spacer 16 remains inside. There are drawbacks that are disadvantageous for the purpose of weight reduction.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の問題を解
消し、繊維強化樹脂管と金属継手との強固な接着
を可能にしながら、生産性を著しく向上すること
ができる金属継手付き繊維強化樹脂管の製造方法
を提供することにある。
An object of the present invention is to provide a fiber-reinforced resin pipe with a metal joint that can significantly improve productivity while solving the problems of the prior art described above and enabling strong adhesion between the fiber-reinforced resin pipe and the metal joint. The purpose is to provide a manufacturing method.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明は、金属継手を端部
に連結した繊維強化樹脂管の製造方法において、
予め成形した繊維強化樹脂管を前記金属継手の連
結部の径よりも大きな径に加熱膨張させ、その膨
張した管端に前記金属継手を接着剤を介在させて
挿入し、次いで前記加熱膨張操作温度より低い温
度で前記接着剤を硬化させることを特徴とするも
のである。
The present invention achieves the above object in a method of manufacturing a fiber reinforced resin pipe in which a metal joint is connected to the end.
A pre-formed fiber-reinforced resin pipe is heated and expanded to a diameter larger than the diameter of the connecting portion of the metal joint, the metal joint is inserted into the expanded pipe end with an adhesive interposed, and then the heating and expansion operation temperature is It is characterized in that the adhesive is cured at a lower temperature.

本発明において、繊維強化樹脂管に使用する繊
維は、強化繊維として従来使用されるものであれ
ばいずれも使用可能であり、特に炭素繊維、ガラ
ス繊維、アラミド繊維、ボロン繊維、炭化ガーバ
イド繊維等が挙げられる。これらの強化繊維は単
独で使用してもよく、あるいは他の繊維と組み合
わせたハイブリツドとして使用してもよい。ま
た、本発明の繊維強化樹脂管に使用する樹脂とし
ては熱硬化性樹脂が好ましく、エポキシ、不飽和
ポリエステル、ビニルエステルなどを挙げること
ができる。
In the present invention, any fibers conventionally used as reinforcing fibers can be used for the fiber-reinforced resin pipe, and carbon fibers, glass fibers, aramid fibers, boron fibers, carbonized garbide fibers, etc. are particularly suitable. Can be mentioned. These reinforcing fibers may be used alone or as a hybrid in combination with other fibers. Furthermore, the resin used in the fiber-reinforced resin pipe of the present invention is preferably a thermosetting resin, and examples include epoxy, unsaturated polyester, and vinyl ester.

また、本発明に使用される接着剤としては熱硬
化性樹脂系のものが好ましく、エポキシ系、不飽
和ポリエステル系、ビニルエステル系のものが好
ましい。
Further, the adhesive used in the present invention is preferably a thermosetting resin adhesive, and preferably an epoxy adhesive, an unsaturated polyester adhesive, or a vinyl ester adhesive.

さて、本発明において繊維強化樹脂管を予め成
形するにあたり、その繊維強化樹脂中に混在させ
る繊維の形態は、連続したフイラメント(長繊
維)状態、短くカツトした短繊維状態のいずれで
あつてもよいが、特に動力伝達軸に使用する繊維
強化樹脂管の場合は、連続フイラメント状態のも
のを使用するのがよい。
In the present invention, when preforming a fiber-reinforced resin pipe, the fibers mixed in the fiber-reinforced resin may be in either a continuous filament state or a short fiber state cut into short lengths. However, especially in the case of fiber-reinforced resin tubes used for power transmission shafts, it is better to use continuous filament tubes.

特に動力伝達軸用として、このようなフイラメ
ント状態の繊維から繊維強化樹脂管を成形するに
は、周知のフイラメントワインデイング法によつ
て成形するのがよい。すなわち、フイラメント状
の強化繊維に未硬化の樹脂を含浸させながら、回
転するマンドレル上に所定の巻き角度で巻き付け
る方法、またはフイラメント状の強化繊維に未硬
化の樹脂を含浸させてプリプレグを作り、そのプ
リプレグをマンドレルを回転させながら、所定の
角度で巻き付ける方法である。このようにフイラ
メント状の繊維がマンドレル上に巻き付けられる
ことによつて、綾目状に交差して巻き付けられた
繊維強化樹脂管が得られる。
In order to form a fiber-reinforced resin tube from such filament-like fibers, particularly for use in a power transmission shaft, it is preferable to use the well-known filament winding method. In other words, there is a method in which filament-shaped reinforcing fibers are impregnated with uncured resin and then wrapped around a rotating mandrel at a predetermined winding angle, or a prepreg is made by impregnating filament-shaped reinforcing fibers with uncured resin. This method involves wrapping the prepreg at a predetermined angle while rotating a mandrel. By winding the filament-like fibers on the mandrel in this manner, a fiber-reinforced resin pipe wound in a twill pattern can be obtained.

このとき使用するマンドレルには、後に接続す
る金属継手の連結部の外径とほゞ等しい径のもの
を使用し、それによつて繊維強化樹脂管の内径を
金属継手の連結外径とほゞ同じ大きさにすること
ができる。
The mandrel used at this time has a diameter that is approximately the same as the outside diameter of the connection part of the metal joint that will be connected later, so that the inside diameter of the fiber-reinforced resin pipe is approximately the same as the connection outside diameter of the metal joint. It can be made into a size.

上述のようにマンドレルに巻き付けられて成形
された繊維強化樹脂管は、そのままの状態で加熱
して樹脂の硬化を行つたのちマンドレルから脱型
するが、このときの樹脂の硬化は完全硬化させて
もよく、或いは不完全硬化の状態にしてもよい。
より好ましくは、後者の不完全硬化状態で脱型す
る方が望ましく、これによつてマンドルからの脱
型を容易にするばかりでなく、後に金属継手と接
着させるとき、その接着力の一層の強化を可能に
することができる。しかし、完全硬化、不完全硬
化のいずれにするにしても、単一のマンドレル上
で硬化処理するので、繊維強化樹脂管に対する熱
の伝わり方は全体に一様になり、それによつて歩
留まりのよい均質な繊維強化樹脂管を得ることが
できる。
The fiber-reinforced resin tube that has been wrapped around a mandrel and molded as described above is heated as it is to cure the resin, and then removed from the mandrel, but the resin is not completely cured at this time. Alternatively, it may be in an incompletely cured state.
More preferably, it is desirable to remove the mold in the latter incompletely cured state, which not only facilitates removal from the mandle but also further strengthens the adhesive strength when bonding to a metal joint later. can be made possible. However, regardless of whether it is completely cured or incompletely cured, since the curing process is performed on a single mandrel, the way the heat is transmitted to the fiber-reinforced resin tube is uniform throughout, resulting in a high yield. A homogeneous fiber-reinforced resin pipe can be obtained.

上述のように成形された繊維強化樹脂管は、次
いで動力伝達軸等の用途に合わせて所定長に切断
し、複数個の繊維強化樹脂管に分離する。このよ
うに所定長に分離された繊維強化樹脂管は、接着
性向上のため、予め管端内面の接着面をバフ処理
したり、プライマー処理したりする前処理をする
ことが望ましい。この場合、樹脂が完全硬化され
た繊維強化樹脂管の場合は、接着性向上の前処理
をプラズマ処理によつて行うとよい。
The fiber-reinforced resin tube formed as described above is then cut into a predetermined length according to the intended use, such as a power transmission shaft, and separated into a plurality of fiber-reinforced resin tubes. It is desirable that the fiber-reinforced resin tubes separated into predetermined lengths be subjected to pretreatment such as buffing or primer treatment on the adhesive surface of the inner surface of the tube end in order to improve adhesion. In this case, in the case of a fiber-reinforced resin pipe whose resin is completely cured, it is preferable to perform pretreatment to improve adhesiveness by plasma treatment.

一方、このような繊維強化樹脂管に対する前処
理とは別に、これに接続すべき金属継手の方も、
その連結部表面を接着と前処理をし、接着剤を予
め塗布する。このときの接着剤としては、接着剤
を単独で塗布してもよいが、所謂キヤリヤ入りシ
ート状接着剤の形態で使用すると好都合である。
すなわち、キヤリヤ入シート状接着剤は、粗目の
織物などメツシユ状の布帛をキヤリヤとし、それ
に接着剤を含浸させたもので、これを接着剤とし
て使用すれば、塗布操作を容易にして作業性を向
上するばかりでなく、硬化中にそれ自身が流され
ないため均一な接着圧さを確保することができ、
より強力な接着強度を可能にするからである。
On the other hand, apart from this pre-treatment of fiber-reinforced resin pipes, the metal joints that should be connected to them are also
The surface of the connecting portion is bonded and pretreated, and an adhesive is applied in advance. At this time, the adhesive may be applied alone, but it is convenient to use it in the form of a so-called carrier sheet adhesive.
In other words, the carrier-containing sheet adhesive is made by impregnating a mesh-like fabric such as a coarse-grained fabric as a carrier with an adhesive, and when used as an adhesive, it facilitates the application operation and improves workability. Not only does this improve the adhesive strength, but it also ensures uniform bonding pressure because it is not washed away during curing.
This is because it enables stronger adhesive strength.

本発明では、上述のように用意された金属継手
の繊維強化樹脂管とを連結するに当たり、その繊
維強化樹脂管を加熱膨張させ、少なくとも管端の
内径を、接着剤が被覆された状態の金属継手の連
結部外径よりも大きな状態にする。その拡径され
た繊維強化樹脂管の管端に上記接着剤付きの金属
継手を挿入し、その状態のまま上記加熱膨張温度
より低い温度で加熱を行い、接着剤の硬化、なら
びに不完全硬化状態の繊維強化樹脂管の場合に
は、その樹脂の硬化を行うのである。この接着剤
の加熱硬化処理において、繊維強化樹脂管は径方
向に収縮するため、金属継手の表面を締め付ける
作用が起こる。そのため接着剤は、その硬化中常
に締めをうけながら硬化することになり、それに
よつて極めて強力な接着力が得られるようにな
る。
In the present invention, when connecting the fiber-reinforced resin pipe of the metal joint prepared as described above, the fiber-reinforced resin pipe is heated and expanded, and at least the inner diameter of the pipe end is made of metal coated with adhesive. Make it larger than the outside diameter of the connecting part of the joint. The metal joint with the adhesive is inserted into the end of the expanded fiber-reinforced resin pipe, and heated in that state at a temperature lower than the heating expansion temperature to harden the adhesive and to an incompletely cured state. In the case of fiber-reinforced resin pipes, the resin is cured. During the heating and curing process of this adhesive, the fiber-reinforced resin tube contracts in the radial direction, which causes an effect of tightening the surface of the metal joint. Therefore, the adhesive is constantly tightened while curing, and as a result, an extremely strong adhesive force can be obtained.

上述したフイラメトワインドによつて成形した
繊維強化樹脂管の場合、その周方向(したがつて
径方向に比例)の加熱膨張の度合(熱膨張率)
は、フイラメントの巻き角θによつて異なること
が観察される。すなわち、第4図に示すように、
繊維強化樹脂管1におけるフイラメントFの軸方
向に対する巻き角をθとすると、第5図のグラフ
に示すように、フイラメントが炭素繊維の場合に
は曲線Cのように変化し、ガラス繊維の場合には
曲線Gのように変化し、またアラミド繊維の場合
には曲線Aのように変化することが実験の結果観
察された。
In the case of a fiber-reinforced resin pipe formed by the above-mentioned filament winding, the degree of thermal expansion (coefficient of thermal expansion) in the circumferential direction (therefore proportional to the radial direction)
is observed to vary depending on the winding angle θ of the filament. That is, as shown in Figure 4,
If the winding angle with respect to the axial direction of the filament F in the fiber-reinforced resin tube 1 is θ, as shown in the graph of FIG. As a result of experiments, it was observed that the curve changes as shown by curve G, and changes as shown by curve A in the case of aramid fibers.

これに対し、スチールの熱膨張率は10〜11×
10-6/℃であるので、金属継手がスチール製であ
る場合に、本発明による繊維強化樹脂管の加熱膨
張を行うには、フイラメントの巻き角θを、上記
スチールの熱膨張率よりも大きな熱膨張率になる
領域の巻き角を選ぶことが必要になる。すなわ
ち、炭素繊維/エポキシ樹脂の場合であれば、ス
チールの熱膨張率を下限値の10×10-6/℃に設定
した場合、0<|θ|<30℃近傍であり、ガラス
繊維/エポキシ樹脂の場合であれば、0<|θ|
<35°近傍であり、またアラミド繊維/エポキシ
樹脂の場合であれば、0<|θ|<41°近傍であ
る。このような巻き角θと熱膨張率との関係は、
2種類以上の強化繊維を組み合わせたハイブリツ
ドの繊維強化樹脂管の場合にも、上記と同様にし
て必要な巻き角を見つけだすことができる。
In contrast, the coefficient of thermal expansion of steel is 10 to 11×
10 -6 /°C. Therefore, when the metal joint is made of steel, in order to heat expand the fiber-reinforced resin pipe according to the present invention, the winding angle θ of the filament must be set to be larger than the coefficient of thermal expansion of steel. It is necessary to select a wrap angle in a region that provides the coefficient of thermal expansion. In other words, in the case of carbon fiber/epoxy resin, if the thermal expansion coefficient of steel is set to the lower limit of 10 × 10 -6 /°C, it will be around 0<|θ|<30°C, and in the case of glass fiber/epoxy resin, In the case of resin, 0<|θ|
<approximately 35°, and in the case of aramid fiber/epoxy resin, approximately 0<|θ|<41°. The relationship between the wrap angle θ and the coefficient of thermal expansion is
Even in the case of a hybrid fiber-reinforced resin pipe made of a combination of two or more types of reinforcing fibers, the required winding angle can be found in the same manner as above.

図は、本発明の製造方法の具体的な一例を示し
た説明図である。
The figure is an explanatory diagram showing a specific example of the manufacturing method of the present invention.

第1図A,Bの例では、第1図Aに示すように
予め成形され、かつ所定長さに切断された繊維強
化樹脂管1が用意される。この繊維強化樹脂管1
の管端内面は、接着性向上の前処理としてバフ処
理あるいはプラズマ処理が施される。一方、繊維
強化樹脂管1の内径とほゞ同じ外径にした金属継
手2を別途製作し、その表面に接着剤3を塗布す
る。
In the examples shown in FIGS. 1A and 1B, a fiber-reinforced resin pipe 1 that has been previously formed and cut into a predetermined length as shown in FIG. 1A is prepared. This fiber reinforced resin pipe 1
The inner surface of the tube end is subjected to buffing or plasma treatment as a pretreatment to improve adhesion. On the other hand, a metal joint 2 having an outer diameter approximately the same as the inner diameter of the fiber-reinforced resin pipe 1 is separately produced, and an adhesive 3 is applied to its surface.

このような前準備ののち、上記繊維強化樹脂管
1を加熱処理によつて管端を径方向に膨張させ、
この拡径された管端に上記金属継手2を挿入し、
次いでそのまま前記加熱膨張操作温度より低い温
度で加熱して、接着剤3(および不完全硬化の繊
維強化樹脂管の場合は、その樹脂)の硬化を行
う。
After such preliminary preparation, the fiber-reinforced resin pipe 1 is heated to expand the pipe end in the radial direction.
Insert the metal joint 2 into this expanded diameter pipe end,
Next, the adhesive 3 (and the resin in the case of an incompletely cured fiber-reinforced resin pipe) is cured by heating at a temperature lower than the heating and expansion operation temperature.

この接着剤3の加熱硬化処理において、繊維強
化樹脂管1は径方向に収縮するため、繊維強化樹
脂管1が金属継手2を締めつけ、その締めつけ作
用によつて接着剤3は強力な接合力を発揮するよ
うになる。
During the heat curing process of the adhesive 3, the fiber-reinforced resin pipe 1 contracts in the radial direction, so the fiber-reinforced resin pipe 1 tightens the metal joint 2, and the tightening action causes the adhesive 3 to exert a strong bonding force. You will be able to demonstrate your abilities.

この第1図A,Bの場合は、金属継手2が端部
開放型の形状であるが、第2図A,Bに示す例の
ようにヨーク2aを一体形成した端部閉鎖型の金
属継手2を使用しても同様に本発明を実施するこ
とができる。ただし、この端部閉鎖型の金属継手
2の使用に当たつては、その端部に空気抜き孔4
を設けておくことが必要である。
In the case of FIGS. 1A and B, the metal joint 2 has an open-end shape, but as in the example shown in FIGS. 2A and B, it is a closed-end metal joint with an integrally formed yoke 2a 2, the present invention can be carried out in the same manner. However, when using this end-closed metal joint 2, an air vent hole 4 must be provided at the end.
It is necessary to provide

また、この端部閉鎖型金属継手2の場合、第3
図A,B,Cに示すように鍔状の突起5を設けた
ものを使用するとよい。この突起5を設けたこと
により、金属継手2を挿入するとき、その突起5
と繊維強化樹脂管1の端面とが当接するまで差し
込めばよく、それによつて繊維強化樹脂管1に対
する位置が正確に設定され、寸法精度の極めて高
い製品を得ることができる。
In addition, in the case of this closed end metal joint 2, the third
It is preferable to use one provided with a flange-like projection 5 as shown in Figures A, B, and C. By providing this protrusion 5, when inserting the metal joint 2, the protrusion 5
It is only necessary to insert it until the end surface of the fiber-reinforced resin pipe 1 comes into contact with the end face of the fiber-reinforced resin pipe 1, and thereby the position relative to the fiber-reinforced resin pipe 1 can be set accurately, and a product with extremely high dimensional accuracy can be obtained.

また、繊維強化樹脂管は、第1図A,B等のよ
うに必ずしも長手方向全体に同一径である必要は
なく、第4図A,Bのように金属継手を接着する
部分と、それ以外の部分とで径が異なつた段付き
状の繊維強化樹脂管1であつてもよい。
In addition, the fiber reinforced resin pipe does not necessarily have to have the same diameter in the entire longitudinal direction as shown in Fig. 1 A and B, but the diameter of the fiber reinforced resin pipe does not necessarily have to be the same in the entire longitudinal direction as shown in Fig. 4 A and B. The fiber-reinforced resin pipe 1 may have a stepped shape in which the diameter is different between the portions.

〔実施例〕〔Example〕

炭素繊維フイラメントに未硬化のエポキシ樹脂
を含浸させながら、フイラメントワインデイング
法により外径46.20mmのマンドレルに巻き角±30°
で、巻き厚14プライを巻きつけたのち、これを
120℃×40分の加熱硬化処理を行い、樹脂が不完
全硬化状態の外径53mm、内径46.20mmの繊維強化
樹脂管を得た。この繊維強化樹脂管を長さ200mm
の長さに切断分離し、第1図A,Bに示すような
ストレートな繊維強化樹脂管を得たのち、その1
本について両端内面の接着面をバフ処理、プライ
マー処理を施した。
While impregnating the carbon fiber filament with uncured epoxy resin, the winding angle is ±30° on a mandrel with an outer diameter of 46.20 mm using the filament winding method.
So, after wrapping 14 plies of winding thickness, this
Heat curing treatment was performed at 120°C for 40 minutes to obtain a fiber-reinforced resin tube with an outer diameter of 53 mm and an inner diameter of 46.20 mm with the resin in an incompletely cured state. This fiber reinforced resin pipe has a length of 200mm.
After cutting and separating into lengths to obtain straight fiber-reinforced resin pipes as shown in Figure 1A and B,
The adhesive surfaces on both ends of the book were buffed and primed.

一方、別途製作した第1図A,Bに示すような
金属継手の接着面にブラスト処理、プライマー処
理を施したのち、キヤリヤ入りシート状のエポキ
シ系接着剤を貼りつけた。この接着剤込みの外径
は46.40mmであり、長さは50mmであつた。
On the other hand, after blasting and priming were applied to the adhesion surface of a metal joint as shown in FIGS. 1A and B, which had been prepared separately, a carrier-containing sheet of epoxy adhesive was applied. The outer diameter including adhesive was 46.40 mm and the length was 50 mm.

次いで、上記繊維強化樹脂管を加熱オーブン中
で200℃×10分の加熱処理を行つて、径方向に膨
張させ、その両管端にそれぞれ上記金属継手を挿
入した。金属継手を挿入後、160℃×5時間の加
熱硬化条件で処理し、接着剤と不完全硬化状態の
繊維強化樹脂管の樹脂を硬化させたのち、加熱オ
ーブンから取り出し、室温になるまで徐冷させて
最終の金属継手付き繊維強化樹脂管を製品として
得た。
Next, the fiber-reinforced resin tube was heat-treated at 200° C. for 10 minutes in a heating oven to expand in the radial direction, and the metal joints were inserted into both ends of the tube, respectively. After inserting the metal joint, heat curing it at 160℃ for 5 hours to harden the adhesive and the resin in the partially cured fiber reinforced resin pipe, then remove it from the heating oven and slowly cool it to room temperature. A final fiber-reinforced resin pipe with a metal joint was obtained as a product.

上記金属継手付き繊維強化樹脂管を動力伝達軸
として、±100Kg−m(両振り)のトルクを負荷し
た条件下に100万回の捩り疲労を与えたが、接着
面の剥離は全く起こつておらず、その疲労レベル
は従来技術の項で説明したコ・キユア法による接
着に比べて遜色のないものであつた。
Using the fiber-reinforced resin pipe with metal joints as a power transmission shaft, torsional fatigue was applied 1 million times under the condition of applying a torque of ±100 kg-m (double swing), but no peeling of the adhesive surface occurred at all. First, the fatigue level was comparable to that of bonding by the co-cure method described in the prior art section.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明の製造方法は、予め繊
維強化樹脂管を成形しておき、それを別途製作し
た金属継手に連結する方法をとるので、従来のよ
うに繊維強化樹脂管の一部を切断除去するような
無駄を発生することがなく、また加熱硬化時に繊
維強化樹脂管に不均一な熱伝導が与えられた品質
むらを発生することがないため、生産性を著しく
向上することができる。
As mentioned above, the manufacturing method of the present invention involves forming a fiber-reinforced resin pipe in advance and connecting it to a separately manufactured metal joint. Productivity can be significantly improved because there is no waste due to cutting and removal, and there is no uneven quality due to uneven heat conduction to the fiber reinforced resin pipe during heat curing. .

しかも、接着に当たつては、径を加熱膨張させ
た繊維強化樹脂管に接着剤を介して金属継手を挿
入し、その状態で加熱膨張操作温度より低い温度
で接着剤を硬化させるので、接着剤が繊維強化樹
脂管の収縮による締めつけ圧力を受けながら硬化
することになり、それによつて極めて強固の接着
力が得られるようになる。
Moreover, when bonding, the metal joint is inserted through adhesive into a fiber-reinforced resin tube whose diameter has been heated and expanded, and the adhesive is cured at a temperature lower than the heating and expansion operation temperature. The adhesive hardens while being subjected to the tightening pressure caused by the contraction of the fiber-reinforced resin pipe, thereby providing an extremely strong adhesive force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bは本発明による製造方法を示す説
明図、第2図A,B、第3図A,B,C、第4図
A,Bはそれぞれ他の実施例による方法を示す説
明図、第5図は繊維強化樹脂管における繊維の巻
き角θを説明する説明図、第6図は繊維強化樹脂
管の熱膨張率と巻き角θとの関係を示すグラフ
図、第7図は従来の製造方法を示す説明図であ
る。 1……繊維強化樹脂管、2……金属継手、3…
…接着剤。
FIGS. 1A and B are explanatory views showing the manufacturing method according to the present invention, FIGS. 2A and B, FIGS. 3A, B, and C, and FIGS. Figure 5 is an explanatory diagram explaining the winding angle θ of fibers in a fiber-reinforced resin pipe, Figure 6 is a graph showing the relationship between the coefficient of thermal expansion and the winding angle θ of a fiber-reinforced resin pipe, and Figure 7 is FIG. 2 is an explanatory diagram showing a conventional manufacturing method. 1...Fiber-reinforced resin pipe, 2...Metal joint, 3...
…glue.

Claims (1)

【特許請求の範囲】 1 金属継手を端部に連結した繊維強化樹脂管の
製造方法において、予め成形した繊維強化樹脂管
を前記金属継手の連結部の径よりも大きな径に加
熱膨張させ、その膨張した管端に前記金属継手を
接着剤を介在させて挿入し、次いで前記加熱膨張
操作温度より低い温度で前記接着剤を硬化させる
ことを特徴とする金属継手付き繊維強化樹脂管の
製造方法。 2 繊維強化樹脂管がフイラメントワインドによ
り成形されている特許請求の範囲第1項記載の金
属継手付き繊維強化樹脂管の製造方法。 3 樹脂が不完全硬化状態の繊維強化樹脂管を成
形し、この繊維強化樹脂管を加熱膨張させる特許
請求の範囲第1項記載の金属継手付き繊維強化樹
脂管の製造方法。 4 キヤリヤ入りシート状の接着剤を金属継手側
に予め被覆し、この金属継手を繊維強化樹脂管の
管端に挿入する特許請求の範囲第1項記載の金属
継手付き繊維強化樹脂管の製造方法。
[Scope of Claims] 1. A method for manufacturing a fiber-reinforced resin pipe with a metal joint connected to the end thereof, in which a pre-formed fiber-reinforced resin pipe is heated and expanded to a diameter larger than the diameter of the connecting portion of the metal joint. A method for manufacturing a fiber-reinforced resin pipe with a metal joint, characterized in that the metal joint is inserted into the expanded pipe end with an adhesive interposed therebetween, and then the adhesive is cured at a temperature lower than the heating and expansion operation temperature. 2. The method for manufacturing a fiber-reinforced resin pipe with a metal joint according to claim 1, wherein the fiber-reinforced resin pipe is formed by filament winding. 3. The method for manufacturing a fiber reinforced resin pipe with a metal joint according to claim 1, which comprises molding a fiber reinforced resin pipe in which the resin is in an incompletely cured state, and heating and expanding the fiber reinforced resin pipe. 4. A method for manufacturing a fiber reinforced resin pipe with a metal joint according to claim 1, which comprises pre-coating the metal joint side with a carrier-containing sheet adhesive and inserting the metal joint into the pipe end of the fiber reinforced resin pipe. .
JP22620286A 1986-09-26 1986-09-26 Manufacture of fiber-reinforced resin pipe with metallic coupling Granted JPS6382728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22620286A JPS6382728A (en) 1986-09-26 1986-09-26 Manufacture of fiber-reinforced resin pipe with metallic coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22620286A JPS6382728A (en) 1986-09-26 1986-09-26 Manufacture of fiber-reinforced resin pipe with metallic coupling

Publications (2)

Publication Number Publication Date
JPS6382728A JPS6382728A (en) 1988-04-13
JPH0366146B2 true JPH0366146B2 (en) 1991-10-16

Family

ID=16841488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22620286A Granted JPS6382728A (en) 1986-09-26 1986-09-26 Manufacture of fiber-reinforced resin pipe with metallic coupling

Country Status (1)

Country Link
JP (1) JPS6382728A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288418B2 (en) * 2013-12-09 2018-03-07 株式会社ジェイテクト Rack bar manufacturing method
US9956987B2 (en) 2013-11-22 2018-05-01 Jtekt Corporation Manufacturing method of bar component and bar component

Also Published As

Publication number Publication date
JPS6382728A (en) 1988-04-13

Similar Documents

Publication Publication Date Title
US4211589A (en) Shaft and universal joint assembly
US4279275A (en) Mechanical joinder of composite shaft to metallic end members
US4187135A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
CA1148484A (en) Reinforced tubular structure and method of fabrication thereof
US4248062A (en) Drive shaft assembly and method for making same
US4348247A (en) Method of fabricating a reinforced tubular structure
US4289557A (en) Method for mass producing composite shafts
JPS6154965B2 (en)
GB2051303A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPS5950216A (en) Drive shaft of fiber reinforced synthetic resin and manufacture thereof
JPS6359523A (en) Manufacture of fiber reinforced synthetic resin vessel and vessel manufactured through said method
JPH0366146B2 (en)
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPS59133813A (en) Driving shaft made of fiber-reinforced synthetic resin and preparation thereof
JPS6091008A (en) Transmission shaft made of fiber reinforced plastics
JPS59109315A (en) Joined body of metal material and fiber reinforced composite material
JPH01154730A (en) Manufacture of power transmission shaft
JPH01126412A (en) Manufacture of fiber reinforced resin made transmission pipe
JP3586919B2 (en) Rubber roll and method for producing the same
JPS63199914A (en) Joint joining method for fiber reinforced plastics-made propeller shaft
JPH0380617B2 (en)
JPS6136513A (en) Driving shaft
JPS5949923A (en) Bonding method of fiber reinforced synthetic resin tube with metallic joint member
JPH05180234A (en) Caulked joint structure of frp pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees