JP2592959B2 - Hydroelectric generator - Google Patents

Hydroelectric generator

Info

Publication number
JP2592959B2
JP2592959B2 JP1197977A JP19797789A JP2592959B2 JP 2592959 B2 JP2592959 B2 JP 2592959B2 JP 1197977 A JP1197977 A JP 1197977A JP 19797789 A JP19797789 A JP 19797789A JP 2592959 B2 JP2592959 B2 JP 2592959B2
Authority
JP
Japan
Prior art keywords
suction pipe
outlet
open channel
channel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1197977A
Other languages
Japanese (ja)
Other versions
JPH0363311A (en
Inventor
正晴 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1197977A priority Critical patent/JP2592959B2/en
Publication of JPH0363311A publication Critical patent/JPH0363311A/en
Application granted granted Critical
Publication of JP2592959B2 publication Critical patent/JP2592959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、適用高低落差が小さな水力発電装置に係
り、特にチューブラ水車等のバルブ水車を用いた低落差
大流量の水力発電装置に関する。
Description: Object of the Invention (Industrial application field) The present invention relates to a hydraulic power generator having a small applied height drop, and in particular, a low-drop large-flow hydraulic power using a valve turbine such as a tubular turbine. It relates to a power generator.

(従来の技術) 低落差大流量の水力発電装置に用いられるバルブ水車
では、水車ランナの出口に吸出管が設けられるが、この
吸出管出口での排棄速度水頭損失(以下、排棄損失とい
う)が水力発電プラント全体の損失のかなりの部分を占
めており、発電効率が低下する原因になっている。
(Description of the Related Art) In a valve turbine used for a hydraulic power generator having a low head and a large flow rate, a suction pipe is provided at an outlet of a turbine runner. A drainage head loss at the outlet of the suction pipe (hereinafter referred to as a drainage loss). ) Account for a significant portion of the total loss of the hydropower plant, causing a decrease in power generation efficiency.

低落差水力発電プラントは同一電力の高落差発電プラ
ントと比較するとバルブ水車の寸法が相対的に大きくな
り、バルブ水車が大型化するため、経済的負担が大きく
なる。このため、低落差水力発電装置では、バルブ水車
の製造コストや低減や水車据付けのための土木堀削量を
低減させることが重要となっている。
Compared with a high head power plant of the same power, a low head hydro power plant has a relatively large valve turbine size, and the valve turbine becomes larger, resulting in an increased economic burden. For this reason, it is important for the low-drop hydroelectric generator to reduce the manufacturing cost and the amount of civil engineering excavation for installing the turbine and the turbine.

第5図および第6図は従来の低落差大流量水力発電装
置の概略構成を示している。この水力発電装置にはバル
ブ水車としてチューブラ水車が採用される。チューブラ
水車は発電機器類がケーシング内筒1内に収容される。
ケーシング内筒1は上池2からの水車流路を構成するケ
ーシング外筒3内に収容される。ケーシング外筒3と内
筒1との間の水車流路には水流を整流させる案内羽根4
が設けられ、この案内羽根4の下流側に水車ランナ5が
取付けられ、この水車ランナ5を水流により旋回させる
ようになっている。水車ランナ5の出口側には水流を下
池6に導く埋設式の吸出管7が接続される。
5 and 6 show a schematic configuration of a conventional low-drop large-flow hydroelectric power generator. A tubular turbine is adopted as a valve turbine in this hydroelectric power generator. In the tubular turbine, power generation equipment is housed in the casing inner cylinder 1.
The casing inner cylinder 1 is accommodated in a casing outer cylinder 3 which forms a water turbine flow path from the upper pond 2. A guide vane 4 for rectifying a water flow is provided in a water turbine flow path between the casing outer cylinder 3 and the inner cylinder 1.
The turbine runner 5 is attached to the downstream side of the guide blade 4 so that the turbine runner 5 is turned by the water flow. A buried suction pipe 7 for guiding the water flow to the lower pond 6 is connected to the outlet side of the water turbine runner 5.

この水力発電装置は、上池2に貯められた水をケーシ
ング外筒3と内筒1との間の水車流路を通って案内羽根
4に導かれ、水車ランナ5を旋回させ、回転駆動させ
る。水車ランナ5を旋回させた水流は吸出管7を通り下
池6に排出される。
In this hydraulic power generation device, water stored in the upper pond 2 is guided to the guide blades 4 through a water turbine flow path between the casing outer cylinder 3 and the inner cylinder 1, and the water turbine runner 5 is rotated and driven to rotate. . The water flow that has swirled the water wheel runner 5 is discharged to the lower pond 6 through the suction pipe 7.

この場合、水力発電装置の発電効率を向上させるため
に、吸出管7出口での水流の速度水頭を可能な限り小さ
くして、吸出管7からの排棄損失を低減させることが望
ましい。吸出管7出口での水流の流速veは第7図に示す
ように表わされ、この水流の速度エネルギが排棄損失と
なる。比速度ns=700(m−kw)クラスの水力発電プラ
ントでは、排棄損失は概略計算で2〜2.5%、比速度ns
=1000(m−kw)クラスでは3.5〜4%に達する。
In this case, in order to improve the power generation efficiency of the hydraulic power generator, it is desirable to reduce the drainage loss from the suction pipe 7 by minimizing the velocity head of the water flow at the outlet of the suction pipe 7 as much as possible. The flow velocity v e of the water flow at the outlet of the suction pipe 7 is represented as shown in FIG. 7, and the velocity energy of this water flow is a waste loss. In a hydropower plant of the specific speed n s = 700 (m-kw) class, the waste loss is roughly calculated to be 2 to 2.5%, and the specific speed n s
In the 1000 (m-kw) class, it reaches 3.5-4%.

(発明が解決しようとする課題) 従来の水力発電装置において、吸出管7出口での排棄
損失を低減させるために、吸出管7の出口面積を大きく
することが考えられている。しかしながら、土木堀削量
を抑えるために、吸出管7の管長Lを変えないで、吸出
管7の出口面積を大きくすると、吸出管7の流路面積拡
大率が適正拡大率よりも大きくなり、吸出管7内での拡
流による損失が大きくなる。また、吸出管7の流路面積
拡大率を適正に保って吸管出口面積を大きくすると、埋
設式の吸出管7の管長Lが長くなり、土木堀削量が増大
し、経済的負担が増大する。
(Problems to be Solved by the Invention) In the conventional hydroelectric power generator, it has been considered to increase the outlet area of the suction pipe 7 in order to reduce the waste loss at the outlet of the suction pipe 7. However, if the outlet area of the suction pipe 7 is increased without changing the pipe length L of the suction pipe 7 in order to suppress the amount of civil engineering excavation, the flow path area expansion rate of the suction pipe 7 becomes larger than the appropriate expansion rate, The loss due to the expansion in the suction pipe 7 increases. In addition, when the flow passage area expansion rate of the suction pipe 7 is appropriately maintained and the suction pipe outlet area is increased, the pipe length L of the buried suction pipe 7 is increased, the amount of civil engineering excavation is increased, and the economic burden is increased. .

従来の低落差大流量水力発電装置において、土木堀削
量の増大を生じさせることなく、吸出管出口での排棄損
失を低減して発電効率を向上させ、高効率運転をされる
ために、水力発電装置を如何に構成したらよいか問題に
なっていた。
In conventional low-drop large-flow hydropower generators, to reduce the waste loss at the outlet of the suction pipe and improve the power generation efficiency without causing an increase in the amount of civil engineering excavation, The question was how to construct a hydroelectric generator.

本発明は、上述した事情を考慮してなされたもので、
土木堀削量の著しい増大を招くことなく、排棄損失を低
減させることができ、高効率運転が可能な水力発電装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a hydroelectric power generator capable of reducing waste loss without causing a significant increase in the amount of civil engineering excavation and capable of operating with high efficiency.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明に係る水力発電装置は、上述した課題を解決す
るために、水車ランナの出口を吸出管を介して下池に連
通させ、上記吸出管の断面積を下流側に向って拡大させ
た水力発電装置において、前記吸出管の出口側に開水路
を設け、この開水路の出口断面積を前記吸出管の出口断
面積より大きくしたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, a hydraulic power generator according to the present invention has an outlet of a water turbine runner communicated with a lower pond via a suction pipe, and has a cross-sectional area of the suction pipe downstream. In the hydraulic power generation device enlarged toward the side, an open channel is provided on an outlet side of the suction pipe, and an outlet cross-sectional area of the open channel is larger than an outlet cross-sectional area of the suction pipe.

また、従来技術が有する課題を解決するために、本発
明の水力発電装置は、開水路を吸出管出口側の下池内に
設けて、隔壁を兼ねる側壁により下池と仕切る一方、開
水路は吸出管出口から下流側に向って流路面積を徐々に
拡大させたものである。
Further, in order to solve the problems of the prior art, the hydroelectric generator of the present invention provides an open channel in the lower pond on the outlet side of the suction pipe, and separates the lower channel from the lower pond by a side wall which also serves as a partition, while the open channel is connected to the The flow passage area is gradually enlarged from the outlet toward the downstream side.

さらに、この水力発電装置は、下池を仕切る側壁間に
形成される開水路の流路幅や流路高さが適正流路面積拡
大率となるように、下流側に向って徐々に拡大させたも
のである。
Furthermore, in this hydroelectric power generation device, the flow channel width and the flow channel height of the open channel formed between the side walls partitioning the lower pond are gradually expanded toward the downstream side so as to have an appropriate flow channel area expansion rate. Things.

(作用) この水力発電装置は、吸出管の出口側に開水路を設
け、この開水路の出口断面積を吸出管の出口断面積より
大きくしただけであるから、吸出管の管長を従来より長
くする必要がなく、土木堀削量の増大を招くことがな
い。また、吸出管の出口側に設けられた出口断面積の大
きな開水路を設けることにより、放水路の排気損失を低
減させて水車の高効率運転が可能になる。
(Operation) In this hydroelectric power generator, an open channel is provided on the outlet side of the suction pipe, and the outlet cross-sectional area of the open channel is simply made larger than the outlet cross-sectional area of the suction pipe. It is not necessary to perform the work, and the amount of civil engineering excavation is not increased. In addition, by providing an open channel with a large outlet cross-sectional area provided on the outlet side of the suction pipe, the exhaust loss of the water discharge channel can be reduced and the water turbine can be operated with high efficiency.

(実施例) 本発明に係る水力発電装置の一実施例について添付図
面を参照して説明する。
(Example) One example of a hydroelectric power generator according to the present invention will be described with reference to the accompanying drawings.

第1図および第2図は本発明の水力発電装置としてチ
ューブラ水車を備えた低落差大流量水力発電装置を示す
断面図および平面図であり、図中符号10は上池11からの
水車流路12を画成するケーシング外筒を示す。このケー
シング外筒10内にはケーシング内筒13が収容され、この
ケーシング内筒13内に発電機器類が内蔵されている。ケ
ーシングン内筒13は取付ブラケット14により支持され
る。
FIGS. 1 and 2 are a sectional view and a plan view, respectively, showing a low-drop large-flow hydroelectric power generator equipped with a tubular turbine as a hydroelectric power generator according to the present invention. 12 shows a casing outer cylinder defining 12. A casing inner cylinder 13 is accommodated in the casing outer cylinder 10, and power generation devices and the like are built in the casing inner cylinder 13. The casing inner cylinder 13 is supported by a mounting bracket 14.

ケーシング外筒10と内筒13との間には、水車流路12を
通る水流を整流にする案内羽根15が形成され、この案内
羽根15に隣接して下流側に水車ランナ16が設けられる。
水車ランナ16を水流により旋回させることにより、図示
しない発電機を回転駆動させるようになっている。
Guide vanes 15 are formed between the casing outer cylinder 10 and the inner cylinder 13 to rectify the water flow passing through the water turbine channel 12, and a turbine runner 16 is provided adjacent to and downstream of the guide vanes 15.
By turning the water wheel runner 16 by the water flow, a generator (not shown) is rotationally driven.

水車ランナ16の出口側には埋設式の吸出管17が接続さ
れ、この吸出管17を介して水車ランナ16は出口側が下池
18に連通される。吸出管17は下流側に向って流路面積が
徐々に拡大するように拡管されており、その流路面積拡
大率は適正面積拡大率となるように、経済的に定められ
る。経験則によると第3図に示すように、吸出管17の片
方の側壁の拡がり角度θは0度から10度の範囲に設定
され、約6度程度が好ましい。
A buried suction pipe 17 is connected to the exit side of the turbine runner 16, and the exit side of the turbine runner 16 is connected to the lower pond through the suction pipe 17.
Communicated with 18. The suction pipe 17 is expanded such that the flow path area gradually increases toward the downstream side, and the flow path area expansion rate is economically determined so as to be an appropriate area expansion rate. A rule of thumb, as shown in FIG. 3, one of the spreading angle theta 1 of the side walls of the draft tube 17 is set in a range of 0 degree to 10 degrees, about 6 degrees is preferred.

また、吸出管17の出口側に開水路20が設けられる。こ
の開水路20は下池18内に設置され、この下池18とは隔壁
を兼ねる側壁21により仕切られ、区画されている。開水
路20は吸出管出口から下流側に向って徐々に拡大され、
その流路面積拡大率は経験上適正面積拡大率となるよう
に流路幅Wおよび流路高さHが設定される。
Further, an open channel 20 is provided on the outlet side of the suction pipe 17. The open channel 20 is installed in the lower pond 18 and is separated from the lower pond 18 by a side wall 21 also serving as a partition. The open channel 20 is gradually expanded from the suction pipe outlet to the downstream side,
The flow path width W and the flow path height H are set so that the flow path area expansion rate becomes an appropriate area expansion rate based on experience.

具体的には、開水路20を画成する側壁21の内壁面は拡
がり角度θが片側が流れ方向に対して0度〜10度の範
囲、好ましくは約6度程度に設定され、開水路20の底面
も例えば約6度程度の下り勾配(角度θ)を有するよ
うに形成される。
Specifically, the inner wall surface spreading angle theta 2 in the range of 0 to 10 degrees with respect to the flow direction side of the sidewall 21 defining the open channel 20, is preferably set to about 6 degrees, open channel The bottom surface of 20 is also formed to have a downward slope (angle θ 3 ) of about 6 degrees, for example.

次に、低落差水力発電装置の作用を説明する。 Next, the operation of the low head hydroelectric generator will be described.

上池11から水車流路12に案内される水流により水車ラ
ンナ16が旋回され、図示しない発電機が回転駆動され
る。水車ランナ16を旋回させた水流は吸出管17を通り、
開水路20から下池18に導かれる。
The water turbine runner 16 is turned by the water flow guided from the upper pond 11 to the water turbine channel 12, and a generator (not shown) is rotationally driven. The water flow that swirled the water turbine runner 16 passed through the suction pipe 17,
It is led to the lower pond 18 from the open channel 20.

その際、開水路20は隔壁を兼ねる側壁21で下池18と仕
切られ、しかも開水路20の流路面積は下流側に向って徐
々に拡大しており、開水路20の出口流路断面積は吸出管
出口流路断面積より大きい。このため、開水路20内を通
水は徐々に遅くなり、水流の速度水頭が低下する。この
結果、第1図に示す水面WLは開水路20内で徐々に上昇
し、開水路20の出口で下池18の水位と一致する。開水路
20の流路断面積を下流側に向って徐々に拡大させること
により、吸出管出口の速度水頭が圧力水頭に徐々に転換
されるので、下池18に排出される速度水頭が低減され、
その結果排棄損失を低減させることができ、水車の高効
率運転が可能となる。
At this time, the open channel 20 is separated from the lower pond 18 by a side wall 21 also serving as a partition, and the flow area of the open channel 20 gradually increases toward the downstream side, and the cross-sectional area of the outlet flow channel of the open channel 20 is reduced. It is larger than the suction pipe outlet flow path cross-sectional area. Therefore, the flow of water through the open channel 20 gradually decreases, and the velocity head of the water flow decreases. As a result, the water surface WL shown in FIG. 1 gradually rises in the open channel 20 and coincides with the water level of the lower pond 18 at the exit of the open channel 20. Open channel
By gradually expanding the cross-sectional area of the flow path 20 toward the downstream side, the velocity head at the outlet of the suction pipe is gradually converted to the pressure head, so that the velocity head discharged to the lower pond 18 is reduced,
As a result, the waste loss can be reduced, and the water turbine can be operated with high efficiency.

このように、吸出管17の出口側に隔壁により仕切られ
る開水路20を設けるだけで、水流による排棄損失を低減
させることができ、吸出管17の出口側に埋設式の第2吸
出管を設けたり、吸出管を延長させる場合に較べ、土木
作業が簡素化され、建設コストの大幅な低減を図ること
ができる。
In this way, the drainage loss due to the water flow can be reduced only by providing the open water passage 20 partitioned by the partition at the outlet side of the suction pipe 17, and the buried type second suction pipe is provided at the outlet side of the suction pipe 17. Compared with the case of providing or extending the suction pipe, the civil engineering work is simplified, and the construction cost can be significantly reduced.

ちなみに、比速度ns=700(m−kw)クラスの水力発
電プラントの場合、吸出管17の出口側に開水路20を設け
た場合の排棄損失は、約1.3%程度となり、開水路を設
けない場合の約2.2%に較べ、1%程度の効率を改善す
ることができる。このときの高低落差Hは約12m、流量
Qは約190m3/sec、吸出管出口の流速Veは約2.3m/secで
あり、開水路20の入口流路面積は9.0×9.2m2、出口流路
面積は9.85×10.9m2、流路流は8.1mである。
Incidentally, in the case of a hydroelectric power plant of the specific speed n s = 700 (m-kw) class, the discharge loss when the open channel 20 is provided on the outlet side of the suction pipe 17 is about 1.3%, and the open channel is Efficiency can be improved by about 1% compared to about 2.2% when not provided. At this time, the height drop H is about 12 m, the flow rate Q is about 190 m 3 / sec, the flow velocity V e at the outlet of the suction pipe is about 2.3 m / sec, the inlet flow passage area of the open channel 20 is 9.0 × 9.2 m 2 , The outlet channel area is 9.85 × 10.9 m 2 , and the channel flow is 8.1 m.

第4図および第5図は本発明の水力発電装置の他の実
施例を示すものである。
FIG. 4 and FIG. 5 show another embodiment of the hydroelectric generator of the present invention.

この実施例に示された水力発電装置は、吸出管17の出
口側に設けられる開水路25の流路断面形状を基本的に異
にしたもので、他の構成は一実施例で示したものと実質
的に異ならないので同じ符号を付して説明を省略する。
The hydraulic power generating apparatus shown in this embodiment is basically the same as the one shown in the embodiment except that the cross-sectional shape of the open channel 25 provided on the outlet side of the suction pipe 17 is basically different. Since they are not substantially different from those of the first embodiment, the same reference numerals are given and the description is omitted.

第4図および第5図に示された開水路25の流路断面積
は平行な側壁26により画成され、上流側から下流側に向
ってほぼ一定であり、異ならない。ただ、開水路25の出
口流路断面積は、吸出管17の出口流路断面積より大き
い。
The cross-sectional area of the open channel 25 shown in FIGS. 4 and 5 is defined by parallel side walls 26, and is substantially constant from the upstream side to the downstream side and does not differ. However, the outlet flow path cross-sectional area of the open channel 25 is larger than the outlet flow path cross-sectional area of the suction pipe 17.

この場合、吸出管17の出口において流路断面積が急激
に拡大するため、流れの急膨脹による損失が発生する
か、開水路25の出口断面積は吸出管17の出口断面積より
大きいため、水面WLが徐々に上昇して水深方向の流速分
布が変化し、開水路25の出口における流速は、吸出管17
出口の流速より減速され小さくなる。このため、水流の
速度水頭が徐々に圧力水頭に変化し、水流による排棄損
失は開水路25を設けない場合より小さくなり、高効率運
転が可能になる。
In this case, since the cross-sectional area of the flow channel rapidly increases at the outlet of the suction pipe 17, a loss due to rapid expansion of the flow occurs, or the outlet cross-sectional area of the open channel 25 is larger than the outlet cross-sectional area of the suction pipe 17, The water surface WL gradually rises and the flow velocity distribution in the depth direction changes, and the flow velocity at the outlet of the open channel 25 is changed by the suction pipe 17.
It is slowed down and smaller than the flow velocity at the outlet. For this reason, the velocity head of the water flow gradually changes to the pressure head, and the waste loss due to the water flow becomes smaller than in the case where the open water channel 25 is not provided, and high-efficiency operation becomes possible.

また、吸出管出口の流路幅を開水路入口の流路幅と同
じにし、開水路を流路幅を入口側から出口側にかけてほ
ぼ同じになるように形成しても、開水路に案内される水
流は、水面WLが徐々に上昇して水深方向の流速分布が変
化するので、開水路の出口断面積は、吸出管の出口断面
積より大きくなって、減速効果が得られ、排棄損失の低
減を図ることができる。
Further, even if the flow passage width at the outlet of the suction pipe is made the same as the flow passage width at the entrance of the open water passage, and the open water passage is formed so that the width of the flow passage becomes substantially the same from the inlet side to the outlet side, it is guided by the open water passage. As the water surface WL rises gradually and the flow velocity distribution in the depth direction changes, the cross-sectional area of the outlet of the open channel becomes larger than the cross-sectional area of the outlet of the suction pipe. Can be reduced.

なお、開水路は下池内に必ずしも設置する必要がな
く、吸出管出口と下池とを連通する連通路の役割を果す
ものであればよい。
The open channel need not necessarily be provided in the lower pond, and may be any as long as it functions as a communication path that connects the outlet of the suction pipe and the lower pond.

〔発明の効果〕〔The invention's effect〕

以上に述べたように本発明に係る水力発電装置は、吸
出管の出口側に開水路を設け、この開水路の出口断面積
を吸出管の出口断面積より大きくしたから、水力発電プ
ラント全体損失の大部分を占めていた吸出管出口におけ
る排気損失を低減でき、水車の高効率運転が可能とな
り、発電効率を向上させることができる。
As described above, the hydraulic power plant according to the present invention has the open channel on the outlet side of the suction pipe, and the outlet cross-sectional area of this open channel is larger than the outlet cross-sectional area of the suction pipe. The exhaust loss at the outlet of the suction pipe, which occupies most of the water, can be reduced, the water turbine can be operated with high efficiency, and the power generation efficiency can be improved.

また、吸出管の出口側に埋設管を設置する必要がな
く、開水路を設けるだけでよいから、土木堀削量が増大
せず、土木作業を簡素化でき、経済的負担が軽減され
る。
Further, since it is not necessary to install a buried pipe on the outlet side of the suction pipe and only to provide an open channel, the amount of civil engineering excavation does not increase, the civil engineering work can be simplified, and the economic burden is reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る水力発電装置の一実施例を示す概
略側断面図、第2図は第1図の水力発電装置の平断面
図、第3図は本発明に係る水力発電装置の他の実施例を
示す概略側断面図、第4図は第3図の平断面図、第5図
および第6図は従来の低落差水力発電装置を示す側断面
図および平断面図、第7図は吸出管出口部における速度
分布を概略的に示す側断面図である。 10……ケーシング外筒、11……上池、12……水車流路、
13……ケーシング内筒、15……案内羽根、16……水平ラ
ンナ、17……吸出管、18……下池、20,25……開水路、2
1,26……側壁(隔壁)。
FIG. 1 is a schematic side sectional view showing an embodiment of a hydroelectric generator according to the present invention, FIG. 2 is a plan sectional view of the hydroelectric generator of FIG. 1, and FIG. FIG. 4 is a cross-sectional plan view of FIG. 3, FIG. 5 and FIG. 6 are cross-sectional side views and a plan cross-sectional view of a conventional low-drop hydroelectric power generator, and FIG. The figure is a side sectional view schematically showing the velocity distribution at the outlet of the suction pipe. 10 ... Casing outer cylinder, 11 ... Kamiike, 12 ... Turbine channel,
13 ... Casing inner cylinder, 15 ... Guide vane, 16 ... Horizontal runner, 17 ... Suction pipe, 18 ... Shimoike, 20, 25 ... Open channel, 2
1,26 ... side wall (partition).

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水車ランナの出口を吸出管を介して下池に
連通させ、上記吸出管の断面積を下流側に向って拡大さ
せた水力発電装置において、前記吸出管の出口側に開水
路を設け、この開水路の出口断面積を前記吸出管の出口
断面積より大きくしたことを特徴とする水力発電装置。
1. A hydraulic power plant in which an outlet of a water turbine runner communicates with a lower pond via a suction pipe, and a cross-sectional area of the suction pipe is enlarged toward a downstream side, wherein an open channel is provided at an outlet side of the suction pipe. A hydraulic power generator, wherein an outlet cross-sectional area of the open channel is larger than an outlet cross-sectional area of the suction pipe.
【請求項2】開水路は吸出管出口側の下池内に設けら
れ、隔壁を兼ねる側壁により下池とは仕切られる一方、
開水路は吸出管出口から下流側に向って流路面積を徐々
に拡大させた請求項1に記載の水力発電装置。
An open channel is provided in the lower pond on the outlet side of the suction pipe, and is separated from the lower pond by a side wall also serving as a partition.
The hydraulic power generator according to claim 1, wherein the open channel has a flow passage area gradually increased from the suction pipe outlet toward the downstream side.
【請求項3】開水路は、下池を仕切る側壁間に形成され
る流路幅や流路高さが適正流路面積拡大率となるよう
に、下流側に向って徐々に拡大された請求項1に記載の
水力発電装置。
3. The open channel is gradually enlarged toward the downstream side such that a channel width and a channel height formed between side walls partitioning the lower pond have an appropriate channel area expansion rate. 2. The hydroelectric power generator according to 1.
JP1197977A 1989-08-01 1989-08-01 Hydroelectric generator Expired - Fee Related JP2592959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197977A JP2592959B2 (en) 1989-08-01 1989-08-01 Hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197977A JP2592959B2 (en) 1989-08-01 1989-08-01 Hydroelectric generator

Publications (2)

Publication Number Publication Date
JPH0363311A JPH0363311A (en) 1991-03-19
JP2592959B2 true JP2592959B2 (en) 1997-03-19

Family

ID=16383466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197977A Expired - Fee Related JP2592959B2 (en) 1989-08-01 1989-08-01 Hydroelectric generator

Country Status (1)

Country Link
JP (1) JP2592959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235703B1 (en) * 2011-10-27 2013-02-21 해전산업 주식회사 Hydroelectric power system waterway formation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280839B2 (en) * 2020-01-06 2023-05-24 株式会社東芝 Axial turbine generator set diffuser and axial turbine generator set

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235703B1 (en) * 2011-10-27 2013-02-21 해전산업 주식회사 Hydroelectric power system waterway formation system

Also Published As

Publication number Publication date
JPH0363311A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
CA2584362C (en) Kinetic hydropower generation from slow-moving water flows
US5377485A (en) Electric power conversion system
US4279539A (en) Dam with transformable hydroenergetic arrangement
US5780935A (en) Hydropowered turbine system
US8196396B1 (en) Compact design of using instream river flow and/or pump discharge flow technology added to differentials between head water and turbine location
JP2008180130A (en) Axial flow water turbine and its operation method
JP2592959B2 (en) Hydroelectric generator
WO2000036297A1 (en) Hydropowered turbine system
NZ528566A (en) A system for generating power
EP0526470B1 (en) Hydro-electric power conversion system
KR20200002084A (en) The non-power eletric pumping water and small hydropower system
JP2000336635A (en) Jet type hydraulic turbine for pressure line and power generating method using the turbine
JPH05126026A (en) Small head hydraulic power generation method utilizing downstream flow velocity
US20060067819A1 (en) Device and method for conversion of continuous medium flow energy
KR102164029B1 (en) Caterpillar type roter and small hydraulic device including the same
JP4863228B2 (en) Hydroelectric generator
JPS59136579A (en) Irrigation canal installing type hydraulic power plant
JPH0633866A (en) Small-sized pit bulb turbine
JPH0526147A (en) Low head hydraulic power generation device
JPS6477762A (en) Geothermal hydroelectric power generation
US8461712B1 (en) Power generating system
KR200240303Y1 (en) Wind turbine
JP2003232273A (en) Siphon type hydraulic power generation facility
RU2064080C1 (en) Method of and device for converuing fluid medium flow energy
JP2004027850A (en) Medium/small scale hydroelectric system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees