JPH036231B2 - - Google Patents

Info

Publication number
JPH036231B2
JPH036231B2 JP62290739A JP29073987A JPH036231B2 JP H036231 B2 JPH036231 B2 JP H036231B2 JP 62290739 A JP62290739 A JP 62290739A JP 29073987 A JP29073987 A JP 29073987A JP H036231 B2 JPH036231 B2 JP H036231B2
Authority
JP
Japan
Prior art keywords
resin
particles
electrode
conductive particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62290739A
Other languages
Japanese (ja)
Other versions
JPH01132789A (en
Inventor
Kaoru Hirakata
Akihiko Fujii
Shinichi Shimoda
Koji Koma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP62290739A priority Critical patent/JPH01132789A/en
Publication of JPH01132789A publication Critical patent/JPH01132789A/en
Publication of JPH036231B2 publication Critical patent/JPH036231B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、過硫酸塩の電解製造、金属の電解採
取、クロムの電鍍、アルミ箔の化成処理用液体給
電槽などに用いる酸素発生用不溶性陽極及びその
製造方法に関し、特に、導電性金属基体を用いる
ことなく絶縁性の熱可塑性樹脂粒子表面を導電性
粒子で被覆し成型した電極及びその製造方法に関
するものである。 (従来の技術) ケイフツ過浴からのクロムメツキ、コンデンサ
用アルミ箔の化成処理、あるいは亜鉛、マンガン
等の金属の電解採取には鉛または鉛合金、二酸化
鉛が広く用いられている。しかしながら、これら
の鉛系の電極はすべて酸素過電圧が高く電力を多
消費し、重くて取り扱いに不便なこと、機械的強
度が弱くたわみやすいことなど多くの欠点があ
る。また、銀あるいは錫などを含有させた鉛合金
は、純鉛に比べれば電解消耗量は少ないものの、
尚、硫酸浴中で多量のスラツジを生成し、陰極と
して得られるメツキ製品中に取り込まれて品質低
下を来たすなどの問題がある。 これら鉛系電極の問題を解決すべく開示された
非鉛系の電極として、たとえば特公昭57−54555
に見られるように金属ビスマスまたは酸化ビスマ
スからなる第一被覆層をチタン基体上に施し、さ
らにその上に金属イリジウムと二酸化イリジウム
の第二被覆層を設けた電極など白金族金属及びそ
れらの酸化物を被覆したチタン電極が多く知られ
ている。 これらの電極は一様に寸法安定性電極と呼ば
れ、電解中に形状や寸法に変化を来たすことがな
く、耐食性および触媒能を持つ電極活性物質を導
電性金属基体上に被覆した構造を有し、低い酸素
過電圧を示す優れた電極である。 しかしながら、これらの電極の基体であるチタ
ン等のバルブ金属は一般構造材に用いる鉄、ある
いは鉛などに比べると価格は十数倍も高く、電極
に用いるに際して大幅な制限を受けざるを得ない
のが現状である。これらの基体を陽極として用い
ると酸化物の生成のために急激な不動態化を生
じ、硫酸酸性浴、クロムメツキにおけるケイフツ
化浴、フツ化物を含む過硫酸浴などにおいては被
覆のピンホール通してこれらの浴の電解液が基体
であるチタンを腐食し、被覆とチタンとの界面の
抵抗が増大して槽電圧が上昇したり、被覆の剥離
や浮き上がりを生じて被覆があるにもかかわらず
寿命に至り、高価な貴金属の損失を招くなど用い
る基体の材質に問題があつた。 一方、高価なバルブ金属基体を使用せず、基体
に耐食性に富む熱可塑性樹脂を利用した試み(特
公昭39−29748)も見られる。この電極は粉末二
酸化鉛を樹脂で被覆し、これを熱間圧縮して成型
し電極基体とするものであるので、導電性を良く
するために二酸化鉛の量を多くする必要があり、
このために樹脂量を少なくすると機械的強度が低
下し、圧縮圧も1000Kg/cm2と高く、大型の電極を
製作するには特殊な成型機を必要とした。また同
様に金属粉末と合成樹脂を単に混合し成型して導
電性基体を作製し、これに白金を被覆した電極
(特公昭47−25982)においては、導電性粒子の樹
脂への分散が困難で不均一になりやすく、電解中
に剥離、脱落を生じる。 (発明が解決しようとする問題点) 本発明の目的は、高価なバルプ金属基体を用い
ることなく、安価な合成樹脂を用いてバルブ金属
が腐食する条件下においても耐食性に富み、機械
的強度も十分に有し、低い電気抵抗を持ち製造法
も簡単な酸素発生用電極提供することにある。 (問題点を解決するための手段) 本発明者らは、上記問題に鑑み熱可塑性樹脂と
電極活性物質の粒子を熱間加圧成型して成る電極
について鋭意検討を重ねた結果、ついにこれを完
成したものである。 即ち本発明は、導電性粒子と熱可塑性樹脂を熱
間加圧成型してなる電極において、イリジウム、
ルテニウム、ロジウム、白金およびそれらの酸化
物の一種以上より成る被覆をバルブ金属酸化物粒
子表面に施して平均粒子径が0.02〜5μmである導
電性粒子を形成し、該導電性粒子で、平均粒子径
が50〜500μmであり、かつ、表面を有機溶剤に
より溶解した熱可塑性樹脂の粒子表面を被覆した
のち乾燥し、その後熱間加圧成型した樹脂成型電
極である。 本発明に使用する熱可塑性樹脂としては、電解
液に耐食性を有することが必要であるが、合成樹
脂は一般に無機酸、無機塩溶液に対して高い耐食
性を有するため多くの種類の樹脂が使用できる。
例えば、ポリ塩化ビニル、ポリスチレン等の安価
な材料が使用できる。又、導電性粒子で樹脂粒子
表面を被覆するためには、たとえば樹脂粒子表面
を適当な溶剤で溶解させ、その状態で樹脂粒子表
面に導電性粒子を均一にまぶしたのち乾燥させて
被覆する。そのために樹脂が溶剤に溶けることが
必要で、例えばポリ塩化ビニルとアセトンあるい
はトルエン、ポリスチレンとアセトンなどの組み
合わせが使用でき、ポリプロピレン、ポリエチレ
ンなどの樹脂は安価ではあるが適当な溶剤がない
ために使用できない。 本発明に使用する導電性粒子としては、チタ
ン、ジルコニウム、ニオブなどのバルブ金属の酸
化物粒子の表面に白金族金属およびそれらの酸化
物を被覆したものが用いられる。バルブ金属の酸
化物としては、二酸化チタン、二酸化ジルコニウ
ム、五酸加二ニオブなどが用いられ、白金族金属
としてはイリジウム、ルテニウム、ロジウム、白
金が用いられる。また、被覆方法は、これらの白
金族金属の塩化物をブタノール、アルミアルコー
ル等に溶解した塗布液にバルブ金属の酸化物粒子
を浸漬して塗布し、大気中で400〜550℃、10〜60
分間の焼成を数回繰り返す熱分解法により行なう
のが最も経済的であり、被覆量は白金族金属とし
て30〜100g/m2が適当である。 本発明は、上記導電性知を表面だけを溶剤によ
り溶解した熱可塑性樹脂粒子にまぶして均一に被
覆し乾燥して導電性粒子を樹脂表面に固着させ、
その後間加圧成型し、導電性粒子よりなる導電層
を網目状に形成した電極であり、金属粒子と合成
樹脂を単に混合成型した場合に比べ各粒子の比重
はほとんど同じで、このため成型体は均一なもの
が得られる。導電性粒子は成型後網目構造を成し
て電路を形成し電流を供給する役割を果たしてお
り、樹脂粒子は電極活性物質である導電性粒子を
保持する役割と基体の機械的強度を保つ役目を担
つており、絶縁体であつても一向に差し支えな
く、成型体中の導電性粒子の含有量は使用する樹
脂や導電性粒子の比重により一概に定めることは
できないが、概ね10〜35重量%である。 また、熱可塑性樹脂粒子および導電性粒子は篩
分してして用いる。粒子の形状は球形が望ましい
が特に球形である必要はない。しかし、粒子の長
径と短径の比が大きい形状は成型時に樹脂が融着
しない部分が生じたり、導電性粒子の網目構造が
分断することがあるので1:3以内の形状のもの
を用いる。 本発明に用いる導電性粒子の大きさは、粒子の
凝集性が強くなく均一な分散状態を維持できれば
良く、粒子径が0.02〜5μmにしたものが用いられ
る。又、導電性粒子は熱可塑性樹脂粒子の表面に
均一に被覆、固着されることが必要で、導電性粒
子の粒子径が5μmである場合に、これを満足す
るためには樹脂粒子の大きさは50μm以上が必要
となり、これ以下になると樹脂表面が導電性粒子
で被覆されない部分が生じる。また、樹脂粒子の
大きさが500μm以上になると熱間成型した場合
に導電性粒子で形成する網目構造が大きくなり過
ぎたり電路がとぎれたりして電気抵抗が増大す
る。 本発明において、樹脂を熱間加圧成型する場合
の温度と加圧条件は樹脂および導電性粒子の種類
により異なるが、通常温度は120〜170℃、圧力は
高いほうが樹脂間の融着度合が大きくなり成型体
の機械的強度が向上するが、反面、網目構造が分
断される場合が生じるため150〜250Kg/cm2が適当
である。 本発明に用いる導電性粒子の芯となるバルブ金
属酸化物以外にアルミナ、ガラス粒子などを利用
することが考えられるが、これらは前記熱分解法
で被覆した白金族金属との密着性が悪いため好ま
しくない。また、イリジウム、ロジウム等の白金
族金属の酸化物の粒子をそのまま用いることもで
きるが、高価な貴金属を使用して目的とする粒子
径にするには歩溜まりが悪く経済的ではない。 本発明の電極は、成型厚みが5mm以上であれば
従来の電極と同様な取り扱いができる程の十分な
機械的強度を有する。また、板状あるいは棒状等
の成型樹脂を芯として本発明の電極を構成すれ
ば、強度は格段に向上する。 次に本発明の電極を実施例および比較例によつ
てさらに具体的に説明する。 実施例 1 平均粒子径0.2μmの二酸化チタン粉末10gを四
塩化イリジウム3gをイソプロパノール20mlに溶
解した塗布液の入つたビーカーに入れてよく混合
した後、ろ別した。この粉末を乾燥後、電気炉内
で500℃、1時間の加熱処理を行なつた。この塗
布〜加熱処理工程を20回繰り返して60g/m2の二
酸化イリジウム被覆を有する二酸化チタン導電性
粒子を得た。 平均粒子径100μmのポリ塩化ビニル樹脂20g
の入つたビーカーにアセトン−トルエン50/50混
合溶液を入れ10分間撹はんして表面を溶解させた
後、溶媒をろ別した。その後直ちにこのビーカー
に前記導電性粒子を加えて樹脂表面にまぶすよう
によく混合した後、乾燥器の中で50℃、1時間放
置し樹脂表面に二酸化鉛を均一に固着させた粒子
を製作した。44μmのナイロン製篩により余分な
二酸化鉛粒子を篩分して取り除いたこの粒子を、
直径20mmのヒーター付金型に仕込み200Kg/cm2
圧力で150℃、30分間保持した後常温まで冷却し
て直径20mm、厚み8mmのタブレツト状樹脂成型電
極を得た。 この電極にリード用として巾5mm×長さ100mm
×厚さ1mmのチタン板を導電性接着剤で固定し、
電極面積が10×10mmになるように電極をエポキシ
樹脂で覆つた。 また比較のため、巾20mm×長さ100mm×厚さ1
mmのチタン板をトリクレンで10分間蒸気脱脂し、
60℃の6%シユウ酸中で16時間エツチングして表
面を粗面化した後、六塩化イリジウム酸のブタノ
ール溶液をハケ塗りし、大気中で450℃、30分間
の焼成を行ない、この塗布〜焼成工程を15回繰り
返して二酸化イリジウムとして30g/m2の被覆を
有するチタン電極を製作した。 このようにして製作した樹脂成型電極と比較電
極を用い下記のクロムメツキ用ケイフツ化浴にお
いて両電極の耐久性を試験した。 ケイフツ化浴組成 無水クロム酸 250g/ ケイフツ化ソーダ 7g/ 硫酸 1g/ 陽極電流密度0.5A/cm2、浴温40〜50℃にてス
テンレス板を陰極として連続電解を行なつた結
果、比較電極はエツヂ部から腐食が進行してチタ
ン基体が露出し50日で寿命になつた。電解中、適
宜ケイ光X線膜厚計により二酸化イリジウム担持
量を行なつたが被覆厚みの減少はほとんどなく、
チタン基体が腐食して被覆が浮き上がり脱落して
寿命になつたと考えられた。一方、本発明の樹脂
成型電極は120日を経過しても何ら変化せず円滑
に電解できた。 実施例 2 バルブ金属酸化物および熱可塑性樹脂の種類と
粒子径を種々変え、塗布液は該当白金族金属の塩
化物のブタノール溶液を用いて実施例1と同様な
方法で第1表に示すA〜Dの4種類の電極を製作
し、16%硫酸中で銀一塩化電極を参照電極として
室温で電流密度0.1A/cm2における電位を測定し
た結果を、実施例1の樹脂成型電極および比較電
極の結果と合わせて第1表に示す。 実施例 3 陽極に実施例2のB電極、陰極に鉛板を用い、
下記の電解液で陽イオン交換膜を使用した過硫酸
アンモニウムの製造を行なつた。 電解液 陽極液 2.0 硫酸アンモニウム 396g/ フツ化アンモニウム 7.4g/ 陰極液 30%硫酸 2.0 陽極電流密度20A/dm2、液温は15℃に冷却
し、陽極液に25%水酸化アンモニウムを定量ポン
プにより注入してPHを5に保ちつつ電解を行なつ
た。平均電流効率は73.5%、所要電力1.18kwh/
Kgであつた。尚、実施例1の比較電極を使用して
も同様な電流効率が得られたが、電解を継続する
に従つて電極の表面およびエツヂ部にピツテイン
グが生じ、チタン基体が溶出して露出しているの
が確認された。
(Industrial Application Field) The present invention relates to an insoluble anode for oxygen generation used in electrolytic production of persulfates, electrowinning of metals, electroplating of chromium, liquid power supply tanks for chemical conversion treatment of aluminum foil, etc., and a method for producing the same. In particular, the present invention relates to an electrode in which the surface of an insulating thermoplastic resin particle is coated with conductive particles and molded without using a conductive metal substrate, and a method for manufacturing the same. (Prior Art) Lead, lead alloys, and lead dioxide are widely used for chromium plating from steel overbaths, chemical conversion treatment of aluminum foil for capacitors, and electrolytic extraction of metals such as zinc and manganese. However, all of these lead-based electrodes have many drawbacks, such as high oxygen overvoltage, high power consumption, heavy weight and inconvenience in handling, and low mechanical strength and easy bending. Also, although lead alloys containing silver or tin have less electrolytic consumption than pure lead,
However, there are problems in that a large amount of sludge is produced in the sulfuric acid bath, which is incorporated into the plating product obtained as the cathode, resulting in a quality deterioration. As a lead-free electrode disclosed to solve the problems of these lead-based electrodes, for example, Japanese Patent Publication No. 57-54555
Platinum group metals and their oxides, such as electrodes in which a first coating layer consisting of bismuth metal or bismuth oxide is applied on a titanium substrate, and a second coating layer of metal iridium and iridium dioxide is further provided on top of that, as shown in Many titanium electrodes coated with These electrodes are commonly referred to as dimensionally stable electrodes, which do not change shape or dimensions during electrolysis, and have a structure in which a conductive metal substrate is coated with an electrode active material that has corrosion resistance and catalytic ability. However, it is an excellent electrode that exhibits low oxygen overvoltage. However, valve metals such as titanium, which are the base material of these electrodes, are more than ten times more expensive than iron or lead used for general structural materials, and are subject to significant restrictions when used in electrodes. is the current situation. When these substrates are used as anodes, rapid passivation occurs due to the formation of oxides, and in acidic sulfuric acid baths, silicate baths in chrome plating, persulfuric acid baths containing fluorides, etc., these substrates pass through pinholes in the coating. The electrolyte in the bath corrodes the titanium base, increasing the resistance at the interface between the coating and titanium, increasing the cell voltage, and causing peeling and lifting of the coating, which shortens its service life despite the presence of the coating. As a result, there were problems with the material used for the substrate, such as the loss of expensive precious metals. On the other hand, there has also been an attempt (Japanese Patent Publication No. 39-29748) in which a highly corrosion-resistant thermoplastic resin was used for the base instead of using an expensive valve metal base. This electrode is made by coating powdered lead dioxide with resin and hot-compressing it to form the electrode base, so it is necessary to increase the amount of lead dioxide to improve conductivity.
For this reason, reducing the amount of resin lowers the mechanical strength, and the compression pressure is as high as 1000 kg/cm 2 , making it necessary to use a special molding machine to produce large electrodes. Similarly, in an electrode (Japanese Patent Publication No. 47-25982) in which a conductive substrate is prepared by simply mixing and molding metal powder and a synthetic resin and coated with platinum, it is difficult to disperse the conductive particles into the resin. It tends to be non-uniform and may peel or fall off during electrolysis. (Problems to be Solved by the Invention) An object of the present invention is to provide high corrosion resistance and mechanical strength even under conditions where valve metal corrodes by using an inexpensive synthetic resin without using an expensive valve metal base. It is an object of the present invention to provide an electrode for oxygen generation that has a sufficient amount of oxygen, has low electrical resistance, and is easy to manufacture. (Means for Solving the Problems) In view of the above-mentioned problems, the inventors of the present invention have conducted extensive studies on electrodes formed by hot-pressing molding of thermoplastic resin and electrode active material particles, and have finally developed this electrode. It is completed. That is, the present invention provides an electrode formed by hot-press molding conductive particles and a thermoplastic resin.
A coating made of one or more of ruthenium, rhodium, platinum, and their oxides is applied to the surface of the valve metal oxide particles to form conductive particles having an average particle diameter of 0.02 to 5 μm, and the conductive particles It is a resin-molded electrode having a diameter of 50 to 500 μm and coated with a particle surface of a thermoplastic resin dissolved in an organic solvent, dried, and then hot-press molded. The thermoplastic resin used in the present invention must have corrosion resistance to the electrolytic solution, but synthetic resins generally have high corrosion resistance to inorganic acids and inorganic salt solutions, so many types of resins can be used. .
For example, inexpensive materials such as polyvinyl chloride and polystyrene can be used. Further, in order to coat the surface of the resin particle with conductive particles, for example, the surface of the resin particle is dissolved in a suitable solvent, and in that state, the surface of the resin particle is uniformly sprinkled with conductive particles, and then dried and coated. For this purpose, it is necessary for the resin to be soluble in a solvent. For example, a combination of polyvinyl chloride and acetone or toluene, or polystyrene and acetone can be used. Resins such as polypropylene and polyethylene are inexpensive but are used because there is no suitable solvent. Can not. The conductive particles used in the present invention include oxide particles of a valve metal such as titanium, zirconium, and niobium, whose surfaces are coated with platinum group metals and oxides thereof. As the valve metal oxide, titanium dioxide, zirconium dioxide, diniobium pentaoxide, etc. are used, and as the platinum group metal, iridium, ruthenium, rhodium, and platinum are used. In addition, the coating method involves dipping the valve metal oxide particles in a coating solution in which platinum group metal chlorides are dissolved in butanol, aluminum alcohol, etc.
It is most economical to carry out the thermal decomposition method in which firing for several minutes is repeated several times, and the appropriate coating amount is 30 to 100 g/m 2 of the platinum group metal. The present invention involves sprinkling only the surface of the conductive particles onto thermoplastic resin particles dissolved in a solvent to uniformly coat the particles, drying the conductive particles, and fixing the conductive particles to the resin surface.
The electrode is then pressure-molded to form a conductive layer made of conductive particles in the form of a mesh, and the specific gravity of each particle is almost the same compared to when metal particles and synthetic resin are simply mixed and molded. can be obtained uniformly. The conductive particles form a network structure after molding and play the role of forming an electric path and supplying current, while the resin particles play the role of holding the conductive particles, which are the electrode active material, and maintaining the mechanical strength of the base. The content of conductive particles in the molded body cannot be determined unconditionally depending on the resin used and the specific gravity of the conductive particles, but it is generally 10 to 35% by weight. be. Further, the thermoplastic resin particles and the conductive particles are sieved and used. The shape of the particles is preferably spherical, but is not necessarily spherical. However, if the ratio of the long axis to the short axis of the particles is large, there may be parts where the resin does not fuse during molding, or the network structure of the conductive particles may be divided, so a shape with a ratio of 1:3 or less is used. The size of the conductive particles used in the present invention may be such that the particles do not have strong agglomeration and can maintain a uniformly dispersed state, and those having a particle diameter of 0.02 to 5 μm are used. In addition, the conductive particles must be uniformly coated and fixed on the surface of the thermoplastic resin particles, and when the conductive particles have a particle diameter of 5 μm, the size of the resin particles must be adjusted to satisfy this requirement. is required to be 50 μm or more, and if it is less than this, there will be parts of the resin surface that are not covered with conductive particles. Furthermore, if the size of the resin particles is 500 μm or more, the network structure formed by the conductive particles becomes too large or the electrical path is interrupted when hot molding is performed, resulting in an increase in electrical resistance. In the present invention, the temperature and pressure conditions when hot-pressing the resin vary depending on the type of resin and conductive particles, but the temperature is usually 120 to 170°C, and the higher the pressure, the better the degree of fusion between the resins. The larger the size, the better the mechanical strength of the molded product, but on the other hand, the network structure may be divided, so 150 to 250 Kg/cm 2 is appropriate. It is conceivable to use alumina, glass particles, etc. in addition to the bulb metal oxide that forms the core of the conductive particles used in the present invention, but these particles have poor adhesion to the platinum group metal coated by the above-mentioned pyrolysis method. Undesirable. Further, particles of oxides of platinum group metals such as iridium and rhodium can be used as they are, but using expensive noble metals to achieve the desired particle size is not economical due to poor yield. The electrode of the present invention has sufficient mechanical strength so that it can be handled in the same way as a conventional electrode if the molded thickness is 5 mm or more. Furthermore, if the electrode of the present invention is constructed using a molded resin core in the form of a plate or rod, the strength will be significantly improved. Next, the electrode of the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 10 g of titanium dioxide powder having an average particle size of 0.2 μm was placed in a beaker containing a coating solution prepared by dissolving 3 g of iridium tetrachloride in 20 ml of isopropanol, mixed well, and then filtered. After drying this powder, it was heat-treated at 500° C. for 1 hour in an electric furnace. This coating-heat treatment process was repeated 20 times to obtain titanium dioxide conductive particles coated with 60 g/m 2 of iridium dioxide. 20g of polyvinyl chloride resin with an average particle size of 100μm
A 50/50 mixed solution of acetone and toluene was placed in a beaker containing a 50/50 mixture and stirred for 10 minutes to dissolve the surface, and then the solvent was filtered off. Immediately thereafter, the conductive particles were added to the beaker, mixed well so as to be sprinkled on the resin surface, and then left in a dryer at 50°C for 1 hour to produce particles in which lead dioxide was evenly adhered to the resin surface. . Excess lead dioxide particles were removed by sieving through a 44 μm nylon sieve.
The mixture was placed in a heater-equipped mold with a diameter of 20 mm, held at a pressure of 200 kg/cm 2 at 150° C. for 30 minutes, and then cooled to room temperature to obtain a tablet-shaped resin molded electrode with a diameter of 20 mm and a thickness of 8 mm. This electrode has a width of 5 mm x length of 100 mm as a lead.
× A 1mm thick titanium plate is fixed with conductive adhesive,
The electrodes were covered with epoxy resin so that the electrode area was 10 x 10 mm. For comparison, width 20mm x length 100mm x thickness 1
A titanium plate of mm was degreased with steam for 10 minutes using Triclean.
After roughening the surface by etching in 6% oxalic acid at 60°C for 16 hours, a butanol solution of hexachloroiridic acid was applied with a brush and baked at 450°C for 30 minutes in the air. The firing process was repeated 15 times to produce a titanium electrode with a coating of 30 g/m 2 of iridium dioxide. Using the thus produced resin molded electrode and reference electrode, the durability of both electrodes was tested in the following sizing bath for chrome plating. Composition of silicification bath 250 g of chromic acid anhydride / 7 g of sodium silica / 1 g of sulfuric acid / As a result of continuous electrolysis with a stainless steel plate as a cathode at an anode current density of 0.5 A/cm 2 and a bath temperature of 40 to 50°C, the reference electrode was Corrosion progressed from the edges, exposing the titanium base, and the life span was reached in 50 days. During electrolysis, the amount of iridium dioxide supported was measured using a fluorescent X-ray film thickness meter, but there was almost no decrease in the coating thickness.
It was thought that the titanium base had corroded and the coating had lifted up and fallen off, reaching the end of its service life. On the other hand, the resin-molded electrode of the present invention showed no change even after 120 days and was able to perform electrolysis smoothly. Example 2 The A shown in Table 1 was prepared in the same manner as in Example 1 by varying the types and particle sizes of the valve metal oxide and thermoplastic resin, and using a butanol solution of the chloride of the relevant platinum group metal as the coating solution. Four types of electrodes ~D were fabricated, and the potentials were measured in 16% sulfuric acid using a silver monochloride electrode as a reference electrode at room temperature at a current density of 0.1 A/ cm2.The results were compared with the resin molded electrode of Example 1. The results are shown in Table 1 together with the results for the electrodes. Example 3 Using the B electrode of Example 2 as the anode and a lead plate as the cathode,
Ammonium persulfate was produced using the following electrolyte using a cation exchange membrane. Electrolyte Anolyte 2.0 Ammonium sulfate 396g/Ammonium fluoride 7.4g/Catholyte 30% sulfuric acid 2.0 Anolyte current density 20A/ dm2 , liquid temperature cooled to 15℃, and 25% ammonium hydroxide was injected into the anolyte using a metering pump. Electrolysis was carried out while maintaining the pH at 5. Average current efficiency is 73.5%, required power 1.18kwh/
It was Kg. Although similar current efficiency was obtained using the comparative electrode of Example 1, pitting occurred on the surface and edges of the electrode as electrolysis continued, and the titanium substrate was eluted and exposed. It has been confirmed that there is.

【表】 (発明の効果) 以上、明らかなように、本発明の電極は硫酸水
溶液で酸素発生用陽極として使用した場合、従来
のチタン基体電極に比べて同等またはそれ以下の
酸素発生電位を示した。これにより高価なバルブ
金属基体を用いる事なく、安価な樹脂を用いてチ
タン等の金属が腐食する条件下においても従前の
電解電圧で、しかも長期間使用し得る事ができる
ようになつた。さらにこの電極は製造方法も容易
である。
[Table] (Effects of the Invention) As is clear from the above, when the electrode of the present invention is used as an anode for oxygen generation in an aqueous sulfuric acid solution, it exhibits an oxygen generation potential that is equal to or lower than that of a conventional titanium-based electrode. Ta. As a result, it has become possible to use an inexpensive resin without using an expensive valve metal base, and to use the conventional electrolytic voltage for a long period of time even under conditions where metals such as titanium corrode. Furthermore, this electrode is easy to manufacture.

Claims (1)

【特許請求の範囲】 1 有機溶剤可溶性の熱可塑性樹脂よりなる基体
と、前記基体中に網目状に形成されたイリジウ
ム、ルテニウム、ロジウム、白金及びそれらの酸
化物の一種以上よりなる導電層と、前記導電層中
に分散されたバルブ金属酸化物粒子とから成る電
解用樹脂成型電極。 2 イリジウム、ルテニウム、ロジウム、白金及
びそれらの酸化物の一種以上より成る被覆をバル
ブ金属酸化物粒子表面に施して平均粒子径が0.02
〜5μmである導電性粒子と成し、前記導電性粒
子で、平均粒子径が50〜500μmであり、かつ、
表面を有機溶剤により溶解した熱可塑性樹脂粒子
表面を被覆したのち乾燥し、その後熱間加圧成型
し、前記導電性粒子より成る導電層を形成する事
を特徴とする電解用樹脂成型電極の製造方法。
[Scope of Claims] 1. A base made of an organic solvent-soluble thermoplastic resin; a conductive layer made of one or more of iridium, ruthenium, rhodium, platinum, and oxides thereof formed in a network shape in the base; A resin molded electrode for electrolysis, comprising valve metal oxide particles dispersed in the conductive layer. 2 A coating consisting of one or more of iridium, ruthenium, rhodium, platinum, and their oxides is applied to the surface of the valve metal oxide particles so that the average particle diameter is 0.02.
~5 μm in conductive particles, the conductive particles have an average particle size of 50 to 500 μm, and
Production of a resin-molded electrode for electrolysis, characterized in that a surface of thermoplastic resin particles whose surfaces are dissolved with an organic solvent is coated, dried, and then hot-press molded to form a conductive layer made of the conductive particles. Method.
JP62290739A 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production Granted JPH01132789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290739A JPH01132789A (en) 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290739A JPH01132789A (en) 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production

Publications (2)

Publication Number Publication Date
JPH01132789A JPH01132789A (en) 1989-05-25
JPH036231B2 true JPH036231B2 (en) 1991-01-29

Family

ID=17759898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290739A Granted JPH01132789A (en) 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production

Country Status (1)

Country Link
JP (1) JPH01132789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481082A (en) * 2016-01-15 2016-04-13 济南大学 Lead plating wastewater purification system and purification method
CN105502838A (en) * 2016-01-15 2016-04-20 济南大学 Copper-plating waste water purification system and water purification method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188361B2 (en) * 1994-06-27 2001-07-16 ペルメレック電極株式会社 Chrome plating method
EP1341256B1 (en) 2000-12-04 2006-07-12 Mitsubishi Denki Kabushiki Kaisha Short-range automobile wireless communication device
CN105565605B (en) * 2016-01-15 2018-06-29 济南大学 A kind of chromium plating wastewater cleaning system and purification method
CN105565604B (en) * 2016-01-15 2018-06-29 济南大学 A kind of plating iron waste water water cleaning systems and process for purifying water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481082A (en) * 2016-01-15 2016-04-13 济南大学 Lead plating wastewater purification system and purification method
CN105502838A (en) * 2016-01-15 2016-04-20 济南大学 Copper-plating waste water purification system and water purification method
CN105481082B (en) * 2016-01-15 2018-02-06 济南大学 A kind of lead plating waste water water cleaning systems and process for purifying water
CN105502838B (en) * 2016-01-15 2018-03-16 济南大学 A kind of copper plating wastewater water cleaning systems and process for purifying water

Also Published As

Publication number Publication date
JPH01132789A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
US4302321A (en) Novel sintered electrodes
US4765874A (en) Laminated electrode the use thereof
FI69123B (en) ELEKTROD OCH ELEKTROLYTISK CELL
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
CN102888625B (en) Non-ferrous metal electrodeposition palisading type positive plate
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
JPS5830957B2 (en) Lead dioxide coated electrode
JP3319887B2 (en) Method for producing hypochlorite
US3926751A (en) Method of electrowinning metals
MX2014007757A (en) Anode for oxygen generation and manufacturing method for the same.
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
JPH036231B2 (en)
MX2014007762A (en) Anode for oxygen generation and manufacturing method for the same.
EP0027051A1 (en) Coated metal electrode with improved barrier layer and methods of manufacture and use thereof
JPH0257159B2 (en)
CA1088026A (en) Stable electrode for electrochemical applications
US3497426A (en) Manufacture of electrode
JPH036995B2 (en)
US4107025A (en) Stable electrode for electrochemical applications
JPH05156480A (en) Production of oxygen generating anode
JPS5925985A (en) Low overvoltage cathode having high durability and its production
JPH0559999B2 (en)
JPS62161975A (en) Electrode used in electrolytic cell and its production
JP2002275697A (en) Anode for generating oxygen
JP3213833B2 (en) Electrolytic pickling method for stainless steel plate and electrode used for it