JPH0365778B2 - - Google Patents

Info

Publication number
JPH0365778B2
JPH0365778B2 JP60101542A JP10154285A JPH0365778B2 JP H0365778 B2 JPH0365778 B2 JP H0365778B2 JP 60101542 A JP60101542 A JP 60101542A JP 10154285 A JP10154285 A JP 10154285A JP H0365778 B2 JPH0365778 B2 JP H0365778B2
Authority
JP
Japan
Prior art keywords
film
less
surface roughness
polyester
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60101542A
Other languages
Japanese (ja)
Other versions
JPS61261026A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10154285A priority Critical patent/JPS61261026A/en
Publication of JPS61261026A publication Critical patent/JPS61261026A/en
Publication of JPH0365778B2 publication Critical patent/JPH0365778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は二軸延伸ポリエステルフイルムに関
し、更に詳しくはすぐれた平坦性と巻取性を兼備
した二軸延伸ポリエステルフイルムに関する。 〔従来技術〕 二軸延伸ポリエステルフイルムは、その優れた
性質の故に、磁気テープ用、電気用、写真用、メ
タライズ用、包装用等多くの用途で広く用いられ
ている。とりわけ、その高い強度、弾性率等の特
性の故に、磁気記録媒体、例えばビデオテープ、
オーデイオテープ、コンピユーターテープ、フロ
ツピーデイスク等のベースフイルムとして広く用
いられている。 これら用途分野は、近年、高密度記録化、商品
質化の要求がますます高まり、これに伴つてベー
スとなるポリエステルフイルムには表面が平坦で
あることの要求がますます強くなつている。しか
しながら、表面が平坦になるとフイルムをロール
状に巻取る工程でのフイルムの巻姿が著しく悪化
し、巻姿の良好なフイルムロールが得られにくい
という問題がある。 フイルムロールの巻姿欠点としては、ロール
に瘤状の突起が生じる、フイルム縦方向に皺が
生じる、端面がずれる等があり、はフイルム
の滑り性が悪い場合に、は瘤状の突起を防止す
る目的で張力を高くして巻取る時に、は平坦な
フイルムを巻き上げる時に、それぞれ生じやす
い。 従つて、ベースとなるポリエステルフイルムに
は、平坦性と同時に、良好なフイルム巻姿を得る
ために、滑り性にすぐれることが要求される。 従来、フイルムの易滑性を向上させる方法とし
てポリエステルに酸化ケイ素、炭酸カルシウム等
の無機質粒子を添加する方法、又はポリエステル
の合成時に重合系内でカルシウム、リチウムある
いはリンを含む微粒子を析出せしめる方法が提案
されている。いずれの方法もポリエステルを製膜
した際に微粒子に由来してフイルム表面に突起を
形成し、フイルムの易滑性を向上させるものであ
る。 しかしながら、上記の如き微粒子による突起に
よつてフイルムの滑り性を改善する方法では、通
常、フイルム表面を粗面化する程滑り性は向上す
るが、一方では該粗面化に起因して、例えば磁気
記録媒体用途においては磁気塗料を塗布後の表面
が粗れ電磁変換特性が悪化する傾向がある。 これらの相反する平坦性と易滑性とを解決する
方策の一つとして大粒径の粒子と小粒径の粒子と
を併存させる複合系無機粒子を利用する手段を数
多く提案されている。しかしながら、これらの手
段にも問題があり、そのままでは磁気記録媒体の
高級グレード化例えば高密度化、高品質化等の要
求に応じることが難しい。この理由は、複合系無
機粒子に用いられる大粒径粒子のサイズが高級グ
レード化の要求品質に対して粗大であること、大
粒子になればなる程フイルム表面の突起を高くな
り、このために磁気記録媒体用途においての電磁
変換特性が悪化してしまうこと、また、製造工程
において高い突起部が削り落されドロツプアウト
の原因を引き起こすことにある。 従来技術では、上述のように、平坦性と易滑性
とを同時に満たすことが難しい状況にあつた。 〔発明の目的〕 本発明者は、上述の問題点を解決し、高級品質
の磁気記録用途分野に適用可能な平坦性と良好な
フイルム巻姿とを兼備するフイルムを開発すべく
鋭意研究した結果、フイルムの表面特性が特定の
異方性を有すると、従来では不充分とされていた
滑り性であつてもロールに巻き上げるときに良好
な巻姿が得られることを見出し、本発明に到達し
た。 本発明の目的は、磁気記録媒体の高密度記録
化、高品質化に対応し得るベースフイルムを提供
することにあり、更にはフイルムにおいて(イ)表面
に大きな突起はなく、平坦であるがドロツプアウ
ト等のノイズの原因とならない程度の微小な突起
が存在しており、(ロ)フイルムロールの巻姿が良好
な二軸延伸ポリエステルフイルムを提供すること
にある。 〔発明の構成・効果〕 本発明の目的は、本発明によれば、主たる特徴
の、中心線表面粗さで表わされるフイルム表面粗
さRaが0.015μm以下であり、横方向に測定した
フイルム表面粗さRaTDが縦方向に測定したフイ
ルム表面粗さRaMDに対して1.05〜1.30倍の範囲に
あり、縦方向のヤング率YMDが600Kg/mm3以上で
あり、さらに横方向のヤング率YTDが縦方向のヤ
ング率YMDに対して0.45〜0.75倍の範囲にあるこ
とを特徴とする二軸延伸ポリエステルフイルムに
よつて達成される。 本発明でいうポリエステルは芳香族ジカルボン
酸を主たる酸成分とし、脂肪族グリコールを主た
るグリコール成分とするフイルム形成性芳香族ポ
リエステルである。 この芳香族ポリエステルは実質的に線状であ
り、そしてフイルム形成性特に溶融成形によるフ
イルム形成性を有する。芳香族ジカルボン酸と
は、例えばテレフタル酸、ナフタレンジカルボン
酸、イソフタル酸、ジフエノキシエタンジカルボ
ン酸、ジフエニルジカルボン酸、ジフエニルエー
テルジカルボン酸、ジフエニルスルホンジカルボ
ン酸、ジフエニルケトンジカルボン酸、アンスラ
センジカルボン酸等である。脂肪族グリコールと
は、例えばエチレングリコール、トリメチレング
リコール、テトラメチレングリコール、ペンタメ
チレングリコール、ヘキサメチレングリコール、
デカメチレングリコールの如き炭素数2〜10のポ
リメチレングリコールあるいはシクロヘキサンジ
メタノールの如き脂環族ジオール等である。 本発明において、ポリエステルとしては例えば
アルキレンテレフタレート及び/又はアルキレン
ナフタレートを主たる構成成分とするものが好ま
しい。かかるポリエステルのうちでも例えばポリ
エチレンテレフタレート、ポリエチレンナフタレ
ートはもちろんのこと、例えば全ジカルボン酸成
分の80モル%以上がテレフタル酸及び/又はナフ
タレンジカルボン酸であり、全グリコール成分の
80モル%以上がエチレングリコールである共重合
体が特に好ましい。その際全酸成分の20モル%以
下のジカルボン酸は上記芳香族ジカルボン酸であ
ることができ、また例えばアジピン酸、セバチン
酸の如き脂肪族ジカルボン酸;シクロヘキサン−
1,4−ジカルボン酸の如き脂環族ジカルボン酸
等であることができる。また、全グリコール成分
の20モル%以下は、エチレングリコール以外の上
記グリコールまたは側鎖を有するポリメチレング
リコールであることができ、あるいは例えばハイ
ドロキノン、レゾルシノール、2,2−ビス(4
−ヒドロキシフエニル)プロパンの如き芳香族ジ
オール;1,4−ジヒドロキシメチルベンゼンの
如き芳香族を含む脂肪族ジオール;ポリエチレン
グリコール、ポリプロピレングリコール、ポリテ
トラメチレングリコールの如きポリアルキレング
リコール(ポリオキシアルキレングリコール)等
であることもできる。 また、本発明でいうポリエステルには、例えば
ヒドロキシ安息香酸の如き芳香族オキシ酸;ω−
ヒドロキシカプロン酸の如き脂肪族オキシ酸等の
オキシカルボン酸に由来する成分を、ジカルボン
酸成分およびオキシカルボン酸成分の総量に対し
20モル%以下で含有するものも包含される。さら
に本発明におけるポリエステルには実質的に線状
である範囲の量、例えば全酸成分に対し2モル%
以下の量で、3官能以上のポリカルボン酸又はポ
リヒドロキシ化合物、例えばトリメリツト酸、ペ
ンタエリスリトールを共重合したものをも包含さ
れる。 上記ポリエステルは、それ自体公知であり、且
つそれ自体公知の方法で製造することができる。 上記ポリエステルとしては、o−クロロフエノ
ール中の溶液として35℃で測定して求めた固有粘
度が約0.4〜約0.9のものが好ましい。 本発明の二軸延伸ポリエステルフイルムは、そ
のフイルム表面に多数の微細な突起を有してい
る。それらの多数の微細な突起はポリエステル中
に分散して含有される多数の実質的に不活性な固
体微粒子に由来する。 多数の不活性固体微粒子を含有するポリエステ
ルは、通常ポリエステルを形成するための反応
時、例えばエステル交換法による場合のエステル
交換反応中あるいは重縮合反応中の任意の時期又
は直接重合法による場合の任意の時期に、不活性
固体微粒子(好ましくはグリコール中のスラリー
として)を反応系中に添加することにより製造す
ることができる。好ましくは、重縮合反応の初期
例えば固有粘度が約0.3に至るまでの間に、不活
性固体微粒子を反応系中に添加するのが好まし
い。 不活性固体微粒子としては、本発明において
は、好ましくは二酸化ケイ粗(水和物、ケイ藻
土、ケイ砂、石英等を含む);アルミナ;
SiO2分を30重量%以上含有するケイ酸塩(例え
ば非晶質或は結晶質の粘土鉱物、アルミノシリケ
ート((焼成物や水和物を含む))、温石綿ジルコ
ン、フライアツシユ等);Mg、Zn、Zr及びTi
の酸化物;Ca、及びBaの硫酸塩;Li、Na、
及びCaのリン酸塩(1水素塩や2水素塩を含
む);Li、Na、及びKの安息香酸塩;Ca、
Ba、Zn、及びMnのテレフタル酸塩;Mg、
Ca、Ba、Zn、Cd、Pd、Sr、Mn、Fe、Co及び
Niのチタン酸塩;Ba及び、Pbのクロム酸塩;
炭素(例えばカーボンブラツク、グラフアイト
等);ガラス(例えばガラス粉、ガラスビーズ
等);Ca、及びMgの炭酸塩;ホタル石;及
びZnSが例示される。更に好ましくは、無水ケ
イ酸、含水ケイ酸、酸化アルミニウム、ケイ酸ア
ルミニウム(焼成物、水和物等を含む)、燐酸1
リチウム、燐酸3リチウム、燐酸ナトリウム、燐
酸カルシウム、硫酸バリウム、酸化チタン、安息
香酸リチウム、これらの化合物の複塩(水和物を
含む)、ガラス粉、粘土(カオリン、ベントナイ
ト、白土等を含む)、タルク、ケイ藻土、炭酸カ
ルシウム等が例示される。特に好ましくは二酸化
ケイ素、炭酸カルシウムが挙げられる。 上記不活性固体微粒子は、いずれの場合にも体
積形状係数fが0.08〜π/6の範囲にあるものが
好ましい。この体積形状係数fは次式によつて求
める。 f=V/D3 (ここで、Vは微粒子の体積であり、該体積は沈
降法で求めたストークス平均粒径から算出した球
の体積値である。またDは微粒子の直径であり、
該直径は微粒子の顕微鏡写真を用いて測定した各
微粒子の最大値の相加平均値である。) また、不活性固体微粒子は、その平均粒径が
0.02〜0.6μm、更には0.04〜0.5μm、特に0.06〜
0.3μmのものが好ましく、またその添加量は0.01
〜2.5重量%(対ポリエステル)、更には0.05〜1.2
重量%(同)、特に0.1〜0.6重量%(同)である
ことが好ましい。上述の平均粒径より大きくな
り、また添加量が増大すると、フイルムの平均性
が失なわれ、磁気記録媒体用においては電磁変換
特性が悪化するので好ましくない。また、上述の
平均粒径より小さくなり、また添加量が少なくな
ると、フイルムは平坦にはなるが、良好なフイル
ム巻姿が得られ難いので好ましくない。上述の不
活性固体粒子は2種以上を同時に使用することも
できる。 本発明の二軸延伸ポリエステルフイルムは、フ
イルム表面特性として、中心線表面粗さで表わさ
れるフイルム表面粗さRaが0.015μm以下であり、
かつフイルム横方向に測定したフイルム表面粗さ
RaTDが縦方向に測定したフイルム表面粗さRaMD
に対して1.05〜1.30倍の範囲にある。後者の特性
は、換言すれば、1.05≦RaTD/RaMD≦1.30で表わ
すことができる。このフイルム表面粗さRaが
0.015μmより大きくなるとベースフイルムの表面
が粗れすぎ、磁気記録媒体用途では磁性面を十分
に平坦にできないため、電磁変換特性が悪化する
ので好ましくない。好ましい表面粗さ(Ra)は
0.010μm以下、特には0.008μ以下である。表面粗
さ(Ra)の下限は特に限定はされないが、通常
表面粗さ(Ra)は0.001μm以上であり、また
0.002μm以上である方が良好なフイルム巻姿を得
る点から好ましい。 また縦方向の表面粗さRaMDと横方向の表面粗
さRaTDとの比RaTD/RaMDが1.05より小さくなる
と、ベースフイルムをロールに巻き上げた際に瘤
状の突起が生じ、巻き姿が悪くなるので好ましく
ない。RaTD/RaMDは1.07以上、さらには1.10以上
であることが特に好ましい。しかしRaTD/RaMD
が1.30より大きくなると、ベースフイルムをロー
ルに巻き上げる際に端面ずれが生じ、巻き姿が悪
くなるので、好ましくない。この点からは
RaTD/RaMDが1.25以下、さらには1.20以下である
ことが好ましい。 更に、上記二軸延伸ポリエステルフイルムは、
フイルム表面特性として、フイルム対フイルムの
摩擦係数μsが0.5以上であり、かつ横方向の摩擦
係数μsTDが縦方向の摩擦係数μsMDに対して0.80〜
0.98倍の範囲にあることが好ましい。この後者の
特性は、換言すれば、縦方向の摩擦係数μsMDと横
方向の摩擦係数μsTDとの比が0.80≦μsTD/μsMD
0.98で表わされる。この比があまりに小さくなる
と、ベースフイルムをロールに巻き上げる際に、
横方向に滑りすぎ端面ずれが生じ、巻き姿が悪く
なるので、好ましくない。一方、この比があまり
に大きくなると、ベースフイルムをロールに巻き
上げる際に瘤状の突起が生じ、巻き姿が悪くなる
ので好ましくない。この点から、μsTD/μsMDは、
更には0.83以上、特に0.86以上であることが好ま
しく、また更には0.96以下、特に0.93以下である
ことが好ましい。また、μsTD、μsMDは共い0.50以
上であることが好ましい。μsTD、μsMDが0.5より小
さい場合にはμsTD/μsMDが0.98以下となると端面
ずれを生じるので好ましくない。さらに好ましく
は、μsTD、μsMD共0.55以上、特に0.60以上である
のがよい。μsTD、μsMDの上限は特にはないが、通
常は1.8以下であり、1.8より大きくなるとμsTD
μsMDが前記範囲であつても瘤状の突起を生じるよ
うになるので好ましくない。この意味では、
μsTD、μsMDは共に1.30以下、さらには0.98以下で
あることが特に好ましい。 本発明の二軸延伸ポリエステルフイルムは、上
述したフイルム表面性を備えると同時に、縦方向
のヤング率YMDが600Kg/mm3以上であり、かつ横
方向のヤング率YTDとの比(YTD/YMD)が0.45≦
YTD/YMD≦0.75の範囲にある。このYTD/YMD
0.45より小さくなると、横方向のステイフネスが
縦方向のステイフネスより小さくなりすぎるため
に、ベースフイルムを巻き上げる際に縦シワが発
生し、好ましくない。従つて、YTD/YMDは0.45
以上、さらに好ましくは0.50以上、特に好ましく
は0.55以上であることが望ましい。しかし、
YTD/YMDが0.75より大きくなると、上述の表面
性を備えていてもベースフイルムを巻き上げる際
に、瘤状の突起が生じて好ましくない。従つて、
YTD/YMDは0.75以下、さらに好ましくは0.70以
下、特に好ましくは0.65以下であることが望まし
い。 一方、YTD/YMDが前述の範囲であつても、YMD
が600Kg/mm3より小さくなると、やはり瘤状の突
起が発生し易くなり、好ましくない。この点か
ら、YMDは600Kg/mm3以上、さらに好ましくは640
Kg/mm3以上、特に好ましくは680Kg/mm3以上であ
ることが望ましい。縦方向のヤング率YMDの上限
は特に限定はされないが、通常は1500Kg/mm3以下
であり、1500Kg/mm3より大きくなると、後述の如
く延伸性が悪くなり、またフイルムをロール状に
巻き上げる際に縦方向の皺〔縦皺〕が発生しやす
くなり好ましくない。この意味からはYMDは1500
Kg/mm3以下、さらに好ましくは1200Kg/mm3以下、
特に好ましくは900Kg/mm3以下であることが望ま
しい。 本発明の二軸延伸ポリエステルフイルムは、後
述する縦方向の延伸方法以外は従来から蓄積され
た二軸延伸フイルムの製造法に順じて製造でき
る。例えば、固体微粒子を含有するポリエステル
を溶融製膜して非晶質の未延伸フイルムとし、次
いで該未延伸フイルムを二軸方向に延伸し、熱固
定し必要であれば弛緩熱処理することによつて製
造される。その際、フイルム表面特性は、固体微
粒子の形状、粒径、量等によつて、また延伸条件
によつて変化するので適宜選択する。例えば延伸
温度は、1段目延伸温度(例えば縦方向延伸温
度:T1)が(Tg−10)〜(Tg+45)℃の範囲
(但しTg:ポリエステルのガラス転移温度)か
ら、2段目延伸温度(例えば横方向延伸温度:
T2)が(T1+10)〜(T1+40)℃の範囲から選
択するとよい。また、延伸倍率は縦方向の延伸倍
率が3.5以上、特に4倍以上でかつ面積倍率が12
倍以上、特に14倍以上となる範囲から選択すると
よい。更にまた、熱固定温度は180〜250℃、更に
は200〜230℃の範囲から選択するとよい。 本発明の二軸延伸ポリエステルフイルムを製造
する上で、縦方向の延伸方法が重要である。すな
わち、縦方向の延伸において、延伸速度が特定の
範囲にあること、具体的には延伸速度が1500%/
秒以上、40000%/秒以下にあることが好ましい。
この延伸速度が小さすぎると、本発明の特徴であ
るフイルム縦方向と横方向との特性に異方性のあ
るフイルムが得られ難くなるので好ましくない。
この点から、縦方向の延伸速度は1500%/秒以
上、更に好ましくは2500%/秒以上、特に好まし
くは4000%/秒以上であることが望ましい。しか
し、この延伸速度が40000%/秒より大きくなる
と、変形速度が速過ぎるためか、延伸性が悪くな
り、製造中に破断して、正常なフイルムが得られ
難くなるので好ましくない。従つて、縦方向延伸
速度は40000%/秒以下、さらに好ましくは30000
%/秒以下、特に好ましくは20000%/秒以下で
あることが望ましい。 ここで、“縦方向延伸速度”とは、縦方向延伸
前のフイルム幅が1%減少する点を延伸開始点S1
とし、縦方向延伸後のフイルム幅と同一幅になる
点を延伸終了点S2とし、更にS1からS2までの距離
を(S2−S1)mmとして、下記で示される速度であ
る。 VMD(%/秒)=XMD×100×V1×103/(S2−S1)×60 (式中VMD:縦方向延伸速度(%/秒) XMD:縦方向延伸倍率(倍) V1:縦方向延伸前のフイルム速度(m/分) S2−S1: 縦方向延伸開始点から終了点までの距
離(%)) このような縦方向延伸速度は、延伸前加熱ロー
ルと延伸後冷却ロールとの間隙とフイルム速度と
を調節することにより得られる。また赤外線ヒー
ターも併用する縦方向延伸法においては、赤外線
ヒーターによる加熱長さによつても調節可能であ
る。縦方向延伸が数段に分けて行なわれる場合に
は、その各々が上記範囲にある必要がある。 本発明の二軸延伸ポリエステルフイルムは、そ
の厚みに特に限定されないが、フイルム厚みが薄
くなるとさらに良好な巻姿が得られにくくなるの
で、フイルム厚みが薄い場合に特に有効である。
この意味でフイルム厚みは80μ以下であることが
好ましい。さらに好ましくは25μ以下、特に好ま
しくは15μ以下であることが望ましい。なお、フ
イルム厚みが2μより小さくなると、ステイフネ
スが小さくなりすぎ、巻き特性が変化してくるの
で、2μ以上が好ましい。 〔実施例〕 以下、実施例を掲げて本発明を更に説明する。 なお、本発明における種々の物性値および特性
は以下の如くして測定されたものであり且つ定義
される。 (1) 不活性固体微粒子の平均粒径 島津製作所製CP−50型Centrifugal Particle
Size Analyserを用いて測定した。得られた遠
心沈降曲線を基に算出した各粒径の粒子とその
存在量との累積曲線から50マスパーセント
(mass percent)に相当する粒径を読み取り、
この値を上記平均粒径とした(Book「粒度測定
技術」日刊工業新聞社発行、1975年、頁242〜
247参照)。 (2) フイルム表面粗さ(Ra) JIS B0601に準じて測定した。東京精密社(株)
製の触針式表面粗さ計(SURFCOM3B)を用
いて、針の半径2μ、荷重0.07gの条件下にチヤ
ート(フイルム表面粗さ曲線)をかかせた。フ
イルム表面粗さ曲線からその中心線の方向に測
定長さLの部分を抜き取り、この抜き取り部分
の中心線をX軸とし、縦倍率の方向をY軸とし
て、粗さ曲線をY=f(x)で表わしたとき、
次の式で与えられる値(Ra:μm)をフイル
ム表面粗さとして定義する。 Ra=1/L∫L 0|f(x)|dx 本発明では、基準長を0.25mmとして8個測定
し、値の大きい方から3個除いた5個の平均値
としてRaを表わした。 なお、フイルムの縦方向に針を走査させた時
のRaをRaMD、横方向に走査させた場合をRaTD
と表示した。 (3) 摩擦係数(μs) 東洋ステター社製の摩擦係数測定器を使用
し、ASTM−D1894−63に準ずる方法で荷重
を1Kgの荷重を用いる点のみを変更して、静摩
擦係数μsを測定した。 (4) ヤング率(Y) 東洋ボールドウイン社製テンシロンUTM−
−500型を使用し、23℃50%RHで測定した。 (5) 巻き姿 フイルムを幅500mm、長さ5000mのロールに
巻き上げ、この巻き上げロールの外観を詳細に
検査し、1級〜5級に格付けした。 端面ずれについては端面の幅方向のずれの距
離により下記のように格付けした。 瘤状突起については、第1図に模式的に示す
ように瘤状の突起で長径2mm以上のものの個数
を数え、下記のように格付けした。
[Industrial Application Field] The present invention relates to a biaxially oriented polyester film, and more particularly to a biaxially oriented polyester film that has both excellent flatness and windability. [Prior Art] Due to its excellent properties, biaxially stretched polyester films are widely used in many applications such as magnetic tapes, electricity, photography, metallization, and packaging. In particular, due to its properties such as high strength and elastic modulus, magnetic recording media, such as video tapes,
Widely used as a base film for audio tapes, computer tapes, floppy disks, etc. In recent years, demands for high-density recording and improved product quality have been increasing in these application fields, and as a result, there has been an increasingly strong demand for the base polyester film to have a flat surface. However, when the surface becomes flat, the winding appearance of the film in the process of winding the film into a roll deteriorates significantly, and there is a problem that it is difficult to obtain a film roll with a good winding appearance. Defects in the winding appearance of film rolls include bump-like protrusions on the roll, wrinkles in the longitudinal direction of the film, and misalignment of the edges. This is likely to occur when winding up a flat film with high tension for the purpose of increasing the tension. Therefore, the base polyester film is required to have not only flatness but also excellent slipperiness in order to obtain a good film winding appearance. Conventionally, methods for improving the slipperiness of films include adding inorganic particles such as silicon oxide or calcium carbonate to polyester, or precipitating fine particles containing calcium, lithium, or phosphorus in the polymerization system during polyester synthesis. Proposed. In either method, when polyester is formed into a film, projections are formed on the surface of the film due to fine particles, thereby improving the slipperiness of the film. However, in the above-mentioned method of improving the slipperiness of a film using protrusions made of fine particles, the slipperiness usually improves as the film surface becomes rougher, but on the other hand, due to the roughening, e.g. When used as a magnetic recording medium, the surface after applying the magnetic paint tends to become rough and the electromagnetic conversion characteristics deteriorate. As one of the measures to solve these contradictory problems of flatness and slipperiness, many methods have been proposed that utilize composite inorganic particles in which large-sized particles and small-sized particles coexist. However, these means also have problems, and as they are, it is difficult to meet the demands for higher grades of magnetic recording media, such as higher density and higher quality. The reason for this is that the size of the large particles used in composite inorganic particles is coarse compared to the quality required for high-grade grades, and the larger the particles, the higher the protrusions on the film surface. In applications for magnetic recording media, electromagnetic conversion characteristics deteriorate, and high protrusions are shaved off during the manufacturing process, causing dropouts. In the prior art, as described above, it was difficult to satisfy both flatness and slipperiness at the same time. [Object of the Invention] The present inventor has conducted extensive research to solve the above-mentioned problems and to develop a film that has both flatness and good film winding appearance that can be applied to high-quality magnetic recording applications. discovered that if the surface properties of the film had a specific anisotropy, a good winding appearance could be obtained when the film was wound into a roll even if the film had slipperiness, which was conventionally considered to be insufficient, and the present invention was achieved. . An object of the present invention is to provide a base film that can cope with high-density recording and high-quality magnetic recording media. (b) An object of the present invention is to provide a biaxially stretched polyester film in which there are minute protrusions that do not cause noise, and (b) the appearance of the film roll is good. [Configuration/Effects of the Invention] According to the present invention, the main feature of the film surface roughness Ra expressed as center line surface roughness is 0.015 μm or less, and the film surface measured in the lateral direction is The roughness Ra TD is in the range of 1.05 to 1.30 times the film surface roughness Ra MD measured in the longitudinal direction, the Young's modulus in the longitudinal direction Y MD is 600 Kg/mm 3 or more, and the Young's modulus in the transverse direction is This is achieved by a biaxially stretched polyester film characterized in that YTD is in the range of 0.45 to 0.75 times the Young's modulus in the machine direction YMD . The polyester referred to in the present invention is a film-forming aromatic polyester containing an aromatic dicarboxylic acid as a main acid component and an aliphatic glycol as a main glycol component. The aromatic polyester is substantially linear and has film forming properties, particularly by melt molding. Aromatic dicarboxylic acids include, for example, terephthalic acid, naphthalene dicarboxylic acid, isophthalic acid, diphenoxyethane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenyl ketone dicarboxylic acid, and anthracene. dicarboxylic acids, etc. Aliphatic glycols include, for example, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol,
These include polymethylene glycols having 2 to 10 carbon atoms such as decamethylene glycol, and alicyclic diols such as cyclohexanedimethanol. In the present invention, the polyester preferably contains, for example, alkylene terephthalate and/or alkylene naphthalate as a main component. Among such polyesters, for example, not only polyethylene terephthalate and polyethylene naphthalate, but also terephthalic acid and/or naphthalene dicarboxylic acid account for 80 mol% or more of the total dicarboxylic acid component, and the total glycol component
Particularly preferred are copolymers in which 80 mol% or more is ethylene glycol. In this case, up to 20 mol% of the dicarboxylic acid of the total acid component can be the above-mentioned aromatic dicarboxylic acids, and also, for example, aliphatic dicarboxylic acids such as adipic acid and sebacic acid;
It can be an alicyclic dicarboxylic acid such as 1,4-dicarboxylic acid. In addition, up to 20 mol% of the total glycol component can be the above-mentioned glycols other than ethylene glycol or polymethylene glycols having side chains, or, for example, hydroquinone, resorcinol, 2,2-bis(4
-Aromatic diols such as (hydroxyphenyl)propane; aliphatic diols containing aromatics such as 1,4-dihydroxymethylbenzene; polyalkylene glycols (polyoxyalkylene glycols) such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. etc. In addition, the polyester referred to in the present invention includes aromatic oxyacids such as hydroxybenzoic acid;
Components derived from oxycarboxylic acids such as aliphatic oxyacids such as hydroxycaproic acid are added to the total amount of dicarboxylic acid components and oxycarboxylic acid components.
Those containing 20 mol% or less are also included. Furthermore, the polyester in the present invention has an amount in a substantially linear range, for example, 2 mol % based on the total acid component.
Copolymerized polycarboxylic acids or polyhydroxy compounds having trifunctional or higher functionality, such as trimellitic acid and pentaerythritol, in the following amounts are also included. The above polyester is known per se, and can be produced by a method known per se. The polyester preferably has an intrinsic viscosity of about 0.4 to about 0.9 as measured as a solution in o-chlorophenol at 35°C. The biaxially stretched polyester film of the present invention has many fine protrusions on its surface. The large number of fine protrusions are derived from a large number of substantially inert solid particles dispersed and contained in the polyester. Polyesters containing a large number of inert solid particles are usually produced at any time during the reaction to form the polyester, such as during the transesterification reaction when using the transesterification method or during the polycondensation reaction, or at any time when using the direct polymerization method. It can be prepared by adding inert solid microparticles (preferably as a slurry in glycol) to the reaction system at the time of . Preferably, inert solid particles are added to the reaction system at the beginning of the polycondensation reaction, for example, until the intrinsic viscosity reaches about 0.3. In the present invention, the inert solid particles are preferably coarse silicon dioxide (including hydrates, diatomaceous earth, silica sand, quartz, etc.); alumina;
Silicates containing 30% by weight or more of SiO 2 (e.g. amorphous or crystalline clay minerals, aluminosilicate (including calcined products and hydrates), hot asbestos zircon, fly ash, etc.); Mg , Zn, Zr and Ti
oxides; sulfates of Ca and Ba; Li, Na,
and Ca phosphates (including monohydrogen salts and dihydrogen salts); benzoates of Li, Na, and K; Ca,
Terephthalates of Ba, Zn, and Mn; Mg,
Ca, Ba, Zn, Cd, Pd, Sr, Mn, Fe, Co and
Ni titanate; Ba and Pb chromate;
Examples include carbon (eg, carbon black, graphite, etc.); glass (eg, glass powder, glass beads, etc.); carbonates of Ca and Mg; fluorite; and ZnS. More preferably, anhydrous silicic acid, hydrated silicic acid, aluminum oxide, aluminum silicate (including calcined products, hydrates, etc.), phosphoric acid 1
Lithium, trilithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, titanium oxide, lithium benzoate, double salts of these compounds (including hydrates), glass powder, clay (including kaolin, bentonite, clay, etc.) , talc, diatomaceous earth, calcium carbonate, etc. Particularly preferred are silicon dioxide and calcium carbonate. In any case, the inert solid fine particles preferably have a volume shape coefficient f in the range of 0.08 to π/6. This volumetric shape factor f is determined by the following equation. f=V/D 3 (where, V is the volume of the fine particles, and this volume is the volume value of the sphere calculated from the Stokes average particle diameter determined by the sedimentation method. Also, D is the diameter of the fine particles,
The diameter is the arithmetic mean value of the maximum value of each microparticle measured using a microscopic photograph of the microparticle. ) In addition, inert solid fine particles have an average particle size of
0.02~0.6μm, further 0.04~0.5μm, especially 0.06~
0.3 μm is preferable, and the amount added is 0.01
~2.5% by weight (based on polyester), and even 0.05~1.2
It is preferably 0.1 to 0.6% by weight (same), particularly 0.1 to 0.6% (same) by weight. If the average particle size is larger than the above-mentioned average particle size or if the amount added is increased, the averageness of the film will be lost and the electromagnetic conversion characteristics will deteriorate for use in magnetic recording media, which is not preferable. Moreover, if the average particle diameter is smaller than the above-mentioned average particle size, and if the amount added is small, the film will be flat, but it will be difficult to obtain a good film winding appearance, which is not preferable. Two or more types of the above-mentioned inert solid particles can also be used at the same time. The biaxially stretched polyester film of the present invention has a film surface roughness Ra expressed by center line surface roughness of 0.015 μm or less as a film surface property,
and the film surface roughness measured in the lateral direction of the film.
Film surface roughness Ra MD measured in the longitudinal direction by Ra TD
It is in the range of 1.05 to 1.30 times. In other words, the latter characteristic can be expressed as 1.05≦Ra TD /Ra MD ≦1.30. This film surface roughness Ra is
If it is larger than 0.015 μm, the surface of the base film becomes too rough and the magnetic surface cannot be made sufficiently flat for use in magnetic recording media, which deteriorates the electromagnetic conversion characteristics, which is not preferable. The preferred surface roughness (Ra) is
It is 0.010 μm or less, particularly 0.008 μm or less. The lower limit of surface roughness (Ra) is not particularly limited, but usually surface roughness (Ra) is 0.001μm or more, and
A thickness of 0.002 μm or more is preferable from the viewpoint of obtaining a good film winding appearance. Furthermore, if the ratio of the surface roughness Ra MD in the longitudinal direction to the surface roughness Ra TD in the lateral direction (Ra TD /Ra MD) is smaller than 1.05, bump-like protrusions will occur when the base film is wound onto a roll, and the rolled shape will deteriorate. This is not preferable because it worsens the condition. It is particularly preferable that Ra TD /Ra MD is 1.07 or more, and more preferably 1.10 or more. However, Ra TD / Ra MD
If it is larger than 1.30, it is not preferable because when the base film is wound up into a roll, end face deviation occurs and the winding appearance becomes poor. From this point
It is preferable that Ra TD /Ra MD is 1.25 or less, more preferably 1.20 or less. Furthermore, the biaxially stretched polyester film has the following properties:
As for the film surface characteristics, the film-to-film friction coefficient μs is 0.5 or more, and the lateral friction coefficient μs TD is 0.80 to 0.80 relative to the longitudinal friction coefficient μs MD .
It is preferably in the range of 0.98 times. In other words, this latter characteristic means that the ratio of the longitudinal friction coefficient μs MD to the lateral friction coefficient μs TD is 0.80≦μs TD /μs MD
Expressed as 0.98. If this ratio becomes too small, when winding the base film into a roll,
This is not preferable because excessive slippage in the lateral direction causes end face deviation, resulting in poor winding appearance. On the other hand, if this ratio is too large, bump-like protrusions will occur when the base film is rolled up into a roll, resulting in poor winding appearance, which is not preferable. From this point, μs TD / μs MD is
It is more preferably 0.83 or more, especially 0.86 or more, and even more preferably 0.96 or less, especially 0.93 or less. Further, both μs TD and μs MD are preferably 0.50 or more. When μs TD and μs MD are smaller than 0.5, it is not preferable that μs TD /μs MD becomes 0.98 or less because end face deviation occurs. More preferably, both μs TD and μs MD are 0.55 or more, particularly 0.60 or more. There is no particular upper limit for μs TD and μs MD , but it is usually 1.8 or less, and if it is larger than 1.8, μs TD /
Even if μs MD is within the above range, bump-like protrusions will occur, which is not preferable. In this sense,
Both μs TD and μs MD are preferably 1.30 or less, and particularly preferably 0.98 or less. The biaxially stretched polyester film of the present invention has the above-mentioned film surface properties, and at the same time has a longitudinal Young's modulus Y MD of 600 Kg/mm 3 or more, and a ratio of the transverse Young's modulus Y TD to the transverse Young's modulus Y TD / YMD ) is 0.45≦
It is in the range of Y TD /Y MD ≦0.75. This Y TD /Y MD is
If it is less than 0.45, the stiffness in the horizontal direction becomes too small than the stiffness in the vertical direction, which causes vertical wrinkles when winding up the base film, which is not preferable. Therefore, Y TD /Y MD is 0.45
It is desirable that it be above, more preferably 0.50 or more, particularly preferably 0.55 or more. but,
If Y TD /Y MD is larger than 0.75, bump-like protrusions will occur when the base film is rolled up, which is not preferable, even if the base film has the above-mentioned surface properties. Therefore,
It is desirable that Y TD /Y MD be 0.75 or less, more preferably 0.70 or less, particularly preferably 0.65 or less. On the other hand, even if Y TD /Y MD is within the above range, Y MD
If it is less than 600 Kg/mm 3 , lump-like protrusions are likely to occur, which is not preferable. From this point, Y MD is 600Kg/mm 3 or more, more preferably 640
It is desirable that the weight is at least Kg/mm 3 , particularly preferably at least 680 Kg/mm 3 . The upper limit of Young's modulus Y MD in the longitudinal direction is not particularly limited, but is usually 1500 Kg/mm 3 or less, and if it exceeds 1500 Kg/mm 3 , the stretchability will deteriorate as described below, and the film will not be rolled up. In this case, longitudinal wrinkles (vertical wrinkles) are likely to occur, which is undesirable. From this meaning, Y MD is 1500
Kg/mm 3 or less, more preferably 1200Kg/mm 3 or less,
Particularly preferably, it is 900 Kg/mm 3 or less. The biaxially oriented polyester film of the present invention can be produced according to conventional methods for producing biaxially oriented films, except for the longitudinal stretching method described below. For example, polyester containing solid fine particles is melt-formed to form an amorphous unstretched film, and then the unstretched film is stretched biaxially, heat-set, and if necessary, subjected to relaxation heat treatment. Manufactured. At this time, the surface characteristics of the film are selected appropriately since they vary depending on the shape, particle size, amount, etc. of the solid fine particles, and also depending on the stretching conditions. For example, the stretching temperature ranges from the first-stage stretching temperature (e.g. longitudinal stretching temperature: T 1 ) in the range of (Tg-10) to (Tg+45)°C (where Tg is the glass transition temperature of polyester) to the second-stage stretching temperature. (For example, lateral stretching temperature:
T 2 ) is preferably selected from the range of (T 1 +10) to (T 1 +40)°C. In addition, the stretching ratio in the longitudinal direction is 3.5 or more, especially 4 times or more, and the area ratio is 12.
It is preferable to select from a range of 14 times or more, especially 14 times or more. Furthermore, the heat setting temperature is preferably selected from the range of 180 to 250°C, more preferably 200 to 230°C. In producing the biaxially stretched polyester film of the present invention, the stretching method in the longitudinal direction is important. In other words, in stretching in the longitudinal direction, the stretching speed must be within a specific range, specifically, the stretching speed must be 1500%/
It is preferable that the speed is at least 2 seconds and at most 40000%/second.
If the stretching speed is too low, it becomes difficult to obtain a film having anisotropic properties in the longitudinal and transverse directions, which is a feature of the present invention, which is not preferable.
From this point of view, it is desirable that the stretching speed in the longitudinal direction is 1500%/second or more, more preferably 2500%/second or more, particularly preferably 4000%/second or more. However, if the stretching speed is higher than 40,000%/sec, the deformation speed is too high, and the stretching property deteriorates, resulting in breakage during production, making it difficult to obtain a normal film, which is not preferable. Therefore, the longitudinal stretching speed is 40,000%/second or less, more preferably 30,000%/second or less.
%/sec or less, particularly preferably 20000%/sec or less. Here, "longitudinal stretching speed" refers to the point at which the film width before longitudinal stretching decreases by 1% to the stretching start point S 1
The point at which the width becomes the same as the film width after longitudinal stretching is defined as the stretching end point S 2 , and the distance from S 1 to S 2 is defined as (S 2 − S 1 ) mm, and the speed is as shown below. . V MD (%/sec) = X MD × 100 × V 1 × 10 3 / (S 2 − S 1 ) × 60 (where V MD : Longitudinal stretching speed (%/sec) X MD : Longitudinal stretching ratio (times) V 1 : Film speed before longitudinal stretching (m/min) S 2 −S 1 : Distance from longitudinal stretching start point to end point (%)) Such longitudinal stretching speed is This can be obtained by adjusting the gap between the heating roll and the cooling roll after stretching and the film speed. In the longitudinal stretching method that also uses an infrared heater, the length of heating by the infrared heater can also be adjusted. When longitudinal stretching is performed in several stages, each stage needs to be within the above range. The biaxially stretched polyester film of the present invention is not particularly limited in its thickness, but it is particularly effective when the film is thin, since it becomes difficult to obtain a better rolled shape as the film becomes thinner.
In this sense, the film thickness is preferably 80μ or less. More preferably, it is 25μ or less, particularly preferably 15μ or less. Note that if the film thickness is less than 2μ, the stiffness becomes too small and the winding characteristics change, so it is preferably 2μ or more. [Example] Hereinafter, the present invention will be further explained with reference to Examples. Note that various physical property values and characteristics in the present invention were measured and defined as follows. (1) Average particle size of inert solid fine particles Shimadzu CP-50 type Centrifugal Particle
Measured using a Size Analyzer. Read the particle size corresponding to 50 mass percent from the cumulative curve of particles of each particle size and their abundance calculated based on the obtained centrifugal sedimentation curve,
This value was taken as the above average particle size (Book "Particle Size Measurement Techniques", published by Nikkan Kogyo Shimbun, 1975, pp. 242-
247). (2) Film surface roughness (Ra) Measured according to JIS B0601. Tokyo Seimitsu Co., Ltd.
A chart (film surface roughness curve) was drawn using a stylus-type surface roughness meter (SURFCOM3B) manufactured by Co., Ltd. under the conditions of a needle radius of 2 μm and a load of 0.07 g. A part of measurement length L is extracted from the film surface roughness curve in the direction of its center line, the center line of this extracted part is taken as the X axis, the direction of longitudinal magnification is taken as the Y axis, and the roughness curve is expressed as ), when expressed as
The value (Ra: μm) given by the following formula is defined as the film surface roughness. Ra=1/L∫ L 0 |f(x)|dx In the present invention, eight measurements were taken using a reference length of 0.25 mm, and Ra was expressed as the average value of the five measurements, excluding three from the largest value. In addition, Ra when the needle is scanned in the vertical direction of the film is called Ra MD , and when it is scanned in the horizontal direction, it is called Ra TD.
was displayed. (3) Friction coefficient (μs) Static friction coefficient μs was measured using a friction coefficient measuring device manufactured by Toyo Stelter Co., Ltd. in accordance with ASTM-D1894-63, with the only change being that a load of 1 kg was used. . (4) Young's modulus (Y) Tensilon UTM- manufactured by Toyo Baldwin Co., Ltd.
-500 type was used and measured at 23°C and 50% RH. (5) Winding appearance The film was wound up into a roll with a width of 500 mm and a length of 5000 m, and the appearance of this rolled up roll was inspected in detail and graded from 1st grade to 5th grade. The end face misalignment was graded as follows based on the distance of the end face misalignment in the width direction. As for the bump-like protrusions, as schematically shown in FIG. 1, the number of lump-like protrusions with a major diameter of 2 mm or more was counted and graded as follows.

【表】 更に、縦皺についても下記の如く格付けし
た。 1級 まつたくないもの 2級 目ではかすかに波状凹凸が見られるが、
指でさわつても凹凸があることがわからない
もの 3級 目で波状凹凸が見られ、指でさわると波
状凹凸があることがかすかにわかるが、指で
軽く押すと凹凸がつぶれるもの(長さ1/8周
以下) 4級(不合格) 指でさわると波状凹凸がある
ことがわかり、指で押しても凹凸がつぶれ難
いもの 5級(不合格) 指で押しても凹凸がつぶれ難
い波状凹凸があるものでその長さがロール円
周方向の1/4以上あるもの 実施例 1 エチレングリコール(以下EGと略称する)85
重量部に、500℃における減量率が1.0重量%の炭
酸カルシウム(平均粒径0.4mm)15重量部を添加
した後、混合撹拌を行ないスラリーを得た。該ス
ラリーのフイルターによる上物は800ppmであ
つた。 次に、ジメチルテレフタレート100重量部と
EG70重量物を酢酸マンガン、4水和物0.035重量
部を触媒として常法通りエステル交換をせしめた
後上記で得られた炭酸カルシウム(濃度:0.2重
量%対ポリマー)を撹拌下添加した。続いてリン
酸トリメチル0.03重量部、三酸化アンチモン0.03
重量部を添加した後高温真空下で常法通り重縮合
反応を行い、極限粘度0.620のポリエチレンテレ
フタレートペレツトを得た。 更に得られたポリエチレンテレフタレート(以
下PETと略称)ペレツトを170℃、3時間乾燥後
押出機ホツパーに供給し溶融温度280〜300℃で溶
融し、この溶融ポリマーを1mmのスリツト状ダイ
を通して表面仕上げ0.3S程度、表面温度20℃の回
転冷却ドラム上に成形押出し200μmの未延伸フ
イルムを得た。 このようにして得られた未延伸フイルムを75℃
にて加熱し、低、高速のロール表面速度により
4.8倍延伸し、急冷した。この時の延伸速度は
8000%/秒であつた。この縦方向延伸後のフイル
ムを更にステンターに供給し、105℃にて横方向
に3.5倍に延伸した。得られた二軸延伸フイルム
を205℃の温度で5秒間熱固定を実施し、更に二
軸延伸熱固定フイルムを120℃に再加熱し0.5%の
弛緩率(加熱ロールと冷却ロール間の速度差)に
て縦方向に弛緩せしめ、得られたフイルムの各特
性測定を実施した。その結果は表−1、実施例1
の通りであつた。 フイルムを巻きあげたロールの外観を検査した
結果、端面ずれ、瘤状突起、縦しわのいずれも良
好であつた。 実施例 2〜3 不活性固体微粒子として、炭酸カルシウムの代
わりにシリカ(平均粒径0.2μm)、あるいは酸化
チタン(平均粒径0.3μm)を所定量使用する以外
は、実施例1と同様の方法で二軸延伸ポリエステ
ルフイルムを得た。 その結果は表−1、実施例2、実施例3の通り
であつた。これらフイルムを巻き上げたロールは
端面ずれ、瘤状突起、縦しわ共に良好であつた。
[Table] Furthermore, vertical wrinkles were also graded as follows. 1st grade: Not to be damaged. 2nd grade: There are slight wavy irregularities, but
Items with unevenness that cannot be detected even when touched with a finger Grade 3 Items with wavy unevenness that can be seen in the eyes, and when you touch it with your finger, you can faintly see that there is an unevenness, but when you press lightly with your finger, the unevenness collapses (Length 1 /8 laps or less) 4th grade (fail) When you touch it with your finger, you can see that there are wavy irregularities, and the undulations are difficult to crush even when you press with your finger. 5th grade (fail) There are wavy irregularities that are difficult to crush even when you press with your finger. Example 1 Ethylene glycol (hereinafter abbreviated as EG) 85
After adding 15 parts by weight of calcium carbonate (average particle size: 0.4 mm) having a weight loss rate of 1.0% at 500° C., mixing and stirring were performed to obtain a slurry. The filtered content of the slurry was 800 ppm. Next, 100 parts by weight of dimethyl terephthalate and
After EG70 weight was transesterified in a conventional manner using manganese acetate and 0.035 parts by weight of tetrahydrate as a catalyst, the calcium carbonate obtained above (concentration: 0.2% by weight to polymer) was added under stirring. Next, 0.03 parts by weight of trimethyl phosphate and 0.03 parts by weight of antimony trioxide.
After adding parts by weight, a polycondensation reaction was carried out in a conventional manner under high temperature vacuum to obtain polyethylene terephthalate pellets having an intrinsic viscosity of 0.620. Furthermore, the obtained polyethylene terephthalate (hereinafter abbreviated as PET) pellets were dried at 170°C for 3 hours, then fed into the extruder hopper and melted at a melting temperature of 280 to 300°C, and the molten polymer was passed through a 1 mm slit die to give a surface finish of 0.3 An unstretched film of 200 μm was obtained by extrusion on a rotating cooling drum with a surface temperature of 20° C. The unstretched film thus obtained was heated at 75°C.
by heating at low and high roll surface speeds.
It was stretched 4.8 times and rapidly cooled. The stretching speed at this time is
It was 8000%/second. The film after being stretched in the longitudinal direction was further supplied to a stenter and stretched 3.5 times in the transverse direction at 105°C. The obtained biaxially stretched film was heat-set at a temperature of 205°C for 5 seconds, and the biaxially stretched heat-set film was further heated to 120°C to achieve a relaxation rate of 0.5% (speed difference between heating roll and cooling roll). ), and each characteristic of the obtained film was measured. The results are shown in Table 1, Example 1
It was hot on the street. As a result of inspecting the appearance of the roll wound with the film, it was found that there were no end face deviations, nodules, and vertical wrinkles. Examples 2 to 3 The same method as in Example 1 except that a predetermined amount of silica (average particle size 0.2 μm) or titanium oxide (average particle size 0.3 μm) was used instead of calcium carbonate as the inert solid fine particles. A biaxially stretched polyester film was obtained. The results were as shown in Table 1, Examples 2 and 3. The rolls obtained by winding up these films had good end-face deviations, nodules, and vertical wrinkles.

【表】 実施例4〜6、比較例1〜2 不活性固体微粒子として炭酸カルシウム(平均
粒径0.2μm)を0.1重量%(対ポリマー)使用す
る点と、縦方向の延伸速度を変更する点の他は実
施例1と同様の方法で二軸延伸ポリエステルフイ
ルムを得た。その際、縦方向の延伸速度は加熱ロ
ールと冷却ロールとの間隙を変更することにより
調節した。 その結果は表−2の通りであつた。
[Table] Examples 4 to 6, Comparative Examples 1 to 2 Using 0.1% by weight (based on polymer) of calcium carbonate (average particle size 0.2 μm) as inert solid fine particles and changing the stretching speed in the longitudinal direction A biaxially stretched polyester film was obtained in the same manner as in Example 1 except for this. At that time, the stretching speed in the longitudinal direction was adjusted by changing the gap between the heating roll and the cooling roll. The results were as shown in Table-2.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はフイルムの表面性の異方性が少ないフ
イルムをロールに巻き上げた時に発生する瘤状突
起を模式的に示す図である。
FIG. 1 is a diagram schematically showing bump-like protrusions that occur when a film with low anisotropy in surface properties is wound up into a roll.

Claims (1)

【特許請求の範囲】 1 中心線表面粗さで表わされるフイルム表面粗
さRaが0.015μm以下であり、横方向に測定した
フイルム表面粗さRaTDが縦方向に測定したフイ
ルム表面粗さRaMDに対して1.05〜1.30倍の範囲に
あり、縦方向のヤング率YMDが600Kg/mm3以上で
あり、さらに横方向のヤング率YTDが縦方向のヤ
ング率YMDに対して0.45〜0.75倍の範囲にあるこ
とを特徴とする巻取性良好な二軸延伸ポリエステ
ルフイルム。 2 フイルム対フイルムの摩擦係数μsが0.5以上
であり、横方向の摩擦係数μsTDが縦方向の摩擦係
数μsMDに対して0.80〜0.98倍の範囲にあることを
特徴とする特許請求の範囲第1項記載の二軸延伸
ポリエステルフイルム。
[Claims] 1. The film surface roughness Ra expressed as center line surface roughness is 0.015 μm or less, and the film surface roughness Ra TD measured in the transverse direction is equal to the film surface roughness Ra MD measured in the longitudinal direction. The Young's modulus in the longitudinal direction Y MD is 600 Kg/mm 3 or more, and the Young's modulus in the transverse direction Y TD is 0.45 to 0.75 compared to the Young's modulus Y MD in the longitudinal direction. A biaxially oriented polyester film with good winding properties. 2. The film-to-film friction coefficient μs is 0.5 or more, and the lateral friction coefficient μs TD is in the range of 0.80 to 0.98 times the longitudinal friction coefficient μs MD . The biaxially stretched polyester film according to item 1.
JP10154285A 1985-05-15 1985-05-15 Biaxially oriented polyester film Granted JPS61261026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10154285A JPS61261026A (en) 1985-05-15 1985-05-15 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10154285A JPS61261026A (en) 1985-05-15 1985-05-15 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPS61261026A JPS61261026A (en) 1986-11-19
JPH0365778B2 true JPH0365778B2 (en) 1991-10-15

Family

ID=14303321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10154285A Granted JPS61261026A (en) 1985-05-15 1985-05-15 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPS61261026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397511A2 (en) 2010-06-11 2011-12-21 Fujifilm Corporation Polyester film and method for producing same, backsheet for solar cell, and solar cell module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618071B2 (en) * 1987-03-10 1994-03-09 帝人株式会社 Biaxially oriented polyester film for magnetic recording media
EP1162227B1 (en) 1999-12-28 2008-06-18 Teijin Limited Polyester film roll

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415978A (en) * 1977-06-28 1979-02-06 Teijin Ltd Polyester film
JPS5982629A (en) * 1983-08-31 1984-05-12 Toray Ind Inc Base film for magnetic recording
JPS59178224A (en) * 1983-03-30 1984-10-09 Teijin Ltd Stretched polyester film
JPH0371013A (en) * 1989-08-10 1991-03-26 Hitachi Cable Ltd Optical fiber gyro device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415978A (en) * 1977-06-28 1979-02-06 Teijin Ltd Polyester film
JPS59178224A (en) * 1983-03-30 1984-10-09 Teijin Ltd Stretched polyester film
JPS5982629A (en) * 1983-08-31 1984-05-12 Toray Ind Inc Base film for magnetic recording
JPH0371013A (en) * 1989-08-10 1991-03-26 Hitachi Cable Ltd Optical fiber gyro device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397511A2 (en) 2010-06-11 2011-12-21 Fujifilm Corporation Polyester film and method for producing same, backsheet for solar cell, and solar cell module
US8642715B2 (en) 2010-06-11 2014-02-04 Fujifilm Corporation Polyester film and method for producing same, backsheet for solar cell, and solar cell module

Also Published As

Publication number Publication date
JPS61261026A (en) 1986-11-19

Similar Documents

Publication Publication Date Title
US5656356A (en) Biaxially oriented laminated polyester film
US5380577A (en) Biaxially oriented polyethylene-2,6-naphthalene-dicarboxylate film and process for the production thereof
KR0184607B1 (en) Polyethylene 2-6-naphthalene dicarboxylate film
EP1270669B1 (en) Biaxially oriented, unidirectionally long polyethylene-2,6-naphthalate film and magnetic tape therefrom
JPH0430973B2 (en)
JPH0365778B2 (en)
US5958568A (en) Biaxially oriented polyester film for a magnetic recording medium
JPS63278939A (en) Biaxially oriented polyester film
JP2954807B2 (en) Biaxially oriented laminated polyester film
JP4971875B2 (en) Biaxially oriented polyester film
JPH0455583B2 (en)
JP2675216B2 (en) Polyethylene-2,6-naphthalate film
JP2642549B2 (en) Laminated biaxially oriented polyester film
JPH0460424B2 (en)
JPH0360301B2 (en)
JPH0367628B2 (en)
JPH01126340A (en) Biaxially oriented polyester film
JP4118491B2 (en) Biaxially oriented polyester film
JP2003132523A (en) Biaxially oriented polyester film for magnetic recording medium
WO1994013463A1 (en) Improved biaxially oriented copolyester film for magnetic recording media
JPH05301283A (en) Laminated biaxially-oriented polyester film for magnetic recording medium
JPH07266521A (en) Laminated biaxially oriented polyester film
JPH10751A (en) Biaxially oriented laminated polyester film for magnetic recording medium
JP3051263B2 (en) Laminated polyester film for magnetic recording media
JP3066936B2 (en) Biaxially oriented laminated polyester film for magnetic recording media

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term