JPH0363245A - Industrial production of aqueous solution of glyoxylic acid - Google Patents

Industrial production of aqueous solution of glyoxylic acid

Info

Publication number
JPH0363245A
JPH0363245A JP1169710A JP16971089A JPH0363245A JP H0363245 A JPH0363245 A JP H0363245A JP 1169710 A JP1169710 A JP 1169710A JP 16971089 A JP16971089 A JP 16971089A JP H0363245 A JPH0363245 A JP H0363245A
Authority
JP
Japan
Prior art keywords
glyoxal
aqueous solution
acid
glyoxylic acid
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1169710A
Other languages
Japanese (ja)
Other versions
JP2761761B2 (en
Inventor
Alain Schouteeten
アラン・シユテータン
Yani Christidis
ヤン・クリステイデイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis France
Original Assignee
Francaise Hoechst Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francaise Hoechst Ste filed Critical Francaise Hoechst Ste
Publication of JPH0363245A publication Critical patent/JPH0363245A/en
Application granted granted Critical
Publication of JP2761761B2 publication Critical patent/JP2761761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/27Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with oxides of nitrogen or nitrogen-containing mineral acids

Abstract

Preparation of glyoxylic acid, carried out by oxidising an aqueous solution of glyoxal which has a pH lower than 1 with molecular oxygen in the presence of nitrous oxide as catalyst. <??>This process allows the initial glyoxal to be converted practically quantitatively into glyoxylic acid in a good yield.

Description

【発明の詳細な説明】 本発明は工業的にグリオキシル酸の水性溶液を得るため
の新規な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new process for industrially obtaining aqueous solutions of glyoxylic acid.

強酸例えば塩酸、又はしゆう酸又は可溶性コバルト塩又
は最後に分子状酸素の存在下に、硝酸によってグリオキ
サールの水性溶液をグリオキシル酸の水性溶液に酸化す
ることは知られている(アンチ−レフ195フ年102
巻28頁:フランス特許第1326605号、第237
2141号及び第2516506号;ドイツ特許第93
2369号、第933987号、第1002309号及
び第3132006号、特開昭48−103517号、
51−29441号、51−80821号、52−10
5121号及び55−129440号参照)。
It is known to oxidize an aqueous solution of glyoxal to an aqueous solution of glyoxylic acid by nitric acid in the presence of strong acids such as hydrochloric acid, or oxalic acid or soluble cobalt salts or finally molecular oxygen (Anti-Ref 195). Year 102
Volume 28: French Patent No. 1326605, No. 237
2141 and 2516506; German Patent No. 93
No. 2369, No. 933987, No. 1002309 and No. 3132006, JP-A-48-103517,
51-29441, 51-80821, 52-10
5121 and 55-129440).

これらの方法はグリオキサール及び未変化硝酸を別jこ
して5比較的大量のしゆう酸を含有するグリオキシル酸
の水性溶液を生威し、それらは大量の酸化窒素を放出す
る、これらは大気中への放出を防ぐため高価な吸収装置
を必要とする。
These methods separate glyoxal and unchanged nitric acid and produce aqueous solutions of glyoxylic acid containing relatively large amounts of oxalic acid, which release large amounts of nitrogen oxides, which are released into the atmosphere. Requires expensive absorption equipment to prevent release of

水性グリオキシル酸溶液中でのグリオキサール及び硝酸
の存在は、それらのグリオキシル酸との反応性のため特
に邪魔なものであり、従ってそれらの除去を迅速に行い
、グリオキシル酸に対してモル割合で2%未満にグリオ
キサールの残存濃度を得るような方法で又グリオキシル
酸に対してモル割合で0.05%未満に硝酸の残存濃度
を得るような方法で実施しなければならない。グリオキ
シル酸の水性溶液からのグリオキサールの除去は特にデ
リケートで費用のかかるものである、何故ならこれら二
つの生成物は少なくとも一つのアルデヒド機能を有する
からである。
The presence of glyoxal and nitric acid in aqueous glyoxylic acid solutions is particularly troublesome due to their reactivity with glyoxylic acid, and therefore their removal is rapid, with a molar ratio of 2% to glyoxylic acid. It must be carried out in such a way as to obtain a residual concentration of glyoxal of less than 0.05% and a residual concentration of nitric acid of less than 0.05% in molar proportion relative to glyoxylic acid. The removal of glyoxal from aqueous solutions of glyoxylic acid is particularly delicate and expensive, since these two products have at least one aldehyde function.

最近、フランス特許第25165C)6号において、反
応混合物中6〜40重量%濃度で存在する強弁酸化性酸
及び硝酸から出発して得られる酸化剤によりグリオキシ
ル酸の水性溶液の酸化のための方法が提案された。得ら
れるグリオキシル酸の水性溶液中に存在する硝酸の弱い
残存濃度のためその関心にも拘らず゛、この方法は未変
化グリオキサールの高濃度のため工業的要件に応答しな
い。
Recently, in French Patent No. 25165C) 6, a process has been described for the oxidation of aqueous solutions of glyoxylic acid with an oxidizing agent obtained starting from a strong oxidizing acid and nitric acid present in a concentration of 6 to 40% by weight in the reaction mixture. was suggested. Despite its interest due to the weak residual concentration of nitric acid present in the aqueous solution of glyoxylic acid obtained, this process does not respond to industrial requirements due to the high concentration of unchanged glyoxal.

本発明者はこれらの不都合をなくするグリオキシル酸の
水性溶液の工業的製造のための新規な方法をここに見出
した。
The inventors have now found a new process for the industrial production of aqueous solutions of glyoxylic acid which eliminates these disadvantages.

本発明の方法によれば、グリオキシル酸の水性溶液が、
触媒量の一酸化窒素の存在下に、1未満のpH値でグリ
オキサールの水性溶液を酸素と反応させることによって
製造される。
According to the method of the invention, an aqueous solution of glyoxylic acid is
It is produced by reacting an aqueous solution of glyoxal with oxygen at a pH value of less than 1 in the presence of catalytic amounts of nitric oxide.

グリオキサールの水性溶液として、工業的に入手しつる
そして5〜40重食%のグリオキサールの水性溶液を使
用でき、有利にはグリオキサール10〜30重量%好ま
しくは17±3重量%のグリオキサールの水性溶液を使
用できる。
As the aqueous solution of glyoxal, it is possible to use an aqueous solution of glyoxal which is commercially available and has a concentration of 5 to 40% by weight, advantageously an aqueous solution of glyoxal having a concentration of 10 to 30% by weight of glyoxal, preferably 17±3% by weight. Can be used.

本発明による方法は1未満のpH値で行う。これを達成
するため、グリオキサールの出発水性溶液は強鉱酸例え
ば塩酸、硫酸又は種々の割合でのそれらの混合物で酸性
にする。有利にはグリオキサールの水性溶液は溶液11
について塩酸2モルで酸性にする。
The process according to the invention is carried out at pH values below 1. To achieve this, the starting aqueous solution of glyoxal is acidified with strong mineral acids such as hydrochloric acid, sulfuric acid or mixtures thereof in various proportions. Advantageously, the aqueous solution of glyoxal is solution 11
Acidify with 2 mol of hydrochloric acid.

本発明による方法は、lOs−8XIQ”Paの圧力、
有利には4xlO’Paの圧力で分子状酸素(二酸素)
を泡立てることによって行う。この方法は最も望ましい
温度、一般に35〜75℃の温度、有利には40〜70
℃の温度で行う。
The method according to the invention comprises a pressure of lOs-8XIQ"Pa,
Molecular oxygen (dioxygen) advantageously at a pressure of 4xlO'Pa
This is done by whisking. The process is carried out at the most desirable temperature, generally between 35 and 75°C, advantageously between 40 and 70°C.
Perform at a temperature of °C.

酸化触媒は一酸化窒素NOである。通常使用するグリオ
キサール1モルについて一酸化窒素約75〜15011
3モルを使用する。反応の終りにこの触媒はそれ自体知
られている手段によって反応媒体から容易に除去される
。酸素の存在下に、この触媒は自然発生的に二酸化窒素
No。
The oxidation catalyst is nitric oxide NO. About 75 to 15,011 nitric oxides per mole of commonly used glyoxal
Use 3 moles. At the end of the reaction, this catalyst is easily removed from the reaction medium by means known per se. In the presence of oxygen, this catalyst spontaneously produces nitrogen dioxide No.

又はその二量体四酸化窒素M!04に酸化する。グリオ
キサールと接触したとき、二酸化窒素は一酸化窒素に還
元され、グリオキサールをグリオキシル酸に酸化する。
Or its dimeric nitrogen tetroxide M! Oxidizes to 04. When in contact with glyoxal, nitrogen dioxide is reduced to nitric oxide, oxidizing glyoxal to glyoxylic acid.

反応順序は次の如く画くことができる:2 No+ヘー
→へへ 2Nら←−−−604 20011−CHO−)−2Nへ→20CR−Cool
+2N。
The reaction order can be drawn as follows: 2 No + He → Hehe 2N et al ←---604 20011-CHO-)-2N → 20CR-Cool
+2N.

全体的な反応式は従って次の通りである:20HC−C
HO+ヘー−920HC−C0OHこれらの反応は急速
であり、発熱反応である。
The overall reaction equation is therefore: 20HC-C
HO+H-920HC-C0OHThese reactions are rapid and exothermic.

結果として反応温度は適当な熱除去手段によって所望の
程度に保たなければならない。
As a result, the reaction temperature must be kept at the desired level by suitable heat removal means.

理論的には一酸化窒素の消費はない。しかしながら装置
の不完全及び/又は成る横切二次反応のため、時々刻々
一酸化窒素の僅かな消耗があり、これが使用するグリオ
キサール1モルについて80 ミリモル未満にする、そ
してこれは連続的にこの方法を実施するとき、相当する
量の新しい一酸化窒素の添加によって補うことができる
Theoretically, there is no consumption of nitric oxide. However, due to imperfections in the equipment and/or due to transverse secondary reactions consisting can be supplemented by adding a corresponding amount of fresh nitric oxide.

本発明の興味ある特長の一つは使用するグリオキサール
の水性溶液の稀釈なしにそれが生起することにある。
One of the interesting features of the present invention is that it occurs without dilution of the aqueous solution of glyoxal used.

本発明による方法は選択的である。従って99%の変換
率に対して、80±5%の選択率が見られる、換言すれ
ば使用したグリオキサールの80±5%が反応終了時に
グリオキシル酸の形で回収される。グリオキサールのし
ゆう酸又は二酸化炭素への酸化は、得られるグリオキシ
ル酸に対するモル割合で表わして多くてもしゆう酸25
%、二酸化炭素1%である。
The method according to the invention is selective. For a conversion of 99%, a selectivity of 80±5% is thus observed, ie 80±5% of the glyoxal used is recovered in the form of glyoxylic acid at the end of the reaction. The oxidation of glyoxal to oxalic acid or carbon dioxide requires at most 25 oxalic acids expressed as a molar proportion to the glyoxylic acid obtained.
%, carbon dioxide 1%.

連続操作で、酸化反応は、それ自体既知の方法で、発生
するガス、特に酸素、二酸化炭素及び酸化窒素を分析す
ることによって追求でき、それは温度、圧力、酸素の導
入速度、及びグリオキサールの供給速度の如き反応パラ
メーターの一つ以上を調整することによって調整できる
In continuous operation, the oxidation reaction can be followed in a manner known per se by analyzing the gases evolved, in particular oxygen, carbon dioxide and nitrogen oxides, which depend on the temperature, pressure, rate of introduction of oxygen and rate of glyoxal feed. can be adjusted by adjusting one or more reaction parameters such as.

本発明による方法は、グリオキシル酸の水性溶液を得る
ことを可能にし、これは殆ど硝酸を含有せず、存在する
グリオキシル酸に対するモ・ル割合で、グリオキサール
2.5%未満含有する。
The process according to the invention makes it possible to obtain an aqueous solution of glyoxylic acid, which is almost nitric acid-free and contains less than 2.5% glyoxal in molar proportion relative to the glyoxylic acid present.

更に環境中に酸化窒素を放出しないか非常に少ししか放
出しない。
Furthermore, they release no or very little nitrogen oxide into the environment.

反応終了時に、得られるグリオキシル酸の水性溶液中に
存在することのあるしゆう酸はそれ自体既知の方法で除
去される。有利にはそれは水2分子を有するその水和物
の結晶化によって回収され、最後の痕跡量は電気透析又
はイオン交換樹脂での処理によって除去される、それと
同時に所望によって1未満のpH値にグリオキサールの
出発水性溶液を酸性にするため使用した鉱酸の除去をす
る。結果において、グリオキサールの出発溶液中に導入
した鉱酸は、良く知られている電気透析による処理に又
は適切に選択したイオン交換樹脂による処理に得られた
グリオキシル酸の水性溶液を供することによって反応終
了時に回収できる。本発明の方法によって直接的に得る
ことのできる濃度より高いグリオキシル酸の濃度を有す
る水性溶液を得るため、所望によってグリオキシル酸の
水性溶液を既知の方法で濃縮できる。
At the end of the reaction, any oxalic acid that may be present in the aqueous solution of glyoxylic acid obtained is removed in a manner known per se. Advantageously, it is recovered by crystallization of its hydrate with two molecules of water, and the last traces are removed by electrodialysis or treatment with an ion exchange resin, while optionally reducing the glyoxal to a pH value below 1. Removal of the mineral acid used to acidify the starting aqueous solution. In the results, the mineral acid introduced into the starting solution of glyoxal is terminated by subjecting the resulting aqueous solution of glyoxylic acid to treatment by well-known electrodialysis or to treatment with an appropriately selected ion exchange resin. It can be recovered in time. If desired, the aqueous solution of glyoxylic acid can be concentrated by known methods in order to obtain an aqueous solution with a higher concentration of glyoxylic acid than can be obtained directly by the method of the invention.

有利には本発明方法は直列に配置し、ガスのための適切
な回収装置を備えたセットの撹拌反応器中か又は液体が
ヌカラム中で連続的に行なう。選択した温度及び圧力で
保った装置に、1未満のpH値に酸性にした水性溶液の
形でのグリオキサール及び一酸化窒素、酸素の必要量を
連続的に供給する。反応は発生するガスの分析によって
制御する。装置を出るとき、グリオキシル酸の水性溶液
は常温に冷却し、所望によって、必要ならば存在するし
ゆう酸を除去するために結晶化させるために放置し、次
いで所望によって一方で全ての他の鉱酸及び/又は有機
酸を含まぬグリオキシル酸の水性溶液を得るため、及び
他方で使用した鉱酸の水性溶液を得るため既知の方法に
より電気透析に供するのが有利である。
Advantageously, the process according to the invention is carried out continuously in a set of stirred reactors arranged in series and equipped with suitable recovery devices for the gas or in a liquid column. The apparatus, maintained at the selected temperature and pressure, is continuously fed with the required amounts of glyoxal and nitric oxide, oxygen in the form of an aqueous solution acidified to a pH value below 1. The reaction is controlled by analysis of the gases evolved. On exiting the apparatus, the aqueous solution of glyoxylic acid is cooled to ambient temperature and optionally allowed to crystallize to remove any oxalic acid present, and then, if desired, on the other hand, remove all other minerals. In order to obtain an acid and/or organic acid-free aqueous solution of glyoxylic acid and, on the other hand, to obtain an aqueous solution of the mineral acid used, it is advantageous to subject it to electrodialysis by known methods.

下記実施例は本発明を例示するがそれに限定するもので
はない。
The following examples illustrate, but do not limit, the invention.

実施例 l 直列に配置し、撹拌装置を設けた三つの反応器の第一反
応器に、冷却した液体−ガス洗浄カラムによって、20
0 g/lのグリオキサール(3,446モル/lりl
及び739//の塩酸を含有するグリオキサールの水性
溶液を50//hrの流速で、即ちグリオキサール17
2.3モル/h rで連続的に供給した。
Example l The first reactor of three reactors arranged in series and equipped with a stirring device was charged with 20
0 g/l glyoxal (3,446 mol/l
and an aqueous solution of glyoxal containing 739// of hydrochloric acid at a flow rate of 50//hr, i.e. glyoxal 17
It was continuously supplied at 2.3 mol/hr.

同時に第一反応器lこ、一方で装置中の圧力を4 x 
l Q5Paで保つように、他方で3609/hr(1
2モル/hr)の一酸化窒素を保つように導入した。温
度は第一反応器で45±3℃で、第二反応器で60±5
℃で、第三反応器で68±3℃で保った。装置群中に留
まる反応溶液に対する平均時間は約70分であった。最
後の二つの反応器から出るガスは第一反応器へ再循環さ
せ、第一反応器は、4バールに調整したバルブを頂部に
備えたその液体ガス洗浄カラムによって外部と連通状態
にした。
At the same time, the pressure in the first reactor was increased to 4 x
3609/hr (1
Nitrogen monoxide was introduced to maintain the amount (2 mol/hr) of nitrogen monoxide. The temperature was 45±3℃ in the first reactor and 60±5℃ in the second reactor.
℃ and was maintained at 68±3 ℃ in the third reactor. The average time for the reaction solution to remain in the apparatus group was approximately 70 minutes. The gas leaving the last two reactors was recycled to the first reactor, which was placed in communication with the outside world by its liquid gas scrubbing column equipped on top with a valve adjusted to 4 bar.

第三反応器を出るとき、グリオキシル酸の水性溶液50
//hrが集められた、これは無色であり、殆ど硝酸と
一酸化窒素を含有しておらず、209.59/l (2
,83モル//)のグリオキシル酸、739//(2モ
ル//)の塩化水素、52.89/l (0,58モル
/l)のしゆう酸及び1.759/V(30ミリモル/
/)のグリオキサールを含有していた。グリオキサール
の変換率は99.1%であり、消費されたグリオキサー
ルについて見たとき反応の選択率は82.8%であった
On leaving the third reactor, 50% of the aqueous solution of glyoxylic acid
//hr was collected, which is colorless and contains almost no nitric acid and nitric oxide, and 209.59/l (2
, 83 mol//) glyoxylic acid, 739// (2 mol//) hydrogen chloride, 52.89/l (0,58 mol/l) oxalic acid and 1.759/V (30 mmol//)
/) contained glyoxal. The conversion of glyoxal was 99.1% and the selectivity of the reaction was 82.8% in terms of glyoxal consumed.

使用したグリオキサールについて見たときの反応のバラ
ンスは殆ど定量的であり、一酸化窒素の消費は約12モ
ル/hrであり、酸素の消費は約32009/hr(1
00モ/l/ / hr )であった。
The reaction balance for the glyoxal used was almost quantitative, with the consumption of nitric oxide being about 12 mol/hr and the consumption of oxygen being about 32009/hr (1
00 mo/l//hr).

実施例 2 機械的撹拌機、挿入温度計、導入漏斗、ブリットガラス
拡散器を備えた挿入管による酸素導入管及び炭酸ナトリ
ウムの水溶液で泡立てる放出管そして装置中に1.22
5xlQ’Paの圧力を確立することのできる水銀封止
を備えた三ツロ21!フラスコ中に下記成分を導入した
Example 2 Mechanical stirrer, insertion thermometer, introduction funnel, oxygen introduction tube by insertion tube with Bullitt glass diffuser and discharge tube for bubbling with an aqueous solution of sodium carbonate and 1.22 in the apparatus
Mitsuro 21 with mercury seal that can establish a pressure of 5xlQ'Pa! The following components were introduced into the flask.

174、129 (3モル)のグリオキサール及び87
.69 (2,4モル)の塩化水素を含有する水溶液1
1189゜ 装置を酸素で注意してパージした後、溶液を45℃で撹
拌下に加熱した。
174, 129 (3 mol) of glyoxal and 87
.. 69 (2.4 mol) of hydrogen chloride in an aqueous solution 1
After carefully purging the 1189° apparatus with oxygen, the solution was heated to 45° C. with stirring.

次に15分にわたって45℃に温度を保ち、水銀シール
を通って放出されるのを防ぐようにして酸素を導入しな
がら下記成分を導入した。
The following ingredients were then introduced while maintaining the temperature at 45° C. for 15 minutes and introducing oxygen to prevent release through the mercury seal.

7.29(0,24モル)の一酸化窒素。7.29 (0.24 mol) of nitric oxide.

導入が完了したとき、45℃で1時間加熱を続け、次い
で30分間55℃で、最後に60℃で30分間、ゆるや
かに酸素を吹き込みつつ加熱を続けた。次いで酸素流を
停止し、反応を止め、30分間60℃で反応混合物を保
った。
When the introduction was complete, heating was continued at 45°C for 1 hour, then at 55°C for 30 minutes, and finally at 60°C for 30 minutes with gentle oxygen bubbling. The oxygen flow was then stopped to stop the reaction and the reaction mixture was kept at 60° C. for 30 minutes.

僅かに窒素のスウィービング下に周囲温度に反応混合物
を冷却した後、下記成分を含有する無色の水性溶液11
739を集めた。
After cooling the reaction mixture to ambient temperature under slight nitrogen sweeping, a colorless aqueous solution containing the following ingredients 11
Collected 739.

181.39(2,45モル)のグリオキシル酸、87
.69(2,4モル)の塩酸、 43、29 (480ミリモル)の無水しゆう酸、3.
59(60ミリモル)のグリオキサール。
181.39 (2.45 mol) glyoxylic acid, 87
.. 69 (2.4 mol) of hydrochloric acid, 43.29 (480 mmol) of oxalic anhydride, 3.
59 (60 mmol) of glyoxal.

水酸化ナトリウムトラップ中で、炭酸塩の形で1.29
(27ミlJモル)の二酸化炭素が測定された。
1.29 in carbonate form in a sodium hydroxide trap
(27 mlJ mol) of carbon dioxide was measured.

変換率は98%であり、グリオキシル酸に対する選択率
は83.3%であり、使用したグリオキサールに対する
理論値の81.7%のグリオキシル酸収率eあった。酸
の消費は約549であった。
The conversion rate was 98%, the selectivity to glyoxylic acid was 83.3%, and the glyoxylic acid yield e was 81.7% of theory based on the glyoxal used. Acid consumption was approximately 549.

3737

Claims (1)

【特許請求の範囲】 1、触媒量の一酸化窒素の存在下に、1より小さいpH
値で、グリオキサールの水性溶液を酸素と反応させるこ
とからなることを特徴とするグリオキシル酸の水性溶液
の製造方法。 2、グリオキサールの水性溶液を、強鉱酸、特に塩酸の
添加によつて1より小さいpH値で保つ請求項1記載の
方法。 3、一酸化窒素の割合が、酸化されるべきグリオキサー
ル1モルについて75〜150ミリモルである請求項1
又は2記載の方法。 4、10^5〜8×10^5Paの分子状酸素圧下に実
施する請求項1〜3の何れかに記載の方法。 5、35〜75℃、有利には40〜70℃の温度で実施
する請求項1〜4の何れかに記載の方法。
[Claims] 1. In the presence of a catalytic amount of nitrogen monoxide, the pH is less than 1.
A process for producing an aqueous solution of glyoxylic acid, characterized in that it consists in reacting an aqueous solution of glyoxal with oxygen at a value of 1. 2. Process according to claim 1, characterized in that the aqueous solution of glyoxal is maintained at a pH value below 1 by addition of a strong mineral acid, in particular hydrochloric acid. 3. Claim 1, wherein the proportion of nitric oxide is 75 to 150 mmol per mole of glyoxal to be oxidized.
Or the method described in 2. 4. The method according to claim 1, wherein the method is carried out under a molecular oxygen pressure of 4,10^5 to 8*10^5 Pa. 5. A process according to any one of claims 1 to 4, carried out at a temperature of 5.35 to 75°C, preferably 40 to 70°C.
JP1169710A 1988-07-01 1989-06-29 Industrial production of aqueous solutions of glyoxylic acid Expired - Fee Related JP2761761B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8808957 1988-07-01
FR8808957A FR2633615B1 (en) 1988-07-01 1988-07-01 PROCESS FOR THE INDUSTRIAL MANUFACTURE OF AQUEOUS GLYOXYLIC ACID SOLUTIONS

Publications (2)

Publication Number Publication Date
JPH0363245A true JPH0363245A (en) 1991-03-19
JP2761761B2 JP2761761B2 (en) 1998-06-04

Family

ID=9367994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169710A Expired - Fee Related JP2761761B2 (en) 1988-07-01 1989-06-29 Industrial production of aqueous solutions of glyoxylic acid

Country Status (8)

Country Link
US (1) US5091566A (en)
EP (1) EP0349406B1 (en)
JP (1) JP2761761B2 (en)
AT (1) ATE73755T1 (en)
DE (1) DE68901011D1 (en)
ES (1) ES2030285T3 (en)
FR (1) FR2633615B1 (en)
GR (1) GR3004105T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750768A (en) * 1995-08-24 1998-05-12 Nippon Shokubai Co., Ltd. Method of manufacturing α-oxocarboxylate and catalyst adopted in the method
JP2002226404A (en) * 2000-11-28 2002-08-14 Daicel Chem Ind Ltd Method for producing organic compound by using imide compound and nitrogen oxide as catalyst
JP2011510041A (en) * 2008-01-25 2011-03-31 クラリアント・スペシャルティ・ファイン・ケミカルズ(フランス) Method for producing glyoxylic acid aqueous solution

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186311A1 (en) * 2004-02-23 2005-08-25 Loh Jimbay P. Method for acidifying and preserving food compositions using electrodialyzed compositions
US20050186312A1 (en) * 2004-02-23 2005-08-25 Kraft Foods Holdings, Inc. Shelf-stable foodstuffs and methods for their preparation
FR2926815A1 (en) 2008-01-25 2009-07-31 Clariant Specialty Fine Chem PROCESS FOR SEPARATING GLYOXYLIC ACID FROM AN AQUEOUS REACTIONAL MEDIUM CONTAINING GLYOXYLIC ACID AND HYDROCHLORIC ACID
JP2012067070A (en) * 2010-06-25 2012-04-05 Sumitomo Chemical Co Ltd Process for producing alpha-ketocarboxylic acid
CN109678693A (en) * 2018-12-25 2019-04-26 兄弟科技股份有限公司 A kind of glyoxalic acid continuous oxidation technique
CN114213234A (en) * 2021-12-27 2022-03-22 内蒙古源宏精细化工有限公司 Synthesis method of cyclopropyl formic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE132336C (en) *
US2298387A (en) * 1939-08-25 1942-10-13 Eastman Kodak Co Oxidation process
GB2001621A (en) * 1977-06-14 1979-02-07 Pollution Preventing Res Method of oxidizing alcohols or glycols with liquid nitrogen dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750768A (en) * 1995-08-24 1998-05-12 Nippon Shokubai Co., Ltd. Method of manufacturing α-oxocarboxylate and catalyst adopted in the method
JP2002226404A (en) * 2000-11-28 2002-08-14 Daicel Chem Ind Ltd Method for producing organic compound by using imide compound and nitrogen oxide as catalyst
JP2011510041A (en) * 2008-01-25 2011-03-31 クラリアント・スペシャルティ・ファイン・ケミカルズ(フランス) Method for producing glyoxylic acid aqueous solution

Also Published As

Publication number Publication date
US5091566A (en) 1992-02-25
EP0349406A1 (en) 1990-01-03
GR3004105T3 (en) 1993-03-31
EP0349406B1 (en) 1992-03-18
ATE73755T1 (en) 1992-04-15
DE68901011D1 (en) 1992-04-23
JP2761761B2 (en) 1998-06-04
FR2633615B1 (en) 1991-04-12
FR2633615A1 (en) 1990-01-05
ES2030285T3 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JPS6041056B2 (en) Cyclohexane oxidation method
JPS6338018B2 (en)
JP2761761B2 (en) Industrial production of aqueous solutions of glyoxylic acid
JPS58192839A (en) Cyclohexanol and manufacture
JPS5953257B2 (en) Process for producing N-methylnitrophthalimide
JPH07508704A (en) Method for producing ferric chloride
US2196584A (en) Manufacture of ferric sulphate
CA1307379C (en) Process for manufacture of ferric nitrate
JP4094754B2 (en) Method for producing boron trifluoride and sulfuric acid from hydrated boron trifluoride
US3449079A (en) Hydrogen halide oxidation in acid medium
US3673245A (en) Treatment of off-gases from nitric acid oxidation of anolone
JPH0156056B2 (en)
JPH04271840A (en) Catalyst recovery method
JPH03109359A (en) Preparation of dialkylcarbonate
JP3300428B2 (en) Method for producing nitrous oxide
US3226430A (en) Sulfonation of cyclohexylamine with so3
US3950501A (en) Production of high-purity chlorine from hydrogen chloride
IE66031B1 (en) Continous industrial manufacturing process for an aqueous solution of glyoxylic acid
CN102070574B (en) Method for preparing 2, 3-dichloromaleic anhydride
JPH01117859A (en) Production of aromatic percarboxylic acid
JPS6159242B2 (en)
EP4259574A1 (en) Process for the controlled decomposition of peroxo compounds
JP3606682B2 (en) Method for producing nitrous oxide
US3952054A (en) Process for preparing diglycolic acid
JPH11217367A (en) Production of 4-nitro-2-sulfobenzoic acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees