JPH0361172B2 - - Google Patents

Info

Publication number
JPH0361172B2
JPH0361172B2 JP59198611A JP19861184A JPH0361172B2 JP H0361172 B2 JPH0361172 B2 JP H0361172B2 JP 59198611 A JP59198611 A JP 59198611A JP 19861184 A JP19861184 A JP 19861184A JP H0361172 B2 JPH0361172 B2 JP H0361172B2
Authority
JP
Japan
Prior art keywords
light
waveguides
waveguide
branch
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59198611A
Other languages
Japanese (ja)
Other versions
JPS6177033A (en
Inventor
Hideaki Okayama
Keisuke Watanabe
Shigehiro Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP19861184A priority Critical patent/JPS6177033A/en
Publication of JPS6177033A publication Critical patent/JPS6177033A/en
Publication of JPH0361172B2 publication Critical patent/JPH0361172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導波路中を進む光の進行方向を電気
的に偏向させる光スイツチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical switch that electrically deflects the traveling direction of light traveling through a waveguide.

〔従来の技術〕[Conventional technology]

従来のこの種の光スイツチとして、方向性結合
器を備えたバランスドブリツジ型光導波路に電極
を設置することにより構成される導波路型光スイ
ツチがあり、この光スイツチは低電圧動作が可能
でかつ消光比が良いとう特長を有している。
A conventional optical switch of this type is a waveguide optical switch, which is constructed by installing electrodes on a balanced bridge optical waveguide equipped with a directional coupler, and this optical switch is capable of low voltage operation. It has the characteristics of being large and having a good extinction ratio.

〔発明が解決しようとする問題点〕 しかしながら、その反面、方向性結合器の製作
条件が厳しいという問題があり、また導波光の偏
光の種類によつてスイツチの寸法、形状を変えな
ければならず、そのため同一の光スイツチを用い
ることは不可能であるという問題もあつた。
[Problems to be solved by the invention] However, on the other hand, there is a problem that the manufacturing conditions for the directional coupler are strict, and the dimensions and shape of the switch must be changed depending on the type of polarization of the guided light. Therefore, there was also the problem that it was impossible to use the same optical switch.

本発明はこのような問題点を解決するためにな
されたもので、製作条件を緩和できる導波路型光
スイツチを実現することを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to realize a waveguide type optical switch that can ease manufacturing conditions.

〔問題点を解決するための手段〕[Means for solving problems]

上述した目的を達成するため、本発明は入力分
岐点および出力分岐点と、この入力分岐点および
出力分岐点間に接続された第1および第2の導波
路と、この第1および第2の導波路それぞれに近
接して配置された屈折率制御用の電極とを有する
バランスドブリツジ型の導波路型光スイツチにお
いて、前記入力分岐点と前記電極との間の領域お
よび前記出力分岐点と前記電極との間の領域にお
いて、前記第1および第2の導波路の幅が異なる
ことを特徴とする。
In order to achieve the above-mentioned object, the present invention includes an input branch point and an output branch point, first and second waveguides connected between the input branch point and the output branch point, and the first and second waveguides. In a balanced bridge waveguide optical switch having refractive index control electrodes disposed close to each waveguide, a region between the input branch point and the electrode and the output branch point The first waveguide and the second waveguide have different widths in a region between the electrodes.

〔作用〕[Effect]

以上の構成によると、非対称形分岐の光の偶モ
ードと奇モードの分離作用を利用し、電圧の印加
により光の位相を変化させてスイツチ動作させる
ことができる。
According to the above configuration, it is possible to perform a switch operation by changing the phase of the light by applying a voltage by utilizing the effect of separating the even mode and the odd mode of the light of the asymmetrical branch.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は構成を示す平面図であり、図において
1a,1bは光の入力分岐導波路、2a,2bは
光の出力分岐導波路、3a,3bは入力分岐導波
路1a,1b側に連なる分岐導波路、4a,4b
は出力分岐導波路2a,2b側に連なる分岐導波
路、5a,5bはそれぞれ分岐導波路3a,3b
と分岐導波路4a,4bを結ぶ直線導波路、6
a,6bは各々の一部が直線導波路5a,5b上
に重なるように設けられた屈折率制御用の電極で
ある。
FIG. 1 is a plan view showing the configuration. In the figure, 1a and 1b are optical input branching waveguides, 2a and 2b are optical output branching waveguides, and 3a and 3b are connected to the input branching waveguides 1a and 1b. Branch waveguide, 4a, 4b
are branch waveguides connected to the output branch waveguides 2a and 2b, and 5a and 5b are branch waveguides 3a and 3b, respectively.
and a straight waveguide connecting the branch waveguides 4a and 4b, 6
Reference characters a and 6b are refractive index control electrodes provided so that a portion of each of them overlaps the linear waveguides 5a and 5b.

さらに、上記した入力分岐導波路1a,1bお
よび出力分岐導波路2a,2bはそれぞれ同幅の
対称形分岐とし、かつ分岐導波路3a,4bを分
岐導波路3b,4aより幅を広くして非対称形分
岐とし、さらに直線導波路5a,5bは分岐導波
路3a,4bと3b,4aの中間の幅としたもの
である。つまり、入力側である分岐導波路3a,
3bおよび出力側である分岐導波路4a,4bを
それぞれ幅の異なる非対称形分岐構造に形成した
ものである。
Furthermore, the above-mentioned input branch waveguides 1a, 1b and output branch waveguides 2a, 2b are symmetrical branches with the same width, and the branch waveguides 3a, 4b are made wider than the branch waveguides 3b, 4a to make them asymmetrical. Furthermore, the straight waveguides 5a and 5b have a width intermediate between that of the branched waveguides 3a and 4b and those of the branched waveguides 3b and 4a. In other words, the branch waveguide 3a on the input side,
3b and branch waveguides 4a and 4b on the output side are each formed into an asymmetrical branch structure having different widths.

なお、7は入力分岐導波路1a,1bと分岐導
波路3a,3bとの接続部、8は出力分岐導波路
2a,2bと分岐導波路4a,4bとの接続部で
ある。
Note that 7 is a connection between the input branch waveguides 1a, 1b and the branch waveguides 3a, 3b, and 8 is a connection between the output branch waveguides 2a, 2b and the branch waveguides 4a, 4b.

非対称形分岐構造の作用は、例えば特開昭58−
202406号に示されるように、二本の導波路より成
る系では、偶モードと奇モードの二つの固有モー
ドが存在している。この系は等価屈折率法を用い
て二次元的な五層導波路として解析することが可
能である。この解析によれば、偶モードと奇モー
ドの界分布が、二本の導波路の等価屈折率差およ
び導波路間隔により大きく形状を変化することが
見出される。
The effect of the asymmetric branch structure is described, for example, in JP-A-58-
As shown in No. 202406, in a system consisting of two waveguides, there are two eigenmodes: an even mode and an odd mode. This system can be analyzed as a two-dimensional five-layer waveguide using the equivalent refractive index method. According to this analysis, it is found that the shape of the field distribution of even mode and odd mode changes greatly depending on the equivalent refractive index difference between the two waveguides and the waveguide spacing.

導波路間隔の狭い場合には、等価屈折率差が大
きい場合にも偶モードと奇モードの界分布は、二
本の導波路にほぼ等しいパワーを分配した形で一
方は等位相、他方は逆位相となつている。
When the waveguide spacing is narrow, even when the equivalent refractive index difference is large, the field distribution of even and odd modes is such that almost equal power is distributed to the two waveguides, with one having the same phase and the other having opposite phases. It is in phase.

導波路間隔が広くなると、等価屈折率差が大き
くなるに従つて偶モードの界分布は等価屈折率の
大きい導波路に大部分のパワーを配した形状とな
り、奇モードの界分布は等価屈折率の小さい導波
路に大部分のパワーを配した形状となる。
As the waveguide spacing becomes wider and the difference in equivalent refractive index increases, the field distribution of even modes will have a shape in which most of the power is distributed in the waveguide with a large equivalent refractive index, and the field distribution of odd modes will have a shape where the equivalent refractive index is larger. Most of the power is distributed in a small waveguide.

幅が異なる二本の導波路すなわち等価屈折率の
異なる二本の導波路の互いの間隔を一端では広く
他端では狭くしてハの字形に配置した場合、後述
する導波路間の角度(分岐角)、等価屈折率差等
の条件が適切である場合には、この構造を伝般す
る偶モード、奇モード間の変換を小さく抑えるこ
とが可能となる。これにより、この構造で以下に
示す機能を実現することができる。
When two waveguides with different widths, that is, two waveguides with different equivalent refractive indexes, are arranged in a V-shape with the interval between them being wider at one end and narrower at the other end, the angle between the waveguides (branching When conditions such as angle) and equivalent refractive index difference are appropriate, it is possible to suppress the conversion between the even mode and the odd mode propagating through this structure. Thereby, the following functions can be realized with this structure.

二本の導波路間の狭い部分において、二つの導
波路の光パワーが等しく等位相となる偶モードが
励起された場合、導波路間の広い部分では、等価
屈折率の高い導波路から光が出射される。二つの
導波路の光パワーが等しく逆位相となる奇モード
の場合には等価屈折率の低い導波路から光が出力
される。
If an even mode in which the optical powers of the two waveguides are equal and in phase is excited in the narrow part between the two waveguides, in the wide part between the waveguides, the light from the waveguide with a high equivalent refractive index is excited. It is emitted. In the case of an odd mode in which the optical powers of the two waveguides are equal and have opposite phases, light is output from the waveguide with a lower equivalent refractive index.

逆に、導波路間の広い部分から、一方の導波路
に光の入力される場合を考える。この場合、偶モ
ードと奇モードの励起される割合は、それぞれ偶
モードと入力光、奇モードと入力光の重畳積分と
なる。したがつて、等価屈折率の大きい導波路に
光を入力した場合には偶モードが励起され、等価
屈折率の小さい導波路に光を入力すれば奇モード
が励起される。これらのモードは導波路間の狭い
部分へ伝般していき、この部分で偶モードは二つ
の導波路に光パワーが等しく同位相の界分布、奇
モードでは等パワーで逆位相の界分布に変換され
る。
Conversely, consider a case where light is input into one waveguide from a wide area between the waveguides. In this case, the ratio of the even mode and the odd mode to be excited is the superposition integral of the even mode and the input light, and the odd mode and the input light, respectively. Therefore, when light is input into a waveguide with a large equivalent refractive index, the even mode is excited, and when light is input into a waveguide with a small equivalent refractive index, the odd mode is excited. These modes propagate to the narrow area between the waveguides, where the even mode has a field distribution with equal optical power and the same phase in the two waveguides, and the odd mode has a field distribution with equal power and opposite phase. converted.

そして、導波路間隔の狭い一端に、再び分岐角
の広い同一の幅の二本の導波路を接続すれば、導
波路間隔の狭い部分での二本の導波路の光パワー
の分配状態、位相状態を保存したまま、二本の導
波路へ光パワーを分けることが可能である。この
構造を非対称分岐という。
Then, if two waveguides of the same width with a wide branching angle are connected again to one end of the narrow waveguide interval, the distribution state of the optical power of the two waveguides at the narrow part of the waveguide interval, and the phase It is possible to divide optical power into two waveguides while preserving the state. This structure is called an asymmetric bifurcation.

そこで、上記構成による作用を第2図AからD
を用いて説明する。
Therefore, the effects of the above configuration are shown in Figure 2 A to D.
Explain using.

図において15a〜15dは入力光の電場強度
分布、16a〜16dは接続部7における偶モー
ドの電場強度分布、17a〜17dは同じく接続
部7における奇モードの電場強度分布である。ま
た、18a〜18d、19a〜19d、20a〜
20dおよび21a〜21dは直線導波路5a,
5bの両端部における電場強度分布、22a〜2
2dは接続部8における偶モードの電場強度分
布、23a〜23dは接続部8における奇モード
の電場強度分布、24a〜24dは出力光の電場
強度分布である。
In the figure, 15a to 15d are electric field intensity distributions of input light, 16a to 16d are even mode electric field intensity distributions at the connection portion 7, and 17a to 17d are odd mode electric field intensity distributions at the connection portion 7. Also, 18a to 18d, 19a to 19d, 20a to
20d and 21a to 21d are straight waveguides 5a,
Electric field strength distribution at both ends of 5b, 22a-2
2d is an even mode electric field intensity distribution in the connection part 8, 23a to 23d is an odd mode electric field intensity distribution in the connection part 8, and 24a to 24d are electric field intensity distributions of output light.

(1) まず、光の非スイツチ動作状態を考える。(1) First, consider the non-switching operating state of light.

第2図Aにおいて、入力分岐導波路1aに入
力された電場強度分布15aを持つ光は、該入
力分岐導波路1aを進んだ後、接続部7で電場
強度分布16aの偶モード光と電場強度分布1
7aの奇モード光とに分かれ、非対称形分岐の
動作により偶モード光は幅の広い分岐導波路3
aへ行き、奇モード光は幅の狭い分岐導波路3
bに行き、直線導波路5a,5bの始端でそれ
ぞれ電場強度分布18a,19aの光となる。
In FIG. 2A, the light input to the input branch waveguide 1a and having the electric field intensity distribution 15a travels through the input branch waveguide 1a, and then at the connection part 7, the light with the electric field intensity distribution 16a and the electric field intensity Distribution 1
The even mode light is split into the odd mode light at 7a, and the even mode light is split into the wide branching waveguide 3 due to the asymmetric branching operation.
a, the odd mode light passes through the narrow branch waveguide 3.
b, and becomes light with electric field intensity distributions 18a and 19a at the starting ends of straight waveguides 5a and 5b, respectively.

この光は、そのまま直線導波路5a,5bを
直進し、その終端から電場強度分布20a,2
1aの光としてそれぞれ幅の狭い分岐導波路4
aと幅の広い分岐導波路4bに入る。その後、
非対称形分岐の動作により接続部8で前記電場
強度分布20aの光は電場強度分布23aの奇
モード光に、また、電場強度分布21aの光は
電場強度分布22aの偶モード光になるので、
奇モード光と偶モード光の位相関係を電極6
a,6bに加える電圧により調整することによ
り出力分岐導波路2aから電場強度分布24a
の光が出力される。
This light travels straight through the straight waveguides 5a and 5b, and from the end thereof, electric field intensity distributions 20a and 2
Branch waveguides 4 each having a narrow width as the light of 1a
a and enters the wide branch waveguide 4b. after that,
Due to the operation of the asymmetric branch, the light with the electric field intensity distribution 20a becomes odd mode light with the electric field intensity distribution 23a at the connection part 8, and the light with the electric field intensity distribution 21a becomes even mode light with the electric field intensity distribution 22a.
The phase relationship between odd mode light and even mode light is determined by electrode 6.
The electric field intensity distribution 24a from the output branch waveguide 2a is adjusted by the voltage applied to a and 6b.
of light is output.

一方、第2図Cに示すように、入力分岐導波
路1bに電場強度分布15cをもつ光が入力さ
れると、入力された光は入力分岐導波路1bに
進んだ後、接続部7において電場強度分布16
cの偶モード光と、電場強度分布17cの奇モ
ード光とに分かれる。このとき、この奇モード
光と偶モード光の位相関係は、上述した第2図
Aの場合に比較してπだけずれている。
On the other hand, as shown in FIG. Intensity distribution 16
The light is divided into even mode light of c and odd mode light of electric field intensity distribution 17c. At this time, the phase relationship between the odd mode light and the even mode light is shifted by π compared to the case shown in FIG. 2A described above.

その後、非対称形分岐の動作により偶モード
光は幅の広い分岐導波路3aへ、また奇モード
光は幅の狭い分岐導波路3bへそれぞれ移つて
行き、直線導波路5a,5bの始端においてそ
れぞれ電場強度分布18a,19cの光となる
が、ここでもやはり互いの位相差は第2図Aの
場合に比較してπだけずれている。
Thereafter, by the operation of the asymmetric branch, the even mode light is transferred to the wide branch waveguide 3a, and the odd mode light is transferred to the narrow branch waveguide 3b, and the electric field is generated at the starting ends of the straight waveguides 5a and 5b. Although the light beams have intensity distributions 18a and 19c, their phase difference is also shifted by π compared to the case shown in FIG. 2A.

さらに、光はそのまま直線導波路5a,5b
を直進し、その終端から電場強度分布20c,
21cの光としてそれぞれ幅の狭い分岐導波路
4aと幅の広い分岐導波路4bに入る。その
後、非対称形分岐の動作により接続部8で前記
電場強度分布20cの光は電場強度分布23c
の奇モード光に、また、電場強度分布21cの
光は電場強度分布22cの偶モード光になる。
この奇モード光と偶モード光の位相関係も第2
図Aの場合と同じ電圧が電極6a,6bに加わ
つているとき第2図Aの場合に比べてπだけず
れているために、電場強度分布24cの光が出
力分岐導波路2bから出力される。
Furthermore, the light is directly transmitted through the straight waveguides 5a and 5b.
Go straight ahead, and from the end, the electric field strength distribution 20c,
The light of 21c enters the narrow branch waveguide 4a and the wide branch waveguide 4b, respectively. Thereafter, due to the operation of the asymmetric branch, the light of the electric field intensity distribution 20c is transferred to the electric field intensity distribution 23c at the connection part 8.
The light with the electric field intensity distribution 21c becomes the even mode light with the electric field intensity distribution 22c.
The phase relationship between this odd mode light and even mode light is also
When the same voltage as in the case of Figure A is applied to the electrodes 6a and 6b, the light with the electric field intensity distribution 24c is output from the output branch waveguide 2b because it is shifted by π compared to the case of Figure 2A. .

(2) つぎに、光のスイツチ動作状態について考え
る。
(2) Next, consider the operating state of the light switch.

第2図Bにおいて、入力分岐導波路1aに入
力された電場強度分布15bを持つ光は、該入
力分岐導波路1aを進んだ後、接続部7で電場
強度分布16bの偶モード光と電場強度分布1
7bの奇モード光とに分かれ、非対称形分岐の
動作により偶モード光は幅の広い分岐導波路3
aへ行き、奇モード光は幅の狭い分岐導波路3
bに行き、直線導波路5a,5bの始端でそれ
ぞれ電場強度分布18b,19bの光となる。
In FIG. 2B, the light input to the input branch waveguide 1a and having the electric field intensity distribution 15b travels through the input branch waveguide 1a, and then at the connection part 7, the light with the electric field intensity distribution 16b and the electric field intensity Distribution 1
The even mode light is split into the odd mode light at 7b, and the even mode light is split into the wide branching waveguide 3 due to the asymmetric branching operation.
a, the odd mode light passes through the narrow branch waveguide 3.
b, and becomes light with electric field intensity distributions 18b and 19b at the starting ends of straight waveguides 5a and 5b, respectively.

この光は、直線導波路5a,5bを進む間
に、電極6a,6bに加えられている電圧によ
り位相が変わり、終端において電場強度分布2
0b,21bのように第2図Aの場合に比べて
互いにπだけ位相がずれる。
While this light travels through the linear waveguides 5a and 5b, its phase changes depending on the voltage applied to the electrodes 6a and 6b, and at the end, the electric field intensity distribution 2
0b and 21b, the phases are shifted by π compared to the case of FIG. 2A.

その後、電場強度分布20b,21bの光は
幅の狭い分岐導波路4aと幅の広い分岐導波路
4bに入り、非対称形分岐の動作により接続部
8で電場強度分布20bの光は電場強度分布2
3bの奇モード光に、また、電場強度分布21
bの光は電場強度分布22bの偶モード光にな
る。この奇モード光と偶モード光の位相関係も
第2図Aの場合に比べて互いにπだけ位相がず
れているために、第2図Cの場合と同様に出力
分岐導波路2bから電場強度分布24bの光が
出力される。
Thereafter, the light with the electric field intensity distributions 20b and 21b enters the narrow branch waveguide 4a and the wide branch waveguide 4b, and due to the operation of the asymmetric branch, the light with the electric field intensity distribution 20b is transferred to the electric field intensity distribution 2 at the connection part 8.
3b, the electric field intensity distribution 21
The light b becomes even mode light of the electric field intensity distribution 22b. The phase relationship between the odd mode light and the even mode light is also shifted by π compared to the case of FIG. 2A, so the electric field intensity distribution from the output branch waveguide 2b is similar to the case of FIG. The light of 24b is output.

一方、第2図Dに示すように、入力分岐導波
路1bに電場強度分布15dの光が入力される
と、入力された光は入力分岐導波路1bに進ん
だ後、接続部7において電場強度分布16dの
偶モード光と、電場強度分布17dの奇モード
光とに分かれる。このとき、この奇モード光と
偶モード光の位相関係は、上述した第2図Bの
場合に比較してπだけずれている。
On the other hand, as shown in FIG. 2D, when light with an electric field intensity distribution 15d is input to the input branch waveguide 1b, the input light advances to the input branch waveguide 1b and then reaches the connection part 7 with an electric field intensity of 15d. The light is divided into even mode light with a distribution of 16d and odd mode light with an electric field intensity distribution of 17d. At this time, the phase relationship between the odd mode light and the even mode light is shifted by π compared to the case shown in FIG. 2B described above.

その後、非対称形分岐の動作により偶モード
光は幅の広い分岐導波路3aへ、また奇モード
光は幅の狭い分岐導波路3bへそれぞれ移つて
行き、直線導波路5a,5bの始端においてそ
れぞれ電場強度分布18d,19dの光となる
が、ここでもやはり互いの位相差は第2図Bの
場合に比較してπだけずれている。
Thereafter, by the operation of the asymmetric branch, the even mode light is transferred to the wide branch waveguide 3a, and the odd mode light is transferred to the narrow branch waveguide 3b, and the electric field is generated at the starting ends of the straight waveguides 5a and 5b. The light beams have intensity distributions 18d and 19d, but their phase difference is also shifted by π compared to the case shown in FIG. 2B.

これらの光は直線導波路5a,5bを進む
が、その間に電極6a,6bに加えられている
電圧により位相が変化し、終端では電場強度分
布20d,21dのように第2図Aの場合と同
じ位相になる。
These lights travel through the straight waveguides 5a and 5b, but the phase changes due to the voltage applied to the electrodes 6a and 6b, and at the end, the electric field intensity distributions 20d and 21d differ from the case in FIG. 2A. be in the same phase.

その後、電場強度分布20d,21dの光は
幅の狭い分岐導波路4aと幅の広い分岐導波路
4bに入り、非対称形分岐の動作により接続部
8で電場強度分布20dの光は電場強度分布2
3dの奇モード光に、また、電場強度分布21
dの光は電場強度分布22dの偶モード光にな
る。この奇モード光と偶モード光の位相関係も
第2図Aの場合と同じ電圧が電極6a,6bに
加わつているとき第2図Aの場合に比べてπだ
けずれているために、電場強度分布24dの光
が出力分岐導波路2aから出力される。つま
り、光スイツチ動作が行われる。
Thereafter, the light with the electric field intensity distributions 20d and 21d enters the narrow branch waveguide 4a and the wide branch waveguide 4b, and due to the operation of the asymmetric branch, the light with the electric field intensity distribution 20d is transferred to the electric field intensity distribution 2 at the connection part 8.
For the 3d odd mode light, the electric field intensity distribution 21
The light d becomes even mode light with an electric field intensity distribution 22d. The phase relationship between the odd mode light and the even mode light is also shifted by π compared to the case of FIG. 2A when the same voltage as in the case of FIG. 2A is applied to the electrodes 6a and 6b, so the electric field strength is Light having a distribution 24d is output from the output branching waveguide 2a. In other words, an optical switch operation is performed.

ここで、非対称形分岐導波路の特性について
述べると、その特性は、 Δβ/γθ>const ……(1) Δβ:入力分岐導波路3a,3b間または出力
分岐導波路4a,4bの伝搬定数差 γ:導波路からの光のしみ出しを表すパラメー
タ θ:入力分岐導波路3a,3b間または出力分
岐導波路4a,4bが成す角度 const:定数;1以上 で表される。
Here, the characteristics of the asymmetric branch waveguide are as follows: Δβ/γθ>const (1) Δβ: Difference in propagation constant between input branch waveguides 3a and 3b or output branch waveguides 4a and 4b γ: Parameter representing the seepage of light from the waveguide θ: Angle formed between the input branch waveguides 3a and 3b or between the output branch waveguides 4a and 4b const: Constant; expressed as 1 or more.

上記(1)式は不等式であるため、TE、TMモ
ードを制御することを考えた場合、Δβ/γθの
小さいモードが動作する状態ならば、大きい方
のモードも動作する状態となり、TEモード、
TMモードの両方を同時に制御する事が可能で
ある。また、(1)式が不等式であることから、製
作条件も非常に緩いものとなる。
Since equation (1) above is an inequality, when considering controlling TE and TM modes, if the mode with smaller Δβ/γθ is in operation, the larger mode will also be in operation, and TE mode,
It is possible to control both TM modes at the same time. Furthermore, since equation (1) is an inequality, the manufacturing conditions are also very relaxed.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明は、バランスドブリツ
ジ型光導波路の方向性結合器に該当する導波路を
入力側と出力側でそれぞれ非対称形分岐構造とな
るように形成しているため、従来に比べて製作条
性が緩和され、精密な設計を必要とせずに比較的
高い消光比が得られるという効果がある。
As explained above, in the present invention, the waveguide corresponding to the directional coupler of the balanced bridge type optical waveguide is formed so as to have an asymmetrical branch structure on the input side and the output side, so compared to the conventional one. This has the effect of easing the manufacturing process and making it possible to obtain a relatively high extinction ratio without requiring precise design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例を示す平面図、第2図は作用を
示す説明図。 1a,1b……入力分岐導波路、2a,2b…
…出力分岐導波路、3a,3b……分岐導波路、
4a,4b……分岐導波路、5a,5b……直線
導波路、6a,6b……電極、7,8……接続
部。
FIG. 1 is a plan view showing the embodiment, and FIG. 2 is an explanatory diagram showing the operation. 1a, 1b...Input branch waveguide, 2a, 2b...
...output branch waveguide, 3a, 3b...branch waveguide,
4a, 4b... Branch waveguide, 5a, 5b... Straight waveguide, 6a, 6b... Electrode, 7, 8... Connection portion.

Claims (1)

【特許請求の範囲】 1 入力分岐点および出力分岐点と、この入力分
岐点および出力分岐点間に接続された第1および
第2の導波路と、この第1および第2の導波路そ
れぞれに近接して配置された屈折率制御用の電極
とを有するバランスドブリツジ型の導波路型光ス
イツチにおいて、 前記入力分岐点と前記電極との間の領域および
前記出力分岐点と前記電極との間の領域におい
て、前記第1および第2の導波路の幅が異なるこ
とを特徴とする導波路型光スイツチ。
[Claims] 1. An input branch point and an output branch point, first and second waveguides connected between the input branch point and the output branch point, and an input branch point and an output branch point, respectively, and first and second waveguides connected between the input branch point and the output branch point, and In a balanced bridge type waveguide optical switch having a refractive index control electrode disposed in close proximity to each other, a region between the input branch point and the electrode and a region between the output branch point and the electrode A waveguide type optical switch characterized in that the first and second waveguides have different widths in a region between them.
JP19861184A 1984-09-25 1984-09-25 Optical switch of waveguide type Granted JPS6177033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19861184A JPS6177033A (en) 1984-09-25 1984-09-25 Optical switch of waveguide type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19861184A JPS6177033A (en) 1984-09-25 1984-09-25 Optical switch of waveguide type

Publications (2)

Publication Number Publication Date
JPS6177033A JPS6177033A (en) 1986-04-19
JPH0361172B2 true JPH0361172B2 (en) 1991-09-19

Family

ID=16394066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19861184A Granted JPS6177033A (en) 1984-09-25 1984-09-25 Optical switch of waveguide type

Country Status (1)

Country Link
JP (1) JPS6177033A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465050A (en) * 1977-10-11 1979-05-25 Western Electric Co Electromagnetic wave device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465050A (en) * 1977-10-11 1979-05-25 Western Electric Co Electromagnetic wave device

Also Published As

Publication number Publication date
JPS6177033A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
KR20020028551A (en) Digital thermo-optic switch coupled with a variable optical attenuator.
FI90597C (en) Mach-Zehnder interferometer
KR940006159B1 (en) Digital optical switch
JPH05173099A (en) Optical control element
JPH0361172B2 (en)
JP2008026374A (en) Optical waveguide, optical device, and method for manufacturing optical waveguide
KR100204026B1 (en) Optical signal switching element
JPS6223847B2 (en)
JPS63141021A (en) Mach-zehnder type optical waveguide modulator
JPS6034094B2 (en) electro-optic modulator
JPH0254930B2 (en)
JP3236426B2 (en) Optical coupler
JPS6120018A (en) Wave guide type optical switch
JPH05249419A (en) Optical waveguide type optical device
JPS61160703A (en) Te-tm mode splitter
JPH02928A (en) Waveguide type optical switch
JPS63142333A (en) Waveguide type optical switch
JPS60217346A (en) Optical switch of waveguide type
WO2023045610A1 (en) Electro-optic modulator and electro-optic device
JP4197316B2 (en) Light modulator
JP4104027B2 (en) Directional coupled electro-optic element
JPH07230013A (en) Intersection waveguide structure and optical switch using the same
JPH01163720A (en) Distribution interference type optical modulator
JPH0254929B2 (en)
JP2866269B2 (en) Directional coupler type optical switch and method of using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees