JP3300428B2 - Method for producing nitrous oxide - Google Patents

Method for producing nitrous oxide

Info

Publication number
JP3300428B2
JP3300428B2 JP27591592A JP27591592A JP3300428B2 JP 3300428 B2 JP3300428 B2 JP 3300428B2 JP 27591592 A JP27591592 A JP 27591592A JP 27591592 A JP27591592 A JP 27591592A JP 3300428 B2 JP3300428 B2 JP 3300428B2
Authority
JP
Japan
Prior art keywords
ammonia
nitrous oxide
oxygen
vol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27591592A
Other languages
Japanese (ja)
Other versions
JPH06122507A (en
Inventor
謙二 藤原
和生 脇村
寛 加藤
宜孝 上田
光夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP27591592A priority Critical patent/JP3300428B2/en
Publication of JPH06122507A publication Critical patent/JPH06122507A/en
Application granted granted Critical
Publication of JP3300428B2 publication Critical patent/JP3300428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/22Nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は亜酸化窒素の製造方法に
関する。詳しくは、アンモニアを水蒸気の存在下に酸素
で酸化してNOx の副生が少ない亜酸化窒素を製造する
方法に関する。亜酸化窒素は麻酔ガスやロケット燃料用
支燃剤あるいは半導体洗浄剤として有用な化合物であ
る。
The present invention relates to a method for producing nitrous oxide. More specifically, the present invention relates to a method for producing nitrous oxide with little by-product of NOx by oxidizing ammonia with oxygen in the presence of steam. Nitrous oxide is a compound useful as an anesthetic gas, a rocket fuel burner or a semiconductor cleaner.

【0002】[0002]

【従来の技術】従来、亜酸化窒素の製造方法としては、
(1) アンモニア酸化法、(2) 硝酸アンモニウム分解法、
(3) スルファミン酸と硝酸との反応による方法等が知ら
れている。この内、アンモニア酸化法(1) は原料が安価
なアンモニアと酸素であり、また、高収率が得られるた
めに工業的には好ましい方法である。
2. Description of the Related Art Conventionally, as a method for producing nitrous oxide,
(1) ammonia oxidation method, (2) ammonium nitrate decomposition method,
(3) A method based on a reaction between sulfamic acid and nitric acid is known. Among them, the ammonia oxidation method (1) is an industrially preferable method because the raw materials are inexpensive ammonia and oxygen and a high yield can be obtained.

【0003】この方法は酸素あるいは空気を使用して金
属酸化物触媒上でアンモニアを200〜500 ℃で酸化し、
亜酸化窒素を製造する方法であり、使用する触媒は劣化
することが知られている。この対策として、触媒の再生
方法(特公昭30-1225 号)が提案されている。また、触
媒調製時の硝酸アンモニウムを完全に洗浄して劣化しに
くい実用的な触媒調製方法(工業化学雑誌、64、11、18
79(1961))等が知られている。
This method oxidizes ammonia at 200-500 ° C. over a metal oxide catalyst using oxygen or air,
This is a method for producing nitrous oxide, and it is known that the catalyst used is deteriorated. As a countermeasure, a method of regenerating a catalyst (Japanese Patent Publication No. 30-1225) has been proposed. In addition, a practical catalyst preparation method that completely removes ammonium nitrate during preparation of the catalyst and does not deteriorate easily (Industrial Chemistry Magazine, 64, 11, 18)
79 (1961)).

【0004】[0004]

【発明が解決しようとする課題】反応は通常、アンモニ
ア―酸素系において爆発領域を避けるためにアンモニア
の濃度が10 vol%以下になるように酸素で希釈して反応
が行われる。しかし、この方法をそのまま実施しても未
反応の酸素が存在するので反応器出口の亜酸化窒素濃度
は数%にすぎない。そこで、酸素濃度を80vol %以上使
用し、その反応生成ガスを循環し、アンモニアだけを分
割供給する方法(特公昭46-33210号)が提案されている
が、この場合における反応器出口の亜酸化窒素濃度も40
vol %程度が得られているに過ぎないだけでなく、NO
x (主としてNOとNO2 )副生量は数%に達する。こ
のNOx は亜酸化窒素の主たる用途が麻酔用であるため
に徹底的に除去する必要があり、通常、上記用途に用い
られる亜酸化窒素中のNOx含有量は0.1ppm以下であ
る。例えば、製造される亜酸化窒素中のNOx 含有量が
5%の場合には、精留塔等において50万分の1までNO
x を除去しなければならず、NOx の副生量が多いとい
う事は経済性を損なう大きな要因であり、アンモニア酸
化法において、NOx の副生が少なく、また高濃度の亜
酸化窒素を高収率で製造する方法が望まれている。
The reaction is usually carried out by diluting with oxygen so that the concentration of ammonia is 10 vol% or less in order to avoid an explosion region in the ammonia-oxygen system. However, even if this method is carried out as it is, the concentration of nitrous oxide at the outlet of the reactor is only a few% because unreacted oxygen exists. Therefore, a method has been proposed in which the oxygen concentration is 80 vol% or more, the reaction product gas is circulated, and only ammonia is separately supplied (Japanese Patent Publication No. 46-33210). Nitrogen concentration is also 40
not only vol% is obtained but also NO
x (mainly NO and NO 2 ) by-products amount to several percent. This NOx needs to be thoroughly removed because the main use of nitrous oxide is for anesthesia. Usually, the NOx content in nitrous oxide used for the above use is 0.1 ppm or less. For example, when the NOx content in the produced nitrous oxide is 5%, the NOx content is reduced to 1 / 500,000 in a rectification column or the like.
x must be removed and the large amount of NOx by-products is a major factor that impairs economic efficiency.In the ammonia oxidation method, there are few NOx by-products and high yields of high-concentration nitrous oxide. There is a need for a method of manufacturing at a high rate.

【0005】[0005]

【課題を解決するための手段】本発明者らはアンモニア
酸化法において、水蒸気を共存させてアンモニアを酸化
することにより、(1) 活性の劣化がないこと、(2) 水蒸
気を水に凝縮するだけで80%以上の高濃度の亜酸化窒素
を得る事ができること、(3) 酸素あるいは窒素で爆発限
界を避ける方法に比べ安全領域が大きく、より安全に運
転できること、(4) 水蒸気の熱容量が窒素や酸素よりも
大きいため反応の温度制御が容易なこと、を見い出し、
水蒸気を共存させて亜酸化窒素を製造する方法を既に提
案している。さらに、この水蒸気を共存させる方法にお
いて、副生NOx を抑制する方法を鋭意検討した結果、
本発明を完成したものである。すなわち、本発明は、水
蒸気の存在下、アンモニアを酸素で酸化して亜酸化窒素
を製造する方法において、反応帯域の圧力を 0.8〜10kg
/cm2-Gで行うことを特徴とするNOx の副生が少ない亜
酸化窒素の製造方法である。
Means for Solving the Problems In the ammonia oxidation method, the present inventors oxidize ammonia in the coexistence of water vapor, thereby (1) no deterioration of activity and (2) condensing water vapor into water. (3) The safe area is larger and safer operation than the method of avoiding the explosion limit with oxygen or nitrogen, and (4) The heat capacity of steam It was found that it was easier to control the temperature of the reaction because it was larger than nitrogen or oxygen.
A method for producing nitrous oxide in the presence of steam has already been proposed. Furthermore, as a result of diligent studies on a method of suppressing by-product NOx in the method of coexisting water vapor,
The present invention has been completed. That is, the present invention provides a method for producing nitrous oxide by oxidizing ammonia with oxygen in the presence of water vapor, wherein the pressure of the reaction zone is 0.8 to 10 kg.
/ cm 2 -G is a method for producing nitrous oxide with little by-product of NOx.

【0006】本発明で使用する触媒は、アンモニア酸化
用触媒として知られている公知の触媒を使用することが
できる。驚くべきことに、水を添加すると、今まで触媒
の劣化が認められた触媒においても、その劣化はないか
あるいは極めて少ない。おそらく触媒上の硝酸痕のよう
な被毒物質の洗浄効果あるいは触媒の酸化状態の保持効
果のためと推測される。このような触媒の例としては、
CuO-MnO2系、Bi2O3 系、Fe2O3-Bi2O3-MnO2系、MnO-CoO-
NiO 系、Ba2O-CuO系、MnO2系、Pr2O3-Nd2O3-CeO3系、Pt
系が挙げられる。この中でもMn含有触媒が高活性であり
好ましい。さらに調製が容易なCuO-MnO2系が特に好まし
い。
[0006] As the catalyst used in the present invention, a known catalyst known as a catalyst for ammonia oxidation can be used. Surprisingly, the addition of water results in no or very little degradation of the catalyst, which has hitherto been found to have deteriorated. It is presumed that this is probably due to the effect of cleaning poisonous substances such as traces of nitric acid on the catalyst or the effect of maintaining the oxidation state of the catalyst. Examples of such catalysts include:
CuO-MnO 2 system, Bi 2 O 3 system, Fe 2 O 3 -Bi 2 O 3 -MnO 2 system, MnO-CoO-
NiO system, Ba 2 O-CuO system, MnO 2 system, Pr 2 O 3 -Nd 2 O 3 -CeO 3 system, Pt
System. Among them, a Mn-containing catalyst is preferable because of its high activity. Further, a CuO—MnO 2 system that is easy to prepare is particularly preferred.

【0007】これらの触媒は通常管型反応器へ充填さ
れ、水蒸気、アンモニアおよび酸素等の混合ガスは0
℃、1気圧の状態に換算して空間速度 100〜100,000 /
hr、好ましくは 1,000〜50,000/hrで供給される。
[0007] These catalysts are usually charged into a tubular reactor, and a mixed gas of water vapor, ammonia and oxygen is reduced to zero.
Space velocity 100-100,000 /
hr, preferably 1,000 to 50,000 / hr.

【0008】本発明の水蒸気の存在下にアンモニアを酸
素で酸化反応せしめるに際し、反応器入り口での組成
は、水蒸気濃度が50vol %以上にすることで特に触媒活
性の劣化を抑制する効果があり望ましい。また、このア
ンモニアの酸化反応においてはアンモニアの濃度いかん
では爆発の危険性があり、そのアンモニアの爆発下限界
は15vol %で、この爆発領域を避けるために酸素あるい
は窒素などで希釈して反応ガス中のアンモニア濃度を15
vol %以下にする必要があり、安全性の面からは10vol
%以下が好ましい。このように酸素あるいは窒素などで
希釈した場合には、アンモニア濃度が小さいため反応効
率が悪く、さらには得られる反応生成ガス中の余分な酸
素および窒素を亜酸化窒素と分離する必要がある。
In the oxidation reaction of ammonia with oxygen in the presence of water vapor according to the present invention, the composition at the inlet of the reactor is desirably adjusted to a water vapor concentration of 50 vol% or more, since it has an effect of particularly suppressing deterioration of catalyst activity. . In addition, in the oxidation reaction of ammonia, there is a danger of explosion depending on the concentration of ammonia. The lower limit of the explosion of ammonia is 15 vol%, and it is diluted with oxygen or nitrogen to avoid this explosion area. Ammonia concentration of 15
vol% or less, and 10 vol.
% Or less is preferable. When diluted with oxygen or nitrogen, the reaction efficiency is low due to the low ammonia concentration, and it is necessary to separate excess oxygen and nitrogen in the obtained reaction product gas from nitrous oxide.

【0009】しかしながら、本願発明における水蒸気濃
度を少なくとも60vol %以上にすればアンモニアあるい
は酸素のモル比にかかわらず爆発領域を回避できること
も見出している。このように反応器入り口において、水
蒸気濃度が60vol %以上であれば前記した希釈用として
の余分な酸素や窒素は必要がなく、容易に高濃度の亜酸
化窒素を分離することができる。したがって、好ましい
水蒸気の使用量は反応器入り口濃度で50vol %以上、さ
らに好ましくは60vol %以上である。
However, it has been found that if the water vapor concentration in the present invention is at least 60 vol% or more, an explosion region can be avoided regardless of the molar ratio of ammonia or oxygen. As described above, if the water vapor concentration is 60 vol% or more at the inlet of the reactor, the above-mentioned extra oxygen or nitrogen for dilution is not necessary, and high-concentration nitrous oxide can be easily separated. Therefore, the preferred amount of water vapor to be used is at least 50 vol%, more preferably at least 60 vol%, at the reactor inlet concentration.

【0010】本発明の方法で使用するアンモニアは純粋
なアンモニアは勿論のこと、アンモニア水溶液としても
用いることができる。アンモニアの反応器入り口の濃度
は上記したように、爆発領域を避けるために10vol %以
下が好ましいが、水蒸気の使用量を60vol %以上にする
ことでその制限はなく、反応器入り口におけるアンモニ
アの濃度は1〜30vol %であり、好ましくは1〜20vol
%の範囲である。
The ammonia used in the method of the present invention can be used not only as pure ammonia but also as an aqueous ammonia solution. As described above, the concentration of ammonia at the inlet of the reactor is preferably 10 vol% or less in order to avoid an explosion region. However, the amount of steam is not limited to 60 vol% or more, and the concentration of ammonia at the inlet of the reactor is not limited. Is 1 to 30 vol%, preferably 1 to 20 vol%
% Range.

【0011】本発明で使用する酸化源としての酸素は純
粋な酸素は勿論のこと、窒素を含んだ酸素や空気を用い
ることもできるが、上述したように、これ以上の窒素な
どで希釈された酸素を用いることは反応生成ガス中の亜
酸化窒素濃度がさらに低くなるため避けるべきであり、
好ましい酸素の使用量はアンモニア1モルに対し 0.3〜
3モルの範囲であり、さらに好ましくは0.5 〜1.5 モル
の範囲である。
The oxygen used as the oxidizing source used in the present invention may be not only pure oxygen but also oxygen containing nitrogen or air. However, as described above, the oxygen is diluted with more nitrogen. The use of oxygen should be avoided because the concentration of nitrous oxide in the reaction product gas becomes even lower.
The preferred amount of oxygen is 0.3 to 1 mol of ammonia.
It is in the range of 3 moles, more preferably in the range of 0.5 to 1.5 moles.

【0012】これらのアンモニア、酸素および水蒸気等
の混合ガスの供給速度は亜酸化窒素の選択率には大きな
影響を与えない。しかし、小さすぎると反応器が大きく
なって不経済であり、また大きすぎるとアンモニアの転
化率が低下する。したがってこれらの混合ガスの供給速
度は、0℃、1気圧の状態に換算して空間速度 100〜10
0,000 /hrの範囲、好ましくは 1,000〜50,000/hrの範
囲である。
The supply rate of the mixed gas such as ammonia, oxygen and water vapor does not significantly affect the selectivity of nitrous oxide. However, if too small, the reactor becomes large and uneconomical, and if too large, the conversion of ammonia decreases. Therefore, the supply speed of these mixed gases is converted to a space velocity of 100 to 100 at 0 ° C. and 1 atm.
It is in the range of 0,000 / hr, preferably in the range of 1,000 to 50,000 / hr.

【0013】反応温度は 200〜500 ℃が好ましいが、高
すぎるとNOx の副生量が増加し好ましくない。従っ
て、さらに好ましくは 250〜450 ℃である。
The reaction temperature is preferably from 200 to 500 ° C., but if it is too high, the amount of by-products of NOx increases, which is not preferable. Therefore, the temperature is more preferably from 250 to 450 ° C.

【0014】本発明の方法における反応帯域の圧力は
0.8〜10Kg/cm2-Gであり、好ましくは1〜5Kg/cm2-Gの
範囲である。反応帯域の圧力が0.8Kg/cm2-G に満たない
と、NOx の副生量は急激に増加する。また、10Kg/cm2
-Gを越すと装置がコスト高になるだけでなく、アンモニ
アの爆発領域が広くなり、安全性が低下して好ましくな
い。
In the method of the present invention, the pressure in the reaction zone is
0.8 to 10 kg / cm 2 -G, preferably 1 to 5 kg / cm 2 -G. If the pressure in the reaction zone is less than 0.8 kg / cm 2 -G, the amount of by-product NOx increases sharply. Also, 10Kg / cm 2
Exceeding -G not only increases the cost of the apparatus, but also widens the explosion range of ammonia, which is not preferable because the safety is reduced.

【0015】このようにして反応を行って得た反応生成
ガス中には副生するNOx が殆どなく、次いで水の沸点
以下に冷却し、亜酸化窒素、酸素および窒素等の非凝縮
性ガスと水とに分離され、さらに精製工程を経て微量の
NOx は完全に除去される。微量のNOx の除去方法と
しては、例えば、これらの非凝縮性ガスを過マンガン酸
カリウムの水酸化ナトリウム水溶液および硫酸水溶液で
洗浄する方法が挙げられる。さらに酸素、窒素が分離さ
れて高純度の亜酸化窒素が製造される。
[0015] The reaction product gas obtained by performing the reaction in this manner has almost no NOx as a by-product, and is then cooled to a temperature lower than the boiling point of water to form a non-condensable gas such as nitrous oxide, oxygen and nitrogen. It is separated into water, and through a purification step, trace NOx is completely removed. As a method of removing a trace amount of NOx, for example, a method of washing these non-condensable gases with an aqueous sodium hydroxide solution of potassium permanganate and an aqueous solution of sulfuric acid can be mentioned. Further, oxygen and nitrogen are separated to produce high-purity nitrous oxide.

【0016】[0016]

【実施例】以下、本発明を実施例により詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.

【0017】実施例1 CuO-MnO2触媒 500gを充填した内径2.8cm の管型反応器
へ、アンモニア3.5vol%、酸素4.65vol %、水蒸気91.8
5vol%の割合で各ガスを供給した。反応温度は310 ℃、
空間速度は 5,000/hr、反応圧力は3Kg/cm2-Gであっ
た。得られた反応生成ガスを30℃に冷却し、その気相部
を分析した結果、亜酸化窒素72.3vol %、窒素15.6vol
%、酸素12.1vol %、NOx1.3ppm であり、アンモニア
は検出されなかった。一方、液相部を分析したがアンモ
ニアは痕跡量でありアンモニアの転化率は99%以上であ
った。
EXAMPLE 1 3.5 vol% of ammonia, 4.65 vol% of oxygen and 91.8% of steam were placed in a tubular reactor having an inner diameter of 2.8 cm and filled with 500 g of CuO-MnO 2 catalyst.
Each gas was supplied at a rate of 5 vol%. The reaction temperature is 310 ° C,
The space velocity was 5,000 / hr, and the reaction pressure was 3 kg / cm 2 -G. The obtained reaction product gas was cooled to 30 ° C., and the gas phase thereof was analyzed. As a result, 72.3 vol% of nitrous oxide and 15.6 vol of nitrogen were obtained.
%, Oxygen 12.1 vol%, NOx 1.3 ppm, and no ammonia was detected. On the other hand, when the liquid phase was analyzed, the amount of ammonia was trace and the conversion of ammonia was 99% or more.

【0018】この反応生成ガス(気相部)を過マンガン
酸カリウムを含むアルカリ水溶液に通してNOx を除去
し、さらに10Kg/cm2-Gで、約−80℃に冷却して亜酸化窒
素を液化させ、酸素および窒素とを分離した。このよう
にして得られた亜酸化窒素の純度は99%以上であり、満
足すべき品質であった。
The reaction product gas (gas phase) is passed through an alkaline aqueous solution containing potassium permanganate to remove NOx, and further cooled to about -80 ° C. at 10 kg / cm 2 -G to remove nitrous oxide. Liquefaction and separation of oxygen and nitrogen. The purity of the nitrous oxide thus obtained was 99% or more, which was satisfactory quality.

【0019】実施例2 反応圧力だけを変化させた他は実施例1と同様に反応を
行ったところ、アンモニアの転化率、亜酸化窒素の選択
率に大差はなく、反応圧力も1.0Kg/cm2-G 付近において
副生するNOx の量は、やや多いものの大幅な変化は見
られなかった。結果は(図1)に示す。
Example 2 The reaction was carried out in the same manner as in Example 1 except that only the reaction pressure was changed. As a result, there was no significant difference in the conversion of ammonia and the selectivity of nitrous oxide, and the reaction pressure was 1.0 kg / cm. In the vicinity of 2- G, the amount of NOx by-produced was rather large, but no significant change was observed. The results are shown in FIG.

【0020】比較例1 反応圧力を0.3Kg/cm2-G で行った他は実施例1と同様に
反応を行ったところ、NOx の副生量は23ppm となり、
実施例1における反応圧力が3Kg/cm2-Gの時の1.3ppmに
比べて約18倍と増加した。結果は(図1)に示す。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the reaction pressure was set at 0.3 kg / cm 2 -G. As a result, the amount of by-product NOx was 23 ppm.
The reaction pressure in Example 1 was increased by about 18 times compared to 1.3 ppm at 3 kg / cm 2 -G. The results are shown in FIG.

【0021】[0021]

【発明の効果】アンモニア酸化法において、水蒸気の存
在下に反応帯域の圧力を0.8Kg/cm2-G以上でアンモニア
を酸素で酸化することにより、得られる反応生成ガス中
のNOx の副生を大幅に抑制でき、高濃度の亜酸化窒素
を工業的に有利に製造し得る方法である。
In the ammonia oxidation method, by-oxidizing ammonia with oxygen at a pressure in the reaction zone of 0.8 kg / cm 2 -G or more in the presence of water vapor, the by-products of NOx in the resulting reaction product gas are produced. This is a method that can significantly suppress the production and industrially advantageously produce a high concentration of nitrous oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】反応圧力における、反応生成ガス中のNOxの
副生量を示す図である。
FIG. 1 is a diagram showing a by-product amount of NOx in a reaction product gas at a reaction pressure.

フロントページの続き (72)発明者 田中 光夫 大阪府高石市高砂1丁目6番地 三井東 圧化学株式会社内 審査官 大工原 大二 (56)参考文献 特開 平5−58607(JP,A) 特公 昭36−10958(JP,B1) 特公 昭46−33210(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 21/22 CA(STN)Continuation of the front page (72) Inventor Mitsuo Tanaka 1-6-6 Takasago, Takaishi-shi, Osaka Investigator, Mitsui East Pressure Chemical Co., Ltd. Examiner Daiji Daikohara (56) References JP-A-5-58607 (JP, A) Sho-36-10958 (JP, B1) JP-B-sho 46-33210 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 21/22 CA (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水蒸気の存在下、アンモニアを酸素で酸化
して亜酸化窒素を製造する方法において、反応帯域の圧
力を0.8 〜10kg/cm2-Gで行うことを特徴とするNOx の
副生が少ない亜酸化窒素の製造方法。
1. A method for producing nitrous oxide by oxidizing ammonia with oxygen in the presence of water vapor, wherein the pressure in the reaction zone is set at 0.8 to 10 kg / cm 2 -G. A method for producing nitrous oxide with low content.
【請求項2】請求項1記載の水蒸気が、反応器入り口濃
度で 50vol%以上である亜酸化窒素の製造方法。
2. A method for producing nitrous oxide, wherein the water vapor according to claim 1 has a concentration at the inlet of the reactor of 50 vol% or more.
JP27591592A 1992-10-14 1992-10-14 Method for producing nitrous oxide Expired - Lifetime JP3300428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27591592A JP3300428B2 (en) 1992-10-14 1992-10-14 Method for producing nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27591592A JP3300428B2 (en) 1992-10-14 1992-10-14 Method for producing nitrous oxide

Publications (2)

Publication Number Publication Date
JPH06122507A JPH06122507A (en) 1994-05-06
JP3300428B2 true JP3300428B2 (en) 2002-07-08

Family

ID=17562202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27591592A Expired - Lifetime JP3300428B2 (en) 1992-10-14 1992-10-14 Method for producing nitrous oxide

Country Status (1)

Country Link
JP (1) JP3300428B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849257A (en) * 1996-04-03 1998-12-15 Mitsui Chemicals, Inc. Process for preparation of nitrous oxide
US6312657B1 (en) 1998-08-25 2001-11-06 Exxonmobil Oil Corporation Production of nitrous oxide
DE19903616A1 (en) * 1999-01-29 2000-08-03 Basf Ag Process for the production of nitrogen oxides with a low degree of oxidation

Also Published As

Publication number Publication date
JPH06122507A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
EP1007499B1 (en) High productivity process to produce maleic anhydride from n-buthane
US5262547A (en) Process for the production of petrochemicals
JP2002518466A5 (en)
JPH0762011B2 (en) Method for producing ethylene oxide
JP3300428B2 (en) Method for producing nitrous oxide
JPH08301818A (en) Continuous production of dimethyl carbonate
JP3300427B2 (en) Method for producing nitrous oxide
EP0655433B1 (en) Process for continuously producing dimethyl carbonate
JP3258394B2 (en) Method for producing nitrous oxide
JP2013063997A (en) Use of chemical reaction to separate ethylene from ethane in ethane-based process to produce acetic acid
JP3174360B2 (en) Method for producing nitrous oxide
CN113683530B (en) Method for preparing heptafluoroisobutyronitrile by gas phase hydrocyanation
JP3174369B2 (en) Method for producing nitrous oxide
JP3606682B2 (en) Method for producing nitrous oxide
JPH09309709A (en) Production of nitrous oxide
JPH03294237A (en) Production of 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
JP5060492B2 (en) Butane absorption system for emission control and ethylene purification
JPS62132832A (en) Production of methacrylic acid and/or methacrolein
JP3590192B2 (en) Method for producing nitrous oxide
JPS6160061B2 (en)
JPH04297445A (en) Production of carbonic acid diester
JPS638095B2 (en)
JPH0940628A (en) Production of acrylonitrile
JPS60199855A (en) Production of benzoic acid
JPH0825961B2 (en) Method for producing carbonic acid diester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11