JPH0365581A - Method for improving oxidation resistance of sintered carbon - Google Patents

Method for improving oxidation resistance of sintered carbon

Info

Publication number
JPH0365581A
JPH0365581A JP19793489A JP19793489A JPH0365581A JP H0365581 A JPH0365581 A JP H0365581A JP 19793489 A JP19793489 A JP 19793489A JP 19793489 A JP19793489 A JP 19793489A JP H0365581 A JPH0365581 A JP H0365581A
Authority
JP
Japan
Prior art keywords
sintered carbon
carbon material
sintered body
carbon
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19793489A
Other languages
Japanese (ja)
Inventor
Hiroaki Nishio
浩明 西尾
Keiji Watanabe
圭児 渡辺
Michitaka Satou
道貴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19793489A priority Critical patent/JPH0365581A/en
Priority to US07/554,697 priority patent/US5114749A/en
Priority to EP90114770A priority patent/EP0411611A1/en
Publication of JPH0365581A publication Critical patent/JPH0365581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To easily obtain a sintered carbon material having improved oxidation resistance by coating a sintered carbon material with inorganic polysilazane and heating in a non-nitrogen and non-oxidizing atmosphere to form a silicon carbide layer on the sintered carbon material. CONSTITUTION:A sintered carbon material is produced by using graphite. carbon black, coke, pitch, carbon fiber, etc., as raw material, forming the raw material and sintering and graphitizing the formed product. An inorganic polysilazane produced by diluting a chlorosilane with a solvent and reacting with ammonia is applied to the sintered carbon material to form a coating layer. The sintered carbon material is placed in a non-nitrogen and non-oxidizing atmosphere (e.g. argon atmosphere) and heated to effect the reaction of the inorganic polysilazane with carbon. The surface carbon layer of the sintered carbon material is converted to silicon carbide by this process to form a silicon carbide film on the surface in high adhesivity and efficiency. A sintered carbon material having excellent oxidation resistance at high temperature can be easily produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は炭素焼結体の耐酸化性向上方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for improving the oxidation resistance of a carbon sintered body.

〔従来の技術〕[Conventional technology]

炭素焼結体は1000°C以上の高温においても強度低
下がなくまた高い熱伝導性を持つところから高温材料と
して期待される。しかし、空気中で500°Cを越える
と酸化し、使用に耐えなくなる。そこでこの高温におけ
る酸化を防止する方法として、高温では不活性ガス雰囲
気で使用するか、あるいは化学蒸着法により炭素焼結体
表面に炭化ケイ素を被覆して酸化保護膜を形成し、高温
の大気雰囲気での使用を可能にする方法が知られている
。後者の炭化ケイ素で被覆した炭素焼結体はシリコン単
結晶引き上げ装置のるつぼ、エピタキシャル成長装置の
サセプター等半導体関連分野で広く使用されている。
Carbon sintered bodies are expected to be used as high-temperature materials because they do not decrease in strength even at high temperatures of 1000°C or higher and have high thermal conductivity. However, if the temperature exceeds 500°C in the air, it will oxidize and become unusable. Therefore, as a method to prevent oxidation at high temperatures, use an inert gas atmosphere at high temperatures, or coat the surface of the carbon sintered body with silicon carbide by chemical vapor deposition to form an oxidation protective film. Methods are known to enable use in The latter carbon sintered body coated with silicon carbide is widely used in semiconductor-related fields such as crucibles for silicon single crystal pulling equipment and susceptors for epitaxial growth equipment.

また、炭素材料の表層部を高温で一酸化ケイ素ガスと反
応させて炭化ケイ素に転換させる転換法も知られている
Also known is a conversion method in which the surface layer of a carbon material is reacted with silicon monoxide gas at high temperature to convert it into silicon carbide.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

化学蒸着法においては炭化ケイ素は炭素焼結体の表面に
積層されるので両者の密着が不十分である。また両者の
熱膨張率に差があるので使用時の加熱、冷却の繰返しに
よって被覆層が剥離したり亀裂が生じたりして基材の炭
素焼結体が酸化損傷するという問題もある。転換法によ
れば密着性の良い被膜が得られるが、1700°C以上
の高温を必要とするので装置及び操作の両面で問題があ
る。さらに、化学蒸着法と転換法に共通の問題点として
、ケイ素源がガスで供給されるので炭化ケイ素として固
定できる割合が低いという問題もある。
In the chemical vapor deposition method, silicon carbide is laminated on the surface of the carbon sintered body, so the adhesion between the two is insufficient. Further, since there is a difference in coefficient of thermal expansion between the two, there is also the problem that the coating layer peels off or cracks occur due to repeated heating and cooling during use, resulting in oxidation damage to the carbon sintered body of the base material. Although a film with good adhesion can be obtained by the conversion method, it requires a high temperature of 1700° C. or higher, which poses problems in terms of both equipment and operation. Furthermore, a problem common to the chemical vapor deposition method and the conversion method is that the silicon source is supplied in the form of a gas, so that the proportion of silicon carbide that can be fixed is low.

この発明は上記のような問題点を解決するためになされ
たものであり、密着性の良い炭化ケイ素を比較的低温で
形成する手段を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to provide a means for forming silicon carbide with good adhesiveness at a relatively low temperature.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記目的を達成するべく鋭意検討の結果、
炭素焼結体に無機ポリシラザンを被覆して非窒化性かつ
非酸化性雰囲気で加熱して炭素焼結体の表面に炭化ケイ
素の層を形成させることにより耐酸化性の高い強靭な被
膜を容易に炭素焼結体の表面に形成させることができる
ことを見出して本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the inventors of the present invention found that
A strong coating with high oxidation resistance can be easily formed by coating a carbon sintered body with inorganic polysilazane and heating it in a non-nitriding and non-oxidizing atmosphere to form a layer of silicon carbide on the surface of the carbon sintered body. The present invention was completed by discovering that it can be formed on the surface of a carbon sintered body.

炭素焼結体は、天然および人造黒鉛、カーボンブラック
、コークス、ピッチ、炭素繊維などを原料として底形、
焼結し、黒鉛化したものである。
Carbon sintered bodies are made from natural and artificial graphite, carbon black, coke, pitch, carbon fiber, etc.
It is sintered and graphitized.

焼結助剤として炭化物(TiC,ZrC,NbC,B4
C等)、ホウ化物(TiB、、ZrB、等)を添加して
もよい、さらに、必要に応じて焼結後ピッチ含浸し炭化
焼成を行って密度を高めたものでもよい。密度は高い方
が良く嵩密度で1.6g/c+f1以上あることが好ま
しい。この発明の方法では炭素のケイ化によって体積膨
張するとはいえ、1.6g/c+f1未満のように密度
が低いと雰囲気ガスとの接触面積が多く面形状が入りく
んでいるので炭化ケイ素被膜によって完全に接触を断つ
ことが困難になるからである。炭素焼結体の形状はその
使用目的等に応じて定まり、特に制限されない。炭素焼
結体には必要により予めジクロロメタン等の有機溶剤で
洗浄してから無機ポリシラザンを被覆させる。
Carbide (TiC, ZrC, NbC, B4
C, etc.), borides (TiB, ZrB, etc.) may be added, and if necessary, the density may be increased by impregnating pitch after sintering and performing carbonization firing. The higher the density, the better, and preferably a bulk density of 1.6 g/c+f1 or more. In the method of this invention, although the volume expands due to silicification of carbon, if the density is low, such as less than 1.6 g/c + f1, there is a large contact area with the atmospheric gas and the surface shape is complicated, so the silicon carbide film completely expands the volume. This is because it becomes difficult to break off contact with other people. The shape of the carbon sintered body is determined depending on its intended use and is not particularly limited. If necessary, the carbon sintered body is cleaned in advance with an organic solvent such as dichloromethane, and then coated with inorganic polysilazane.

無機ポリシラザンはクロロシランHa−3I CI−(
a=1.2.3.4)を溶剤によって希釈してアンモニ
アと反応させることによって得られるエラストマーであ
り、本発明の方法にはHz S i C1□単体もしく
はHzSiClzを主体とした異種のクロロシランの混
合物を原料とすることにより得られる常温で液状のもの
が好ましい。この溶剤としてはベンゼン、ジエチルエー
テル、ジクロロメタン、テトラヒドロフラン、ピリジン
等が適用できるが、合成される無機ポリシラザンの構造
、組成、分子量は溶剤の種類によって若干異なる。しか
し、いずれも水素、窒素、ケイ素からなり炭素は含まな
い。
The inorganic polysilazane is chlorosilane Ha-3I CI-(
a=1.2.3.4) with a solvent and reacted with ammonia, and the method of the present invention involves the use of Hz Si C1 Preferably, it is liquid at room temperature and is obtained by using a mixture as a raw material. As the solvent, benzene, diethyl ether, dichloromethane, tetrahydrofuran, pyridine, etc. can be used, but the structure, composition, and molecular weight of the inorganic polysilazane to be synthesized differ slightly depending on the type of solvent. However, they all consist of hydrogen, nitrogen, and silicon and do not contain carbon.

例えば(H,5iNH) x (HzSiNH) x 
((HzSi)+、5N)y等の構造を有するものが知
られている。このような液状の無機ポリシラザンを単味
もしくは溶剤で希釈して炭素焼結体の被覆に供する。こ
の溶剤としては特に制約はないが、ベンゼン、ジエチル
エーテル、ジクロロメタン、テトラヒドロフラン、ピリ
ジンが目的に適う。希釈の程度は炭素焼結体上に形成さ
れる液膜の厚さおよび液状ポリシラザンの炭素焼結体の
有する開気孔への進入のし易さに影響される。溶剤の濃
度は0〜80重量%が適当である。80重置方を越える
と無機ポリシラザンの膜厚が薄くなって基材の露出が起
こりやすくなる。
For example, (H,5iNH) x (HzSiNH) x
Those having a structure such as ((HzSi)+, 5N)y are known. Such a liquid inorganic polysilazane is used alone or diluted with a solvent to coat a carbon sintered body. There are no particular restrictions on this solvent, but benzene, diethyl ether, dichloromethane, tetrahydrofuran, and pyridine are suitable for the purpose. The degree of dilution is influenced by the thickness of the liquid film formed on the carbon sintered body and the ease with which liquid polysilazane can enter the open pores of the carbon sintered body. The appropriate concentration of the solvent is 0 to 80% by weight. If the stacking direction exceeds 80, the film thickness of the inorganic polysilazane becomes thin and the base material is likely to be exposed.

無機ポリシラザンの乾燥膜厚は40〜200J!m程度
が適当である。被覆は炭素焼結体の全面に行う他、炭素
焼結体が使用時に露出して酸化されやすい部位のみに対
して行ってもよい。
The dry film thickness of inorganic polysilazane is 40-200J! A value of about m is appropriate. The coating may be applied to the entire surface of the carbon sintered body, or may be applied only to portions of the carbon sintered body that are exposed during use and are easily oxidized.

被覆方法に関しては特に制約はなく、刷毛塗り、炭素焼
結体の浸漬等が適用できる。浸漬し、かつ炭素焼結体を
予め脱気しあるいは浸漬中に無機ポリシラザンを加圧す
ると開気孔への無機ポリシラザンの浸透が良好となり基
材の露出のない被覆が得られる。
There are no particular restrictions on the coating method, and brush coating, dipping of a carbon sintered body, etc. can be applied. If the carbon sintered body is immersed and the carbon sintered body is deaerated in advance or the inorganic polysilazane is pressurized during the immersion, the inorganic polysilazane penetrates into the open pores well, and a coating without exposing the base material can be obtained.

被覆を完了した炭素焼結体を不活性ガス中で加熱すると
、溶剤の蒸発に続いて、150℃あたりから無機ポリシ
ラザンの熱分解がはじまり、これは600’C付近でほ
ぼ終了して非晶質の窒化ケイ素が得られる。引き続き、
高温下非窒化性雰囲気から非酸化性雰囲気で熱処理を施
す。非窒化性雰囲気とは、無機ポリシラザンから転化し
た非晶質の窒化ケイ素を基材の炭素と反応させて炭化ケ
イ素を生成させる際に発生する窒素ガスの放出を妨げな
い十分低い窒素分圧を意味する。この上限の窒素分圧は
1300°Cで0.1atm、1900℃で20a t
mであり、第1図に斜線で示す範囲内に窒素分圧を保持
する必要がある。
When the coated carbon sintered body is heated in an inert gas, following the evaporation of the solvent, thermal decomposition of the inorganic polysilazane begins at around 150°C, which almost ends at around 600°C, and becomes amorphous. of silicon nitride is obtained. continuation,
Heat treatment is performed at high temperature in a non-nitriding to non-oxidizing atmosphere. A non-nitriding atmosphere means a sufficiently low nitrogen partial pressure that does not prevent the release of nitrogen gas generated when silicon carbide is produced by reacting amorphous silicon nitride converted from inorganic polysilazane with carbon in the base material. do. This upper limit nitrogen partial pressure is 0.1 atm at 1300°C and 20atm at 1900°C.
m, and it is necessary to maintain the nitrogen partial pressure within the range shown by diagonal lines in FIG.

非酸化性雰囲気とは酸素ガス、水分等の酸化性ガスを実
質的に含まず、炭化ケイ素の層を形成させる加熱工程に
おいて一酸化ケイ素の生成が無視できる雰囲気をいう。
A non-oxidizing atmosphere is an atmosphere that does not substantially contain oxidizing gases such as oxygen gas and moisture, and in which the production of silicon monoxide can be ignored in the heating process for forming a silicon carbide layer.

雰囲気ガスとしてはヘリウム、ネオン、アルゴン等の不
活性ガスあるいは水素ガス等が好ましい。圧力は10−
4〜1100at程度が適当である。非窒化性かつ非酸
化性雰囲気での加熱温度は1300〜1900’Cが適
当である。1300°C未満では反応速度が遅く、実用
的でない。一方、1900°Cを越えると雰囲気中に不
可避的に混入している微量の酸素によりケイ素が一酸化
ケイ素ガスとして揮散する現象が無視できなくなる。こ
のためケイ素の損失が大きくなる。
The atmospheric gas is preferably an inert gas such as helium, neon, or argon, or hydrogen gas. The pressure is 10-
Approximately 4 to 1100 at is appropriate. The appropriate heating temperature in a non-nitriding and non-oxidizing atmosphere is 1300 to 1900'C. If the temperature is lower than 1300°C, the reaction rate is slow and it is not practical. On the other hand, when the temperature exceeds 1900°C, the phenomenon that silicon volatilizes as silicon monoxide gas cannot be ignored due to trace amounts of oxygen that are inevitably mixed in the atmosphere. Therefore, silicon loss increases.

加熱時間は炭化ケイ素の層を形成させるのに充分な時間
があればよ< 1300°Cでは5〜20時間程度、1
900℃では0.5〜5時間程度でよい。
The heating time should be enough time to form a layer of silicon carbide.
At 900°C, it may take about 0.5 to 5 hours.

〔作用〕[Effect]

炭素焼結体に無機ポリシラザンを被覆して非窒化性かつ
非酸化性雰囲気で加熱することにより、下記の反応が起
こり、炭素焼結体表面の炭素が反応して炭化ケイ素の被
膜を形成する。
By coating a carbon sintered body with inorganic polysilazane and heating it in a non-nitriding and non-oxidizing atmosphere, the following reaction occurs, and carbon on the surface of the carbon sintered body reacts to form a silicon carbide film.

S i N x + C−S i C+ (X / 2
 ) N z↑〔実施例〕 実施例1 嵩密度2.01g/cfflO高密度等方性黒鉛焼結体
(50肋X 50mm X 10mm )をジクロロメ
タンに浸漬し、24時間放置後取出して乾燥した。この
焼結体をシリコーンゴムの容器に入れ真空脱気して10
−2Torrに到達させた。液状の無機ポリシラザンを
容器内に導入して焼結体を浸漬させた。大気圧に戻し、
このゴム容器にシリコーンゴム製の蓋をして封入し、冷
間静水圧プレスでゴム容器の外側から5000kg/c
m”の圧力をかけたのち処理物を取出した。これを加熱
炉で10”C/minの昇温速度で600°Cまで上げ
、1時間保持後放冷した。続いて、焼結炉に入れ常圧の
アルゴン雰囲気で1500″Cまで30″(/minで
昇温し、5時間保持後放冷した。この焼結体を1200
’C1100時間大気雰囲気に保持したところ、わずか
に0.26重量%の重量増加が観察されたほか変化がな
かった。
S i N x + C-S i C+ (X / 2
) N z↑ [Example] Example 1 A high-density isotropic graphite sintered body (50 ribs x 50 mm x 10 mm) with a bulk density of 2.01 g/cfflO was immersed in dichloromethane, left for 24 hours, and then taken out and dried. This sintered body was placed in a silicone rubber container and vacuum degassed for 10 minutes.
-2 Torr was reached. Liquid inorganic polysilazane was introduced into the container and the sintered body was immersed therein. return to atmospheric pressure,
This rubber container was sealed with a silicone rubber lid, and a pressure of 5000 kg/cm was applied from the outside of the rubber container using a cold isostatic press.
After applying a pressure of 1.5 m", the treated material was taken out. The material was heated to 600° C. at a heating rate of 10" C/min in a heating furnace, maintained for 1 hour, and then allowed to cool. Subsequently, the sintered body was placed in a sintering furnace and heated at a rate of 30"/min to 1500"C in an argon atmosphere under normal pressure, and after being maintained for 5 hours, it was left to cool.
When the sample was kept in the air for 1100 hours, no other changes were observed except for a slight increase in weight of 0.26% by weight.

実施例2 無機ポリシラデフ50重景%、ジクロロメタン50重量
%の溶液を調製し、実施例1と同様の操作を高密度等方
性黒鉛焼結体(50aaX50鵬X10mm)に対して
施したところ、この焼結体はわずかに0.20重量%の
重量増加が観察されたほか変化がなかった。
Example 2 A solution of 50% by weight of inorganic polysiladeph and 50% by weight of dichloromethane was prepared, and the same operation as in Example 1 was performed on a high-density isotropic graphite sintered body (50aa x 50a x 10mm). There was no change in the sintered body other than a slight increase in weight of 0.20% by weight.

[発明の効果] 以上のように、この発明によれば、液状の無機ポリシラ
ザンにより炭素焼結体表面に被膜を形成し、炭素との反
応によって表層炭素を炭化ケイ素に転化し密着性の良い
炭化ケイ素膜を効率良く形成させることができるので、
この方法によれば炭素が本来持つ耐熱性に加え、高温に
おける耐酸化性のある炭素焼結体を製造できる。
[Effects of the Invention] As described above, according to the present invention, a film is formed on the surface of a carbon sintered body using liquid inorganic polysilazane, and surface carbon is converted to silicon carbide by reaction with carbon, resulting in carbonization with good adhesion. Because silicon films can be formed efficiently,
According to this method, it is possible to produce a carbon sintered body that has not only the heat resistance that carbon inherently has, but also has oxidation resistance at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非窒化性雰囲気を達成しうる窒素分圧と加熱温
度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between nitrogen partial pressure and heating temperature that can achieve a non-nitriding atmosphere.

Claims (1)

【特許請求の範囲】[Claims] 炭素焼結体に無機ポリシラザンを被覆し、これを非窒素
性かつ非酸化性雰囲気で加熱することにより炭素焼結体
表面に炭化ケイ素の層を形成させることを特徴とする耐
酸化性の向上した炭素焼結体の製造方法
A carbon sintered body coated with inorganic polysilazane and heated in a non-nitrogen and non-oxidizing atmosphere to form a layer of silicon carbide on the surface of the carbon sintered body, which has improved oxidation resistance. Method for manufacturing carbon sintered body
JP19793489A 1989-08-01 1989-08-01 Method for improving oxidation resistance of sintered carbon Pending JPH0365581A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19793489A JPH0365581A (en) 1989-08-01 1989-08-01 Method for improving oxidation resistance of sintered carbon
US07/554,697 US5114749A (en) 1989-08-01 1990-07-18 Method for manufacturing carbon material having good resistance to oxidation by coating the carbon material with an inorganic polysilazane and then heating
EP90114770A EP0411611A1 (en) 1989-08-01 1990-08-01 Method for manufacturing carbon material good in resistance to oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19793489A JPH0365581A (en) 1989-08-01 1989-08-01 Method for improving oxidation resistance of sintered carbon

Publications (1)

Publication Number Publication Date
JPH0365581A true JPH0365581A (en) 1991-03-20

Family

ID=16382722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19793489A Pending JPH0365581A (en) 1989-08-01 1989-08-01 Method for improving oxidation resistance of sintered carbon

Country Status (1)

Country Link
JP (1) JPH0365581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536150A (en) * 2010-08-27 2013-09-19 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Crucible for solidifying silicon ingot
WO2014104804A1 (en) * 2012-12-28 2014-07-03 Park Myung Oh Apparatus for connecting and releasing fishing tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149194A (en) * 1977-05-31 1978-12-26 Sharp Corp Coating method for graphite substrate with silicon carbide
JPS55104982A (en) * 1979-02-07 1980-08-11 Usui Kokusai Sangyo Kk Manufacture of silicon carbideecarbon composite body
JPS58172295A (en) * 1982-03-30 1983-10-11 Ibiden Co Ltd Method for pulling up silicon single crystal
JPH02111679A (en) * 1988-10-20 1990-04-24 Tokai Carbon Co Ltd Production of oxidation-resistant carbon fiber-reinforced carbon material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149194A (en) * 1977-05-31 1978-12-26 Sharp Corp Coating method for graphite substrate with silicon carbide
JPS55104982A (en) * 1979-02-07 1980-08-11 Usui Kokusai Sangyo Kk Manufacture of silicon carbideecarbon composite body
JPS58172295A (en) * 1982-03-30 1983-10-11 Ibiden Co Ltd Method for pulling up silicon single crystal
JPH02111679A (en) * 1988-10-20 1990-04-24 Tokai Carbon Co Ltd Production of oxidation-resistant carbon fiber-reinforced carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536150A (en) * 2010-08-27 2013-09-19 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Crucible for solidifying silicon ingot
WO2014104804A1 (en) * 2012-12-28 2014-07-03 Park Myung Oh Apparatus for connecting and releasing fishing tool

Similar Documents

Publication Publication Date Title
TW201435159A (en) Carbide silicon-carbide tantalum compound and carrier
US5114749A (en) Method for manufacturing carbon material having good resistance to oxidation by coating the carbon material with an inorganic polysilazane and then heating
JPH0365581A (en) Method for improving oxidation resistance of sintered carbon
US4544412A (en) Deposition of improved SiC coatings on carbon-base materials
JPS6241705A (en) Production of carbonaceous material coated with glassy carbon
JPH1017382A (en) Production of silicon carbide formed body
CN113308883B (en) Method for controlling sintering atmosphere of in-situ oxidation-resistant coating of carbon-bonded carbon fiber material
JP3522810B2 (en) Carbon-ceramic composite and method for producing the same
JPH0848509A (en) Production of carbonaceous porous body
JP2777903B2 (en) Heat-resistant and corrosion-resistant inorganic material and method for producing the same
JPH0789776A (en) Production of boron nitride coated carbon material
JPH0524879B2 (en)
JPS60209017A (en) Ceramic coated graphite fiber and its production
Shimoo et al. Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JP3946297B2 (en) Carbon material surface treatment method
JPH03126669A (en) Production of silicon carbide porous body
JPH03265582A (en) Production of oxidation resistant carbon material
JPH11180788A (en) Oxidation resistant carbon-silicon carbide composite material and heating part using the same
JPH06305863A (en) Production of carbon fiber-reinforced carbon composite material coated with silicon carbide
JPH0733565A (en) Carbon material coated with boron carbide and its production
JP2977842B2 (en) Boron nitride composite and method for producing the same
JPH039945B2 (en)
JPH05339079A (en) Production of boron carbide-coated carbon material and boron carbide-coated carbon material producted by this method
JP2000247779A (en) Carbonaceous crucible for pulling up single crystal and its production