JPH0363311A - Hydroelectric power-generating device - Google Patents

Hydroelectric power-generating device

Info

Publication number
JPH0363311A
JPH0363311A JP1197977A JP19797789A JPH0363311A JP H0363311 A JPH0363311 A JP H0363311A JP 1197977 A JP1197977 A JP 1197977A JP 19797789 A JP19797789 A JP 19797789A JP H0363311 A JPH0363311 A JP H0363311A
Authority
JP
Japan
Prior art keywords
outlet
open channel
suction pipe
sectional area
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1197977A
Other languages
Japanese (ja)
Other versions
JP2592959B2 (en
Inventor
Masaharu Nonaka
野中 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1197977A priority Critical patent/JP2592959B2/en
Publication of JPH0363311A publication Critical patent/JPH0363311A/en
Application granted granted Critical
Publication of JP2592959B2 publication Critical patent/JP2592959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To efficiently produce electric power by efficient operation of the title device with decreased loss of head at the outlet of a draft tube by providing an open channel on the outlet side of the draft tube of a water turbine, and by making the cross-sectional area of the open channel at its outlet larger than the cross-sectional area of the draft tube at its outlet. CONSTITUTION:By stream of water guided from an upper reservoir 11 into a water turbine passage 12, a runner 16 of the water turbine rotates and an electric generator is driven by the rotation. The stream of water is then led to a lower reservoir 18 through a draft tube 17 and an open channel 20. The passage area of the open channel 20 is made to become larger as the channel approaches the downstream side so that the cross-sectional area of the open channel 20 at its outlet becomes larger than the cross-sectional area of the draft tube 17 at its outlet. Therefore the speed of the running water in the open channel 20 gradually slows down, letting the velocity head become lower. Thereby the loss of head decreases, allowing efficient operation to be possible.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、適用高低落差が小さな水力発電装置に係り、
特にチューブラ水車等のパルプ水車を用いた低落差大流
量の水力発電装置に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a hydroelectric power generation device with a small applicable height difference,
In particular, the present invention relates to a low-head, large-flow hydroelectric power generation system using a pulp water turbine such as a tubular water turbine.

(従来の技術) 低落差大流量の水力発電装置に用いられるパルプ水車で
は、水車ランナの出口に吸出管が設けられるが、この吸
出管出口での排棄速度水頭損失(以下、排棄損失という
)が水力発電プラント全体の損失のかなりの部分を占め
ており、発電効率が低下する原因になっている。
(Prior art) In a pulp turbine used in a hydroelectric power generation device with a low head and a large flow rate, a suction pipe is provided at the outlet of the turbine runner. ) accounts for a significant portion of the overall loss of a hydroelectric power plant, causing a decline in power generation efficiency.

低落差水力発電プラントは同一電力の高落差発電プラン
トと比較するとパルプ水車の寸法が相対的に大きくなり
、パルプ水車が大型化するため、経済的負担が大きくな
る。このため、低落差水力発電装置では、パルプ水車の
製造コストの低減や水車据付けのための土木掘削量を低
減させることが重要となっている。
Compared to a high-head power generation plant with the same power output, a low-head hydroelectric power plant has a relatively large pulp turbine, which increases the size of the pulp turbine, resulting in a heavy economic burden. For this reason, in low head hydroelectric power generation devices, it is important to reduce the manufacturing cost of pulp water turbines and the amount of civil engineering excavation for installing the water turbines.

第5図および第6図は従来の低落差大流量水力発電装置
の概略構成を示している。この水力発電装置にはパルプ
水車としてチューブラ水車が採用される。チューブラ水
車は発電機器類がケーシング内筒1内に収容される。ケ
ーシング内筒1は上池2からの水車流路を構成するケー
シング外筒3内に収容される。ケーシング外筒3と内筒
1との間の水車流路には水流を整流させる案内羽根4が
設けられ、この案内羽根4の下流側に水車ランナ5が取
付けられ、この水車ランナ5を水流により旋回させるよ
うになっている。水車ランナ5の出口側には水流を下池
6に導く埋設式の吸出管7が接続される。
FIG. 5 and FIG. 6 show the schematic configuration of a conventional low head, large flow rate hydroelectric power generation device. This hydroelectric power generation device uses a tubular water turbine as a pulp water turbine. In the tubular water turbine, power generation equipment is housed in an inner cylinder 1 of the casing. The inner casing cylinder 1 is housed in the outer casing cylinder 3 that constitutes a water turbine flow path from the upper pond 2. A guide vane 4 for rectifying the water flow is provided in the water turbine channel between the outer cylinder 3 and the inner cylinder 1 of the casing, and a water turbine runner 5 is attached to the downstream side of the guide vane 4. It is designed to rotate. A buried suction pipe 7 that guides water flow to a lower pond 6 is connected to the outlet side of the water turbine runner 5.

この水力発電装置は、上池2に貯められた水をケーシン
グ外筒3と内筒1との間の水車流路を通って案内羽根4
に導かれ、水車ランナ5を旋回させ、回転駆動させる。
This hydroelectric power generation device passes water stored in an upper pond 2 through a water turbine channel between an outer casing 3 and an inner casing 1 to guide vanes 4.
, the water turbine runner 5 is rotated and driven to rotate.

水車ランナ5を旋回させた水流は吸出管7を通り下池6
に排出される。
The water flow that rotated the water wheel runner 5 passes through the suction pipe 7 and lowers the lower pond 6.
is discharged.

この場合、水力発電装置の発電効率を向上させるために
、吸出管7出口での水流の速度水頭を可能な限り小さく
して、吸出管7からの排棄損失を低減させることが望ま
しい。吸出管7出口での水流の流速V は第7図に示す
ように表わされ、この水流の速度エネルギが排棄損失と
なる。比速度n  =700 (m−kw)クラスノ水
力発電フラントでは、排棄損失は概略計算で2〜2.5
%、比速度n  =1000(m−kw)クラステは3
.5〜4%に達する。
In this case, in order to improve the power generation efficiency of the hydroelectric power generation device, it is desirable to reduce the velocity head of the water flow at the outlet of the suction pipe 7 as much as possible to reduce the discharge loss from the suction pipe 7. The flow velocity V 1 of the water flow at the outlet of the suction pipe 7 is expressed as shown in FIG. 7, and the velocity energy of this water flow becomes a displacement loss. Specific speed n = 700 (m-kw) In the Krasno hydroelectric power plant, the displacement loss is roughly calculated as 2-2.5
%, specific speed n = 1000 (m-kw) Claste is 3
.. It reaches 5-4%.

(発明が解決しようとする課題) 従来の水力発電装置において、吸出管7出口での排棄損
失を低減させるために、吸出管7の出口面積を大きくす
ることが考えられている。しかしながら、土木掘削量を
抑えるために、吸出管7の管長りを変えないで、吸出管
7の出口面積を大きくすると、吸出管7の流路面積拡大
率が適正拡大率よりも大きくなり、吸出管7内での拡流
による損失が大きくなる。また、吸出管7の流路面積拡
大率を適正に保って吸出管出口面積を大きくすると、埋
設式の吸出管7の管長りが長(なり、土木掘削量が増大
し、経済的負担が増大する。
(Problems to be Solved by the Invention) In conventional hydroelectric power generation devices, it has been considered to increase the exit area of the suction pipe 7 in order to reduce the discharge loss at the exit of the suction pipe 7. However, in order to suppress the amount of civil engineering excavation, if the outlet area of the suction pipe 7 is increased without changing the length of the suction pipe 7, the flow passage area expansion rate of the suction pipe 7 becomes larger than the appropriate expansion rate, and the suction Loss due to flow expansion within the pipe 7 increases. In addition, if the outlet area of the suction pipe is increased by keeping the expansion rate of the flow path area of the suction pipe 7 appropriate, the length of the buried suction pipe 7 will become longer (the amount of civil engineering excavation will increase, and the economic burden will increase). do.

従来の低落差大流量水力発電装置において、土木掘削量
の増大を生じさせることなく、吸出管出口での排棄損失
を低減して発電効率を向上させ、高効率運転をされるた
めに、水力発電装置を如何に構成したらよいか問題にな
っていた。
In conventional low-head, high-flow hydroelectric power generation equipment, in order to achieve high efficiency operation by reducing waste loss at the outlet of the suction pipe and increasing power generation efficiency without increasing the amount of civil engineering excavation, The problem was how to configure the power generator.

本発明は、上述した事情を考慮してなされたもので、土
木掘削量の著しい増大を招くことなく、排棄損失を低減
させることができ、高効率運転が可能な水力発電装置を
提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a hydroelectric power generation device that can reduce dumping loss without causing a significant increase in the amount of civil engineering excavation, and can operate with high efficiency. With the goal.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る水力発電装置は、上述した課題を解決する
ために、水車ランナの出口を吸出管を介して下池に連通
させ、上記吸出管の断面積を下流側に向って拡大させた
水力発電装置において、前記吸出管の出口側に開水路を
設け、この開水路の出口断面積を前記吸出管の出口断面
積より大きくしたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the hydroelectric power generation device according to the present invention communicates the outlet of the water turbine runner with the lower pond via the suction pipe, and reduces the cross-sectional area of the suction pipe to the downstream. In a hydroelectric power generation device that expands toward the side, an open channel is provided on the outlet side of the suction pipe, and the outlet cross-sectional area of the open channel is made larger than the exit cross-sectional area of the suction pipe.

また、従来技術が有する課題を解決するために、本発明
の水力発電装置は、開水路を吸出管出口側の下池内に設
けて、隔壁を兼ねる側壁により下池と仕切る一方、開水
路は吸出管出口から下流側に向って流路面積を徐々に拡
大させたものである。
In addition, in order to solve the problems of the prior art, the hydroelectric power generation device of the present invention provides an open channel in the lower pond on the outlet side of the suction pipe and partitions it from the lower pond by a side wall that also serves as a partition. The flow path area gradually increases from the outlet toward the downstream side.

さらに、この水力発電装置は、下池を仕切る側壁間に形
成される開水路の流路幅や流路高さが適正流路面積拡大
率となるように、下流側に向って徐々に拡大させたもの
である。
Furthermore, this hydroelectric power generation device gradually expands toward the downstream side so that the width and height of the open channel formed between the side walls that partition the lower pond have an appropriate channel area expansion rate. It is something.

(作用) この水力発電装置は、吸出管の出口側に開水路を設け、
この開水路の出口断面積を吸出管の出口断面積より大き
くしただけであるから、吸出管の管長を従来より長くす
る必要がなく、土木掘削量の増大を招くことがない。ま
た、吸出管の出口側に設けられた出口断面積の大きな開
水路を設けることにより、放水路の排気損失を低減させ
て水車の高効率運転が可能になる。
(Function) This hydroelectric power generation device has an open channel on the outlet side of the suction pipe,
Since the outlet cross-sectional area of this open channel is simply made larger than the outlet cross-sectional area of the suction pipe, there is no need to make the length of the suction pipe longer than before, and an increase in the amount of civil engineering excavation is not caused. Furthermore, by providing an open channel with a large outlet cross-sectional area on the outlet side of the suction pipe, exhaust loss in the tailrace channel is reduced, making it possible to operate the water turbine with high efficiency.

(実施例) 本発明に係る水力発電装置の一実施例について添付図面
を参照して説明する。
(Example) An example of a hydroelectric power generation device according to the present invention will be described with reference to the accompanying drawings.

第1図および第2図は本発明の水力発電装置としてチュ
ーブラ水車を備えた低落差大流量水力発電装置を示す側
面図および平面図であり、図中符号10は上池11から
の水車流路12を画成するケーシング外筒を示す。この
ケーシング外筒10内にはケーシング内筒13が収容さ
れ、このケーシング内筒13内に発電機器類が内蔵され
ている。
1 and 2 are a side view and a plan view showing a low head, large flow rate hydroelectric power generation device equipped with a tubular water turbine as a hydroelectric power generation device of the present invention, and the reference numeral 10 in the figures is a water turbine flow path from an upper pond 11. 12 shows a casing barrel defining 12; A casing inner cylinder 13 is accommodated within the casing outer cylinder 10, and power generation equipment is housed within the casing inner cylinder 13.

ケーシング内筒13は取付ブラケット14により支持さ
れる。
The casing inner cylinder 13 is supported by a mounting bracket 14.

ケーシング外筒10と内筒13との間には、水車流路1
2を通る水流を整流にする案内羽根15が形成され、こ
の案内羽根15に隣接して下流側に水車ランナ16が設
けられる。水車ランナ16を水流により旋回させること
により、図示しない発電機を回転駆動させるようになっ
ている。
A water turbine flow path 1 is provided between the casing outer cylinder 10 and the inner cylinder 13.
A guide vane 15 is formed to rectify the water flow passing through the guide vane 2, and a water turbine runner 16 is provided adjacent to the guide vane 15 on the downstream side. By rotating the water turbine runner 16 with the water flow, a generator (not shown) is rotationally driven.

水車ランナ16の出口側には埋設式の吸出管17が接続
され、この吸出管17を介して水車ランナ16は出口側
が下池18に連通される。吸出管17は下流側に向って
流路面積が徐々に拡大するように拡管されており、その
流路面積拡大率は適正面積拡大率となるように、経済的
に定められる。
A buried suction pipe 17 is connected to the outlet side of the water turbine runner 16, and the outlet side of the water turbine runner 16 is communicated with the lower pond 18 via this suction pipe 17. The suction pipe 17 is expanded so that the flow path area gradually increases toward the downstream side, and the flow path area expansion rate is economically determined to be an appropriate area expansion rate.

経験則によると第3図に示すように、吸出管17の片方
の側壁の拡がり角度θ1は0度から10度の範囲に設定
され、約6度程度が好ましい。
According to a rule of thumb, as shown in FIG. 3, the expansion angle θ1 of one side wall of the suction pipe 17 is set in the range of 0 degrees to 10 degrees, preferably about 6 degrees.

また、吸出管17の出口側に開水路20が設けられる。Further, an open channel 20 is provided on the outlet side of the suction pipe 17.

この開水路20は下池18内に設置され、この下池18
とは隔壁を兼ねる側壁21により仕切られ、区画されて
いる。開水路20は吸出管出口から下流側に向って徐々
に拡大され、その流路面積拡大率は経験上適正面積拡大
率となるように流路幅Wおよび流路高さHが設定される
This open channel 20 is installed in the lower pond 18, and this lower pond 18
It is partitioned and divided by a side wall 21 which also serves as a partition wall. The open channel 20 is gradually expanded from the outlet of the suction pipe toward the downstream side, and the channel width W and the channel height H are set so that the channel area expansion rate is an appropriate area expansion rate based on experience.

具体的には、開水路20を画成する側壁21の内壁面は
拡がり角度θ2が片側が流れ方向に対して0度〜10度
の範囲、好ましくは約6度程度に設定され、開水路20
の底面も例えば約6度程度の下り勾配(角度θ3)を有
するように形成される。
Specifically, the inner wall surface of the side wall 21 that defines the open channel 20 is set such that the spread angle θ2 is in the range of 0 degrees to 10 degrees, preferably about 6 degrees, relative to the flow direction on one side, and the open channel 20
The bottom surface is also formed to have a downward slope (angle θ3) of about 6 degrees, for example.

次に、低落差水力発電装置の作用を説明する。Next, the operation of the low head hydroelectric power generation device will be explained.

上池11から水車流路12に案内される水流により水車
ランナ16が旋回され、図示しない発電機が回転駆動さ
れる。水車ランナ16を旋回させた水流は吸出管17を
通り、開水路20から下池18に導かれる。
The water flow guided from the upper pond 11 to the water turbine flow path 12 rotates the water turbine runner 16, and a generator (not shown) is rotationally driven. The water flow that has rotated the water wheel runner 16 passes through the suction pipe 17 and is led to the lower pond 18 from the open channel 20.

その際、開水路20は隔壁を兼ねる側壁21で下池18
と仕切られ、しかも開水路20の流路面積は下流側に向
って徐々に拡大しており、開水路20の出口流路断面積
は吸出管出口流路断面積より大きい。このため、開水路
20内を通水は徐々に遅くなり、水流の速度水頭が低下
する。この結果、第1図に示す水面WLは開水路20内
で徐々に上昇し、開水路20の出口で下池18の水位と
一致する。開水路20の流路断面積を下流側に向って徐
々に拡大させることにより、吸出管出口の速度水頭が圧
力水頭に徐々に転換されるので、下池18に排出される
速度水頭が低減され、その結果排棄損失を低減させるこ
とができ、水車の高効率運転が可能となる。
At that time, the open channel 20 is connected to the lower pond 18 by the side wall 21 which also serves as a partition wall.
Moreover, the flow area of the open channel 20 gradually increases toward the downstream side, and the outlet cross-sectional area of the open channel 20 is larger than the outlet cross-sectional area of the suction pipe. For this reason, water passing through the open channel 20 gradually slows down, and the speed and head of the water flow decreases. As a result, the water surface WL shown in FIG. 1 gradually rises within the open channel 20 and matches the water level of the lower pond 18 at the outlet of the open channel 20. By gradually expanding the cross-sectional area of the open channel 20 toward the downstream side, the velocity head at the outlet of the suction pipe is gradually converted to a pressure head, so the velocity head discharged to the lower reservoir 18 is reduced. As a result, the waste loss can be reduced and the water turbine can be operated with high efficiency.

このように、吸出管17の出口側に隔壁により仕切られ
る開水路20を設けるだけで、水流による排棄損失を低
減させることができ、吸出管17の出口側に埋設式の第
2吸出管を設けたり、吸出管を延長させる場合に較べ、
土木作業が簡素化され、建設コストの大幅な低減を図る
ことができる。
In this way, by simply providing the open channel 20 partitioned by a partition wall on the outlet side of the suction pipe 17, the waste loss due to water flow can be reduced. Compared to installing or extending the suction pipe,
Civil engineering work is simplified and construction costs can be significantly reduced.

ちなみに、比速度n  =700 (m−kw)りラス
の水力発電プラントの場合、吸出管17の出口側に開水
路20を設けた場合の排棄損失は、約1.3%程度とな
り、開水路を設けない場合の約2.2%に較べ、1%程
度の効率を改善することができる。このときの高低落差
Hは約12m1流量Qは約190n” /see 、吸
出管出口の流速■ は約2. 3m/secであり、開
水路20の入口流路面積は9.  OX9.2td、出
口流路面積は9.85X10.9d、流路長は8.1m
である。
By the way, in the case of a hydroelectric power plant with a specific speed of n = 700 (m-kW), the discharge loss when the open channel 20 is provided on the outlet side of the suction pipe 17 is approximately 1.3%, which is approximately 1.3%. The efficiency can be improved by about 1% compared to about 2.2% when no water channel is provided. At this time, the height difference H is approximately 12 m, the flow rate Q is approximately 190 n"/see, the flow velocity at the outlet of the suction pipe is approximately 2.3 m/sec, the inlet flow area of the open channel 20 is 9. OX 9.2 td, and the outlet Channel area is 9.85x10.9d, channel length is 8.1m
It is.

第4図および第5図は本発明の水力発電装置の他の実施
例を示すものである。
FIGS. 4 and 5 show other embodiments of the hydroelectric power generation device of the present invention.

この実施例に示された水力発電装置は、吸出管17の出
口側に設けられる開水路25の流路断面形状を基本的に
異にしたもので、他の構成は一実施例で示したものと実
質的に異ならないので同じ符号を付して説明を省略する
The hydroelectric power generation device shown in this embodiment is one in which the cross-sectional shape of the open channel 25 provided on the outlet side of the suction pipe 17 is basically different, and the other configuration is the same as that shown in one embodiment. Since they are not substantially different from each other, they will be given the same reference numerals and their explanation will be omitted.

第4図および第5図に示された開水路25の流路断面積
は平行な側壁26により画成され、上流側から下流側に
向ってほぼ一定であり、異ならない。ただ、開水路25
の出口流路断面積は、吸出管17の出口流路断面積より
大きい。
The cross-sectional area of the open channel 25 shown in FIGS. 4 and 5 is defined by parallel side walls 26 and is substantially constant and does not differ from the upstream side to the downstream side. However, open channel 25
The outlet flow passage cross-sectional area of is larger than the exit flow passage cross-sectional area of the suction pipe 17.

この場合、吸出管17の出口において流路断面積が急激
に拡大するため、流れの急膨脹による損失が発生するか
、開水路25の出口断面積は吸出管17の出口断面積よ
り大きいため、水面WLが徐々に上昇して水深方向の流
速分布が変化し、開水路25の出口における流速は、吸
出管17出口の流速より減速され小さくなる。このため
、水流の速度水頭が徐々の圧力水頭に変化し、水流によ
る排臭損失は開水路25を設けない場合より小さくなり
、高効率運転が可能になる。
In this case, the cross-sectional area of the flow path rapidly expands at the outlet of the suction pipe 17, resulting in a loss due to rapid expansion of the flow, or the cross-sectional area of the outlet of the open channel 25 is larger than the cross-sectional area of the suction pipe 17. The water surface WL gradually rises and the flow velocity distribution in the water depth direction changes, and the flow velocity at the outlet of the open channel 25 is decelerated and becomes smaller than the flow velocity at the outlet of the suction pipe 17. Therefore, the speed head of the water flow gradually changes to the pressure head, and the odor loss due to the water flow is smaller than when the open channel 25 is not provided, making it possible to operate with high efficiency.

また、吸出管出口の流路幅を開水路入口の流路幅と同じ
にし、開水路を流路幅を入口側から出口側にかけてほぼ
同じになるように形成しても、開水路に案内される水流
は、水面WLが徐々に上昇して水深方向の流速分布が変
化するので、開水路の出口断面積は、吸出管の出口断面
積より大きくなって、減速効果が得られ、排臭損失の低
減を図ることができる。
Furthermore, even if the flow path width at the suction pipe outlet is made the same as the flow path width at the open channel inlet, and the open channel is formed so that the flow channel width is almost the same from the inlet side to the outlet side, the flow path will not be guided into the open channel. In the water flow, the water surface WL gradually rises and the flow velocity distribution in the water depth direction changes, so the outlet cross-sectional area of the open channel becomes larger than the outlet cross-sectional area of the suction pipe, resulting in a deceleration effect and reducing odor loss. It is possible to reduce the

なお、開水路は下池内に必ずしも設置する必要がなく、
吸出管出口と下池とを連通ずる連通路の役割を果すもの
であればよい。
Note that it is not necessary to install an open channel within the lower pond;
Any material may be used as long as it serves as a communication path that communicates the outlet of the suction pipe with the lower pond.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係る水力発電装置は、吸出
管の出口側に開水路を設け、この開水路の出口断面積を
吸出管の出口断面積より大きくしたから、水力発電プラ
ント全体損失の大部分を占めていた吸出管出口における
排気損失を低減でき、水車の高効率運転が可能となり、
発電効率を向上させることができる。
As described above, in the hydroelectric power generation device according to the present invention, an open channel is provided on the outlet side of the suction pipe, and the outlet cross-sectional area of this open channel is made larger than the outlet cross-sectional area of the suction pipe. It is possible to reduce the exhaust loss at the outlet of the suction pipe, which accounts for the majority of the loss, and enables highly efficient operation of the water turbine.
Power generation efficiency can be improved.

また、吸出管の出口側に埋設管を設置する必要がなく、
開水路を設けるだけでよいから、土木掘削量が増大せず
、土木作業を簡素化でき、経済的負担が軽減される。
In addition, there is no need to install a buried pipe on the outlet side of the suction pipe.
Since it is only necessary to provide an open channel, the amount of civil engineering excavation does not increase, the civil engineering work can be simplified, and the economic burden is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水力発電装置の一実施例を示す概
略側断面図、第2図は第1図の水力発電装置の平断面図
、第3図は本発明に係る水力発電装置の他の実施例を示
す概略側断面図、第4図は第3図の平断面図、第5図お
よび第6図は従来の低落差水力発電装置を示す側断面図
および平断面図、第7図は吸出管出口部における速度分
布を概略的に示す側断面図である。 10・・・ケーシング外筒、11・・・上池、12・・
・水車流路、13・・・ケーシング内筒、15・・・案
内羽根、16・・・水平ランナ、17・・・吸出管、1
8・・・下池、20.25・・・開水路、21.26・
・・側壁(隔壁)。 第1図 1
FIG. 1 is a schematic side sectional view showing an embodiment of the hydroelectric power generation device according to the present invention, FIG. 2 is a plan sectional view of the hydroelectric power generation device of FIG. 1, and FIG. FIG. 4 is a schematic side sectional view showing another embodiment; FIG. 4 is a plan sectional view of FIG. 3; FIGS. The figure is a side sectional view schematically showing the velocity distribution at the outlet of the suction pipe. 10... Casing outer cylinder, 11... Upper pond, 12...
- Water turbine flow path, 13... Casing inner cylinder, 15... Guide vane, 16... Horizontal runner, 17... Suction pipe, 1
8... Lower pond, 20.25... Open channel, 21.26.
・・Side wall (partition wall). Figure 1 1

Claims (1)

【特許請求の範囲】 1、水車ランナの出口を吸出管を介して下池に連通させ
、上記吸出管の断面積を下流側に向って拡大させた水力
発電装置において、前記吸出管の出口側に開水路を設け
、この開水路の出口断面積を前記吸出管の出口断面積よ
り大きくしたことを特徴とする水力発電装置。 2、開水路は吸出管出口側の下池内に設けられ、隔壁を
兼ねる側壁により下池とは仕切られる一方、開水路は吸
出管出口から下流側に向って流路面積を徐々に拡大させ
た請求項1に記載の水力発電装置。 3、開水路は、下池を仕切る側壁間に形成される流路幅
や流路高さが適正流路面積拡大率となるように、下流側
に向って徐々に拡大された請求項1に記載の水力発電装
置。
[Scope of Claims] 1. In a hydroelectric power generation device in which the outlet of a water turbine runner is communicated with a lower pond via a suction pipe, and the cross-sectional area of the suction pipe is expanded toward the downstream side, the outlet side of the suction pipe is A hydroelectric power generation device characterized in that an open channel is provided, and the outlet cross-sectional area of the open channel is larger than the outlet cross-sectional area of the suction pipe. 2. A claim in which the open channel is provided in the lower reservoir on the outlet side of the suction pipe, and is separated from the lower reservoir by a side wall that also serves as a partition, while the open channel gradually expands in area from the outlet of the suction pipe toward the downstream side. Item 1. Hydroelectric power generation device according to item 1. 3. The open channel according to claim 1, wherein the open channel is gradually expanded toward the downstream side so that the channel width and channel height formed between the side walls that partition the lower pond have an appropriate channel area expansion rate. hydroelectric power plant.
JP1197977A 1989-08-01 1989-08-01 Hydroelectric generator Expired - Fee Related JP2592959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197977A JP2592959B2 (en) 1989-08-01 1989-08-01 Hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197977A JP2592959B2 (en) 1989-08-01 1989-08-01 Hydroelectric generator

Publications (2)

Publication Number Publication Date
JPH0363311A true JPH0363311A (en) 1991-03-19
JP2592959B2 JP2592959B2 (en) 1997-03-19

Family

ID=16383466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197977A Expired - Fee Related JP2592959B2 (en) 1989-08-01 1989-08-01 Hydroelectric generator

Country Status (1)

Country Link
JP (1) JP2592959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110247A (en) * 2020-01-06 2021-08-02 株式会社東芝 Diffuser for axial-flow water turbine power generation apparatus and axial-flow water turbine power generation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235703B1 (en) * 2011-10-27 2013-02-21 해전산업 주식회사 Hydroelectric power system waterway formation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110247A (en) * 2020-01-06 2021-08-02 株式会社東芝 Diffuser for axial-flow water turbine power generation apparatus and axial-flow water turbine power generation apparatus

Also Published As

Publication number Publication date
JP2592959B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
CA2584362C (en) Kinetic hydropower generation from slow-moving water flows
US5377485A (en) Electric power conversion system
CA1179238A (en) Hydropower turbine system
US4279539A (en) Dam with transformable hydroenergetic arrangement
TW201804074A (en) Low-water-head and high-flow river drainage turbine comprising a water guide seat, a water wheel and a gate sheet, capable of achieving simple structure and easy installation suitable for being directly arranged in a river
JP2015520329A (en) Device for converting energy from fluid flow
CN105484930A (en) Resistance-type water turbine and resistance-type hydroelectric generation system
CN107237718A (en) A kind of multi-stage impeller tumbler for absorbing tide energy
US4073146A (en) Submersible diffuser
CN109441691B (en) Mixed-flow water turbine with tail water pipe and rectifying plate
CA2278707C (en) Helical penstock
JPH0363311A (en) Hydroelectric power-generating device
US1681711A (en) Hydbatilic powee system
KR20200002084A (en) The non-power eletric pumping water and small hydropower system
EP1421277B1 (en) Hydroelectric plant
CN209340154U (en) A kind of energy-saving water pumping device
CN108412668B (en) Double-duct water turbine power generation system
US1530569A (en) Hydraulic pump
JP2019183825A (en) Water turbine device for small-sized hydraulic power generation
KR102164029B1 (en) Caterpillar type roter and small hydraulic device including the same
JP3171321U (en) Hydroelectric generator
JPH0526147A (en) Low head hydraulic power generation device
CN202851242U (en) Rotational flow type water-gas combined wave energy power generation device
JP2003232273A (en) Siphon type hydraulic power generation facility
GB2345731A (en) Hydroelectric power generation plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees